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Abstract. Cyber-physical systems interconnect the cyber world with
the physical world in which sensors are massively networked to monitor
the physical world. Various services are expected to be able to use sensor
data reflecting the physical world with information technology. Given this
expectation, it is important to simultaneously provide timely access to
massive data and reduce storage costs. We propose a data storage scheme
for storing and querying massive sensor data. This scheme is scalable by
adopting a distributed architecture, fault-tolerant even without costly
data replication, and enables users to efficiently select multi-scale ran-
dom data samples for statistical analysis. We implemented a prototype
system based on our scheme and evaluated its sampling performance.
The results show that the prototype system exhibits lower latency than
a conventional distributed storage system.
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1 Introduction

Thanks to advances in sensor devices and networking technologies, it is becoming
possible to retrieve people’s behavior, object states, and environmental condi-
tions as sensor data in real-time. These sensor data are massive and continuously
increasing since there are an infinite number of targets to sense in the physical
world. Applications with significant socio-economic impact will be developed us-
ing such physical world data. Systems that interconnect the cyber world with the
physical world are referred to as cyber-physical systems (CPSs)[1]. Applications
of CPSs include, but not limited to, environmental monitoring, transportation
management, agriculture management, pandemic prevention, disaster recovery,
and electric grid management.

There are many technical challenges with CPSs. One key challenge is pro-
viding real-time sensor data to applications. Gathered sensor data are attractive
for various applications. CPSs have to simultaneously deal with huge amounts of
sensor data for applications. Because the physical world is ever-changing, CPS
applications must timely and continuously adapt to these changes, predict what



2 Distributed Sampling Storage for Statistical Analysis of Massive Sensor Data

will occur, and perform the appropriate actions. Of course, not every CPS ap-
plication is required to do these in real time. CPS applications can be divided
into two types; real-time, as mentioned above, which place a high priority on
timely data acquisition, and batch processing, which places a high priority on
accurate results and attempts to use data exhaustively. For batch processing
applications, software frameworks, such as MapReduce[2], have been proposed
and already applied to some domains. They tend to be extremely large; only
limited organizations have environments equipped to process such massive data
exhaustively. These applications are a minority. Thus, our target applications
are real-time ones. We adopt a kind of approximate query processing technique
to speed up the data providing; it is a sampling. The sampling reduces the size
of data, and reduce the latency of processes.

Another key challenge is reducing storage cost for sensor data. Since sen-
sor data is massive and continuously increasing, storage cost is a serious issue.
Although fault-tolerance is generally mandatory, it is not realistic in terms of
cost to keep doubling, tripling, etc.. data. We need another scheme for ensur-
ing fault-tolerance. It sounds impossible to ensure fault-tolerance without data
replication; however, we realize this by a novel approach that emphasizes sta-
tistical properties of the data instead of individual data values. This approach
enabled us to translate the data durability into the data accuracy. Therefore, we
can relax the data durability unless applications always request the maximum
accuracy.

The rest of this paper is organized as follows. Section 2 discusses require-
ments for storage systems that process massive amounts of sensor data. Section
3 describes our approach and proposes a storage scheme that satisfies these
requirements. Section 4 evaluates the performance of a prototype system by
comparing it with a conventional storage system. Section 5 describes related
work and compares them with ours. Section 6 concludes the paper and describes
future work.

2 Requirements

To clarify the requirements for storage systems, we first describe the charac-
teristics of data generated by sensors in a large-scale sensor network. Next, we
describe the characteristics of applications using such data. Then, we discuss the
requirements for storage systems that store and query the data.

2.1 Characteristics of Sensor data

Individual sensor data records are tiny but are collectively massive. A single sen-
sor data record generally consists of a sensing value/values and its/their meta-
data such as sensor, temporal, and spatial attributes. On the other hand, there
is a massive amount of sensors in a network, which continuously generate and
transmit data. Although each record is small, they collectively become an enor-
mous data stream through a large sensor-network. Consequently, sensor data are
massive and continuously increasing.
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A sensor data record is just a sample of a physical condition, e.g., tempera-
ture. Sensor data records may have a margin of error in their sensing values and
are sparse. These are inherently defective data; therefore, analyzers must lump
them together at a suitable granularity to enhance the quality of each cluster.
Statistical analysis is thus a quite natural method for understanding sensor data.

In summary, sensor data are massive and defective but each record is unim-
portant; therefore, they need to be lumped together and statistically analyzed.

2.2 Application Characteristics

When processing a massive amount of data, most applications, especially real-
time applications, tend to quickly obtain an overview of the data rather than
inquire about each piece of data since analyzing all data is too detailed and
costly. In this case, “overview” involves statistics such as averages, trends, and
histograms. A key factor of statistical analysis is its accuracy.

Generally, latency of analyzing correlates with the size of the data to process,
and accuracy also correlates with the size of the data; consequently, there is a
trade-off between speed and accuracy. As mentioned above, our target applica-
tions place a high priority on quick analysis. On the other hand, each application
has its own accuracy requirement. In addition, the level of accuracy depends on
the context of the application. The accuracy requirement dynamically changes.
Therefore, the most appropriate data set for an application is the minimal set
satisfying its dynamic accuracy requirement.

In summary, applications prioritize quick response. They require the minimal
set of data that satisfies their dynamic accuracy requirement.

2.3 Storage Requirements

So far, we described the characteristics of sensor data and applications. Now, we
discuss the requirements for storage systems.

The first requirement is scalability because sensor data are massive and con-
tinuously increasing. Although there are other ways of mitigating the increasing
amounts of data, such as compression and disposition, they have the following
disadvantages. Compression requires encoding and decoding, which increases la-
tency of processing. Disposition is effective if all potential applications using the
data can share a common policy to dispose of data; however, this is prohibitively
difficult. Thus, storage must be scalable, which requires adopting a distributed
architecture.

The second requirement is fault-tolerance. Data durability is mandatory for
common storage systems. Slight data loss is acceptable in the case of sensor data,
provided that the loss is not biased. Since sensor data should be interpreted by
a statistical process, non-biased data loss is not critical. It does not detract from
the availability of the system; therefore, fault-tolerance is established. In other
words, storage must maintain the statistical properties of data even if it loses
partial data. We call this statistical stability.
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The last requirement is quick sampling, which is a real-time requirement
of applications. Reducing the data size to process naturally reduces latency.
In statistical analysis, the required size of a sample depends on the accuracy
requirement. Therefore, storage must arbitrarily provide the size of a sample
according to the application’s accuracy requirement.

In the next section, we propose a storage scheme satisfying these three re-
quirements: scalability, fault-tolerance, and quick sampling.

3 Distributed Sampling Storage Scheme

Our scheme is designed for efficient statistical processing and inherently offers a
sampling function. The main idea is to distribute random samples among servers
to achieve high scalability, fault-tolerance, and efficient sampling.

Our scheme consists of one manager, data servers, and clients. The manager
monitors the data servers and provides their live list to clients. The data servers
receive requests of inserting, reading, and deleting records from clients and man-
age them. While the architecture is almost the same as other distributed storage
scheme, the main point of our scheme is the method of clients inserting records.

We first explain our approach and procedure, then describe quick sampling,
load balancing, and fault-tolerance techniques in detail.

3.1 Approach

We believe that the fundamental cost reduction technique for analyzing data is
sampling, and a data storage system should natively provide a sampling func-
tion. Although many data mining techniques have been proposed, they require
huge computational cost when analyzing all original records. We often extract
a random sample from the original and apply data mining techniques to the
sample for fast analysis. Randomness of sampling is important for preventing
information drop. If sampling is executed regularly, some high-frequency data
components may be dropped. Therefore, we developed our scheme on the basis
of random sampling processing.
The following conditions are necessary to acquire a fair random sample:

— the data records in the sample are extracted randomly from all original
records, and
— the data records in the sample are not biased toward the extraction process.

We assumed that a distributed storage scheme enables efficient sampling if it
stores a fair random sample on each node. For the fairness, we adopt a simple
method, which is to randomly select a data server to insert each record. If every
data server stores a fair random sample, the sampled records are not the same
among the data servers but have the same statistical feature. In other words, each
server has statistical redundancy with the rest of the servers. Our scheme involves
random sampling at inserting records by clients. We discuss load balancing and
fault-tolerance from the viewpoint of sampling.
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Fig. 1. System overview of distributed sampling storage.

3.2 Procedure

We describe the management, insertion, read, and deletion processes as follows.
The system overview is shown in Figure 1. The effectiveness of each process is
described in Sections 3.3 to 3.5.

Management The manager maintains live data servers at all times for fault-
tolerance and fair sampling. The manager monitors the data servers and main-
tains a stable scheme. Furthermore, the total number of live data servers deter-
mines the sampling rate of the records in a data server. We use the live data
server list for not only managing data server status but also for maintaining
accurate statistics.

1. The manager accesses the data servers at regular intervals and maintains
the live data server list.

2. The manager stores the times when and IDs of data servers join or leave the
storage system.

Insertion A client inserts a record into the randomly selected data server for
fair sampling and load balancing. The client randomly selects a data server at
each insertion so that data servers store fair random samples. This fair random
selection also makes loads of data servers be balanced.

1. A client receives the present data server list from the manager.

2. The client randomly selects one of the data servers in the list for each record.

3. The client directly sends the record insertion request to the data server.

4. If the data server leaves unexpectedly, the client should not reselect another
data server. Instead, the client disposes the request to maintain fairness and
sampling rate.
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Read A client changes the number of accessed data servers on the basis of the
sampling rate. Each sample in the data servers does not overlap and has the
same statistical feature. Thus, the client can modify the sampling rate based on
the number of accessed data servers.

1. A client sends the read request of records in the insertion time range, and
the sampling rate to the manager.

2. The manager calculates enough data servers to satisfy the sampling rate by

referring to the data server list in the insertion time range, as we discuss in

Section 3.3.

The manager notifies the client of the data server list regarding the request.

4. The client sends the record read request of the time range to the data servers
in the list.

©w

Deletion The manager does not manage which data server stores a record. The
manager only detects the live data servers for each insertion time. Thus, a client
should send the deletion request to all the data servers to which the client may
insert records.

1. A client receives the live data server list at the time of inserting the record
from the manager.

2. The client sends the record deletion request to all the data servers in the
list.

3.3 Quick Sampling Technique

The sampling rate of our scheme can be modified on the basis of the number of
accessed data servers.

Each data server has randomly sampled records. If there are IV records and
n data servers, every data server stores nearly N/n sampled records. If a client
needs only the N/n sampled records, the client can quickly obtain it by reading
all the records in any one of the data servers. However, clients usually require
sampled records with various sampling rates. We should prepare a sampling
technique for different sampling rates.

A client can modify the sampling rate by changing the number of accessed
data servers because the data servers have non-overlapping and well balanced
records. As a result, our scheme returns sampled records quickly regardless of the
sampling rate. Let us consider the relation between the number of data servers
and the sampling rate o (0 < a < 1). We classify this relation into the following
three cases.

Case 1 If o < 1/n holds, the request size is smaller than the size of the sampled
records in a data server. Then, a client reads all the records in any one of
the data servers and randomly extracts its sampled records by setting the
sampling rate to n - a.

Case 2 If there is a natural number m (m < n) such that & = m/n holds, a
client may access any m of the data servers and read all the records.
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Case 3 Otherwise, it is a combination of cases 1 and 2. A client reads all the
records in any [n -] of the data servers and randomly extracts from one of
them at a sampling rate of n-a — [n - a].

3.4 Load Balancing Technique

Many data servers are controlled by the manager in our scheme. However, we
avoid concentrating heavy loads on the manager and balance the data server
loads.

Although the manager monitors data servers and shares their status with
clients, the manager does not read or write a record. That is, the manager only
updates and provides the data server list. As a result, the traffic of the manager
is comparatively small.

The data server loads are due to almost exclusively the requests from clients
and are well balanced. There is no synchronization and no status update access
among data servers. Since a client randomly selects a data server from the data
server list, the insertion requests are not concentrated on a specific data server.
Moreover, the reading loads of data servers can be distributed. This is because
the manager can determine the load of data servers and select less loaded ones
to notify the client.

Our scheme scales out as follows. The new data server does not receive a
record until the manager includes it into the data server list. After appearing in
the list, a client, who receives the updated list, starts inserting records into the
new data server. Over time, the load among the data servers will balance. Note
that the data servers in our scheme do not re-allocate records to each other.
We cut the record modification process among the data servers to simplify the
scheme.

3.5 Fault-Tolerance Technique

Acquiring just a sample is sufficient for most clients. If a client requires a random
sample whose sampling rate is « and the records are in n data servers, the client
receives the records from [n - «| data servers. Because the data servers have a
non-overlapping and well balanced set of records, the client can access any [n-a/]
data server from the live data servers. That is, the client can obtain the same
statistical records if n — [n - ] data servers are left.

The above observation suggests that our scheme does not require costly repli-
cation. We believe that statistical stability is important, and our scheme satisfies
stability without replication. Our scheme involves fault-tolerance at fair random
sampling.

4 Evaluations

In this section, we compare the sampling performances in a prototype distributed
sampling storage system based on our proposed scheme with that of a conven-
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tional system. We show that the prototype system outperforms the conventional
one in sampling and is scalable.

We implemented our simple prototype system using PostgreSQL servers|3]
as back-end databases, and conducted two experiments to evaluate its sampling
latency and scalability. We selected pgpool-I1[4] as a target for comparison, which
is an open source middleware working between PostgreSQL servers and a client.

4.1 Experimental Setup

Environments. The experimental environment consists of five PCs (Intel Xeon
quad-core X3450 2.55 GHz quad-core, 8-GB memory, 3.5-inch 250-GB 7,200-rpm
SATA HDD x4, CentOS5.6 64 bit) for storage and one PC (Intel Core2 quad-
core Q9950 2.83 GHz, 8-GB memory, 3.5-inch 160-GB 7,200-rpm SATA HDD,
Cent0S5.6 64 bit) for clients. They are connected over Gigabit Ethernet.

Since each storage PC is quad-core and has four physical disks, each one can
be regarded as an independent server. Then, on each storage PC, a maximum of
four PostgreSQL 8.1 server processes run. Each process links to a database on
each disk of the PC. On the client PC, several client processes can run simulta-
neously.

A record is a fixed length of 56 bytes. Each record consists of fields of record
ID, insertion time, sensing time, client ID, client IP address, and value.

Distributed Sampling Storage. To compare the sampling performance de-
rived from the difference in data distribution, we omitted the data server manage-
ment processes from the prototype system. Therefore, the system only consists of
PostgreSQL servers as data servers and clients implemented in C++. The data
servers run on four storage PCs, and the clients run on one client PC. Clients
detect the live server list from the beginning, randomly select data servers to
insert records, and select data servers in turn to read records for load-balancing.

Pgpool-II. We use pgpool-IT 3.0 in parallel query mode in which data can be
split among multiple data servers, so that a query can be executed on all the
servers concurrently. The system consists of PostgreSQL servers as data servers,
a pgpool server as a proxy server between a client and data servers, and clients
implemented in C++. The data servers run on four storage PCs, the proxy server
runs on one storage PC, and the clients run on one client PC. Clients always
access the proxy server both to insert and to read. Then the proxy server inserts
or reads instead of the clients. In the last read process, clients also extract a
sample from the acquired records at the required rate.

4.2 Evaluation 1: Latency of Sampling

We evaluated the sampling response with respect to the sampling rate «, where
0.02 < a < 1.0. In preparation, we stored 10,000/« records into each storage
with 10 data servers. We then simultaneously measured the latency for sampling
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from the storage at a rate of @ by 5 clients. A total of (probably overlapping)
approximately 50,000 sampled records were acquired.

Figure 2 shows the results. The horizontal axis is the sampling rate and the
vertical axis is the latency. The prototype system outperformed the conventional
system in sampling rate a, and was about ten times faster, where o < 0.1. This
gap is nearly equal to the data size to access. With « smaller than 0.1, the pro-
totype system accessed records in just one data server, whereas the conventional
system accessed those in all ten data servers.

4.3 Evaluation 2: Scalability

Next, we evaluated the sampling response with respect to the number of data
servers n, where 1 < n < 10. In preparation, we stored 100,000 records into
each storage with n data servers. We then simultaneously measured the latency
for sampling from the storage at a rate of 0.1 by 5 clients. A total of (probably
overlapping) approximately 50,000 sampled records were acquired.

Figure 3 shows the results. The horizontal axis is the number of data servers
and the vertical axis is the latency. The prototype system outperformed the
conventional system for any number of data servers n, and became faster as n
increased, whereas the conventional system did not. Thus, the prototype system
is scalable.

5 Related Work

Stream database management systems are being extensively studied. Represen-
tative examples are STREAM[5] and Aurora[6]. These systems are mainly aimed
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at support for continuous query over a data stream and do not support sample
extraction from stored data in the repository; thus, they cannot enable efficient
sampling.

Sampling-based approximate query processing is also being studied. The aim
is quick sampling or answering. As a classical example, Olken et al. studied
random sampling on relational databases. They proposed several efficient algo-
rithms|7][8]. Babcock et al.[9] proposed a method of providing fast approximate
answers in decision support systems. This method combines samples selected
from a family of non-uniform samples to enhance approximation accuracy. Pol
et al.[10] proposed online algorithms for maintaining very large on-disk samples
of streaming data. These algorithms reduce disk access in updating samples on
disk by storing them based on their proposed geometric data model. These stud-
ies enable efficient sampling; however, they have to keep a copy of the data in
extra storage for fault-tolerance. Therefore, they are costly.

Reeves et al.[11] proposed a framework to archive, sample, and analyze mas-
sive time series streams, especially for data center management. This framework
is aimed not only for speed but for reducing the size of archives by compres-
sion and summarization. This enables simultaneous quick answering and cost
reduction; however, it is difficult to share the stored data among various appli-
cations since compression parameters and summarization need to be optimized
for each application. In addition, the system still needs to duplicate data for
fault-tolerance.



Distributed Sampling Storage for Statistical Analysis of Massive Sensor Data 11

6 Conclusion

We proposed a distributed sampling storage scheme to efficiently sample from a
massive amount of sensor data. Clients insert a record into the randomly selected
data server, then each data server independently stores a fair random sample;
consequently, this storage is scalable and fault-tolerant even without costly data
replication. Experimental results showed that the prototype system exhibited
lower latency of the sampling process than the conventional system, and it is
scalable by increasing the number of data servers. We believe that our scheme
make a big contribution to the realization of CPSs.

In the future, we plan to add more flexibility to sampling for a wide range of
applications.
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