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Abstract. Load balancing faces new challenges in the framework of au-
tonomic servers deployed in data centers. With traditional push-based
strategies, the authoritative decision is made by the load balancer, which
decides to which server the requests are forwarded. However, the auton-
omy of servers is often incompatible with these strategies, as they may
accept or refuse to process a request on a voluntary basis. We present in
this paper the benefits and limits of a pull-based load balancing strategy
for transferring the authority from the load balancer to the autonomic
servers. We describe the underlying functional architecture with two dif-
ferent schemes and quantify the performances through an extensive set
of experiments.

1 Introduction

Autonomic computing has become a major paradigm for dealing with the grow-
ing complexity of systems and networks and simplifying their maintenance [1].
In particular, we can consider autonomic servers that are capable of managing
themselves based on closed control loops in order to: configure their components,
detect and correct their failures, monitor and control their own resources in an
optimal manner, and diagnose and protect themselves against attacks. These
servers can typically be deployed in data centers. They may provide support for
multi-tier applications and services, and share the load of client requests.

A variety of algorithms [2] has been proposed in order to balance the work-
load among servers in an optimal manner. However, autonomic computing favors
autonomous components that are weakly coupled rather than traditional hierar-
chical systems with strong couplings (based on an obligation model). Autonomic
servers seem therefore to pose new challenges with regard to this load balancing.

In traditional approaches, the load balancing strategy is performed in a push-
based (obligation) manner (see Sub-figure 1(a)), which means the decision of
whether a server should receive a request or not made exclusively by the load
balancer. Autonomics skeptics often imagine that this kind of approach is fun-
damental to the idea of “control” and the idea of component autonomy stands
in the way of proper resource sharing if servers will not do as they are told by



an authoritative controller. We have already argued against this viewpoint [3]
and show this belief to be erroneous below.

One might argue that a push-based load balancer can easily estimate server
resources by observing network parameters such as on-going connections. Moni-
toring agents can also be deployed on the servers to evaluate their performance.
While server-state information can improve the load balancing mechanism with
traditional servers, this adds an unnecessary overhead with autonomic servers.
The authoritative decision is kept by the load balancer, which decides to which
server the request is forwarded. Moreover, this authority is in conflict with an
autonomic server’s preference to make decisions by itself and to interacting on
a purely voluntary basis. So there are two reasons why push based sharing is
undesirable in autonomic networks.

Why then should we preserve a push-based strategy for balancing load among
autonomic servers? In this paper we explore the arguments in favor of pull-
based load balancing strategy (see Sub-figure 1(b)) where autonomic servers can
manage load at their own convenience. Each server knows its own capabilities
and state more quickly and accurately than any external monitor, so it seems
reasonable to explore the idea that it is the best judge of its own performance.

By pulling service requests from a load balancer servers can decide to take
on work depending not only on their available resources but also on many other
internal parameters including their willingness to interact, their internal sched-
uled management operations, protection procedures when attacks are detected,
and any policy. The authoritative decision is therefore transferred from the load
balancer to the autonomic servers.

The paper is structured as follows: we present in Section 2 our pull-based load
balancing strategy for autonomic servers. We describe the underlying architec-
ture and show how this scheme can be instantiated with two different return path
strategies. We evaluate the performance and scalability of the solution through
an extensive set of experimentations in Section 3. A survey of related work is
given in Section 4. Finally, Section 5 concludes the paper and presents future
research efforts.

2 Pull-Based Load Balancer

In this work, we explore the benefits of a pull-based load balancer for distributing
workload among autonomic servers. The key motivation is to make the load
balancing strategy more flexible and adaptive with respect to the servers. This
is compatible with the goals of autonomic computing. Autonomic servers interact
only on a voluntary basis. Their autonomy contradicts the basic tenets of push-
based load balancing.

With the push-based strategy, the decision of whether a host should receive
a request or not, is taken by the load balancer. Some solutions permit to a
load balancer to exploit state information transmitted (voluntarily and hope-
fully on time) by the servers, but the push-based load balancer takes the final
decision. In [4] with traditional servers, it was shown in actual hardware that



this decision making could be a limitation on the dispatch rate. For instance,
the least-connections algorithm [5] keeps track of the number of active connec-
tions each server currently has. The dispatcher then forwards requests (i.e., new
connections) to the server with the fewest active connections. Another example
consists of sending server-state information to the balancer using a dedicated
protocol such as the Dynamic Feedback Protocol [6]. The balancer then deter-
mines based on that information which server will handle the request. This adds
overhead to the process. By considering a pull-based strategy, the authoritative
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Fig. 1. Push-Based vs Pull-Based Load Balancing with Autonomic Servers

decision is transferred from the balancer to the servers themselves since this is
where the important information is located. Indeed, we can view the interaction
between balancer and server as a competitive game. If the balancer acts first,
it has imperfect information about its opponent’s condition and the coalition of
dispatcher and servers can lose productivity through poor forwarding decisions,
but if the server acts first it does not need information about the dispatcher’s
state to make the most economically motivated decision since there is no penalty
if there is “no work to be done”. Hence, the servers have effectively perfect in-
formation as far as the overall productivity is concerned. The load balancer role
can typically be played by the client itself, by a DNS server or by a dedicated
dispatcher (interacting as a proxy).

We consider the pull-based load balancer to be a dispatcher with a central
queue. All of the requests from clients are kept by the dispatcher so that the
autonomic servers can pull requests from this queue at their own convenience
i.e., whenever the server makes a voluntary decision to process a request. This
includes whenever the server has free resources, but is not limited to that partic-
ular condition. A server may refuse to process requests for other reasons: when
failures have been detected, when new components have to be installed and con-
figured, when attacks have been detected and protection procedures have to be
executed, or when the server simply does not want to (unable or unwilling to



comply). In any event, the other servers adapt automatically to the best of their
own ability and policy.

2.1 Underlying Architecture

We will detail in this section how this pull-based strategy can be instantiated
using two different return path strategies. A first possible architecture consists
in using a dispatcher with NAT (Network Address Translation). Let consider
the application example of web servers. The dispatcher receives multiple HTTP
requests from clients via its public address. When a client sends such a request
to the load balancer, the request is first stored into the central queue of the
load balancer. The requests are usually processed according to a FCFS (First
Come First Serve) queue scheduling discipline [7]. The key difference with the
push-based scheme is that the requests have to stay at the load balancer stage
until autonomic web servers start to pull requests.

Each of the servers can pull requests from the dispatcher at any time. If client
requests have been issued and are waiting in the balancer central queue, the web
server is dynamically served by the dispatcher. We can observe that the load
balancing process has been reversed and that server pulls have to be managed
by the dispatcher. The dispatcher uses the NAT mechanism to transfer a client
request to a given web server. The dispatcher translates the target IP address
to the one of the client using Reverse NAT and sends the reply to the client.

The NAT mechanism requires that the load balancer keeps state of each
ongoing connection. This may contribute to a bottleneck effect [8] at the load
balancer when the traffic rate is high.
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With the NAT mechanism, the web server has to send the resulting reply back
to the pull-based load balancer. An alternative solution consists in modifying
the return path. Three different strategies [9] can usually be considered to send
the reply to the client: (1) the bridge path strategy when the dispatcher is
implemented at level 2 and interacts as bridge, (2) the route path strategy when
the dispatcher is implemented at level 3 and interacts as an intermediate router,
and (3) the direct server routing strategy when the reply is directly sent back by
the server to the client. The pull-based load balancer with NAT corresponds to
the second strategy. We propose to deploy the pull-based scheme using a direct
server return, in order to decrease the bottleneck effect i.e., so that the reply is
not forwarded by the load balancer.

This second architecture is depicted in Figure 2. It requires to establish IP
tunneling between the pull-based load balancer and the web servers. The load
balancing process essentially differs from the previous one by the manner how
requests are forwarded among components. The pull-based load balancer is also
implemented as a dispatcher, but uses IP tunneling instead of NAT. When re-
ceiving client requests (Step 1), the dispatcher first stores them into the central
queue (Step 2) according to a FCFS scheduling. A server can then pull requests
from the dispatcher (Step 3). It may be served by the dispatcher if client requests
are queuing (Step 4). In that case, the dispatcher establishes IP tunneling with
the web server: the request is encapsulated into another IP packet (Step 5) and
is forwarded to the web server (Step 6). The server then decapsulates the request
(Step 7). When it has successfully processed the request, the server can directly
send the reply back to the client using a direct server return. This return path
increases the load balancer performance as it does not require to keep state of
the connections at the load balancer.

3 Experimental Results

We evaluated the performance of our pull-based load balancing scheme through
an extensive set of experiments, which can be compared directly with earlier
physical experiments performed in [4] (these previous experiments were how-
ever limited to push-based load balancing with regular servers). The simulations
were performed with the JMT open source suite for queuing network modeling
and workload analysis [10] developed by the Performance Evaluation Lab at the
Polytechnic University of Milan. We extended it so that we can model the behav-
ior of a pull-based load balancer with direct server return. We considered during
the experiments a system composed of a load balancer L at the front office and
a set of n servers S = {51, 5s,...,5,} at the back office. The load balancer L
implements either a push-based scheme or a pull-based scheme depending on
the scenario. We assume that the arrival and completion process distributions
follow a typical Poisson distribution in discrete time. Despite the controversy
regarding the inter-arrival times, we use Poisson distributed arrivals, this allows
a direct comparison with [4] and we would not expect the choice to affect the
broad conclusions of our results.



3.1 Performance with Homogeneous Servers

In a first series of experiments, we were interested in analyzing the performance of
our solution with homogeneous servers. We modeled a system with three servers
{51, S2, 53} of same capabilities. Each server is capable of processing an average
of 100 requests per second. We measured the average response time obtained
with the pull-based load balancer while varying the request rate from 5 to 300
requests per second. We assume here the natural notion of response time per-
ceived by users, that is, the time interval between the instant of the submission
of a request and the instant the corresponding reply arrives completely at the
user. We compared these values with the response time provided by a load bal-
ancer implementing a classic push-based scheme where servers are taken without
consideration of their current queue length or latency. Indeed, autonomic servers
may refuse to provide any server-state information, and we consider that they
interact in a voluntary basis making least-connection algorithms inefficient. The
experimental results are summarized in Figure 3(a). The horizontal axis cor-
responds to the different request rate values. We plotted for each of them the
average response time obtained with the pull-based load balancer (plain line)
compared to the one obtained with the push-based load balancer (dotted line).
The two graphs show the same tendency when we increase the request rate: the
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Fig. 3. Response Time with Autonomic Servers

response time first stays relative low and stable (on the left of the figure), then
grows exponentially when we tends to 300 requests per second (on the right of
the figure). This value corresponds to the theoretical maximal processing rate of
the system (the sum of three servers capable of processing 100 requests per sec-
ond each). When comparing the two load balancing schemes, we can observe that
the performance is quite similar at a low response rate (from 5 to 100 requests



per second). The push-based load balancer is even better than the pull-based
strategy at the lowest rates. However, at high response rates (from 100 requests
per second), we clearly see that the pull-based load balancer produces faster
response times than the push-based load balancer.

Additional parameters need to be taken into account to complete and refine
this comparison. In particular, as load balancer and servers have finite queue
sizes, we measured the request drop rate while varying the request rate values.
The drop rate is the number requests per second never processed at all by an
element of the system. We plotted these rates in Figure 4 for respectively the load
balancer and each of the three servers. When looking at these results, we first
can observe that the system starts to drop requests at around 300 requests per
second (compare to [4]), when the request rate exceeds the maximal processing
rate. However, the dropped requests are not distributed in the same manner in
the system. In the push-based scenario (dotted line), the dropped requests are
equally distributed among the three servers. The load balancer does not drop
any requests during the experiments, even with high request rates. The reason
for these results is that all the requests are dispatched by the load balancer to
one of the servers whatever the server is overloaded or not (i.e., it simply pushes
the problem downstream).
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Fig. 4. Drop Rates with Homogeneous Servers by using the Pull-Based Strategy (plain
line) and the Push-Based Strategy (dotted line)

Intuitively, the pull based mechanisms needs a longer queue at the dispatcher
since this is where waiting builds up at the system bottleneck, but this does not
imply that greater resources are needed. The pull strategy is like an airport



check-in queue: servers pull passengers from a single line that fills the same
space as would multiple lines. The same resources are simply organized differ-
ently. Moreover, the reliance on a single dispatcher should not be a problem if
redundancy is factored into the calculation [11].

As the servers have homogeneous capabilities and the load balancer takes
servers each in turn, the dropped rate is almost identical for the three servers
and corresponds to the third of the total drop rate in the system. In the pull-
based scenario (plain line), requests are only dropped by the load balancer.
The servers process requests on demand by pulling the load balancer. As a
consequence, the servers are not overloaded and do not need to drop requests
during the experiments. The requests are waiting at the load balancer and are
directly dropped by it when the request rate is too high for the system.

3.2 Performance with Heterogeneous Servers

In a second series of experiments, we analyzed the same scenario with hetero-
geneous servers. The average service rate for servers S, Sa, S3 is respectively
of 50, 100 and 150 requests per second. The graphs in Figure 3(b) represent, as
previously, the comparison of response times with the pull-based strategy and
the push-based strategy. This scenario produces worst performances than the
scenario with homogeneous servers. However, the impact has not the same scale
on the two strategies: the difference is minor with the pull-based strategy while
the difference is major with the push-based scheme. In the push-based scenario,
the response time grows faster when the arrival rate tends to 150 requests per
second. The server S; with the smallest capacity becomes overloaded earlier than
the two other servers. The push-based load balancer is not capable of transferring
the workload on servers Sy and S3. The workload is equally distributed on the
three servers (a third per server). The response time therefore increases signifi-
cantly at around 150 requests per second when server S is overloaded (a third
of 150 requests per second). In the pull-based scenario, server Sy can reduce its
workload by pulling less requests from the load balancer. In that manner, the
load balancer can maintain the requests on its queue and dispatches them to
the higher capacity servers. As the total processing capacity (50 + 100 + 150) is
the same than in the homogeneous scenario (3 x 100), the response time grows
exponentially when the arrival rate tends to the same saturation value of 300
requests per second.

We observe the same phenomenon by measuring the drop rates of servers (see
Figure 5). In the push-based strategy, the load balancer does not drop requests.
The drop rate is unequally distributed among the three servers, as they start
to drop requests when they becomes overloaded e.g., when the total workload is
three times equal to their processing capacity. Server S; drops requests earlier
(at 150 requests per second) than servers Sy and S3 (at around 300 and 450
requests per second). In the pull-based strategy, the load balancer is the only
element which drops requests in the system (at 300 requests per second), as the
servers can reduce the workload by their own in order not to be overloaded.
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3.3 Scalability and Bottleneck Effect

The third series of experiments evaluates the scalability of our pull-based load
balancer when adding extra servers. We measured the average response time
while varying the number of servers from 2 to 6 in the system and calculated the
profit in percentage of the pull-based strategy compared to the push-based one.
We considered during the experiments that the servers are homogeneous with
a same processing capacity of 100 requests par second on average. We plotted
the experimental results for four different request rates {100,200, 400,600} in
Figure 6.

We can first observe that the profit generated by the pull-based load bal-
ancer for a given request rate decreases when we add extra servers. For instance,
Sub-figure 6(a) shows that the profit at a rate of 100 requests per second goes
from around 12 percents with 2 homogeneous servers to around 2 percents with
6 homogeneous servers. The pull-based strategy is therefore much more valuable
if the server resources are scarce. Indeed, the push-based strategy with homoge-
neous servers stays relatively competitive as long as the resources are sufficiently
dimensioned. Heterogeneous servers may produce a better profit with the same
scenario, in particular when one of the servers has a significantly smaller ca-
pacity. In that case, the smaller server can regulate the request rate so that
the load balancer forwards the requests to the other servers. Another natural
question is to what extent the request rate impacts on the pull-based strategy.
When comparing the four sub-figures, we can distinguish two major phases. In
a first phase (Sub-figure 6(a) and Sub-figure 6(b)), increasing the request rates
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improves the profit generated by the pull-base strategy. For instance, with three
homogeneous servers, the profit grows from around 7 percents with a rate of
100 requests per second to around 28 percents with a rate of 200 requests per
second. However, in a second phase (Sub-figure 6(c) and Sub-figure 6(d)), the
profit starts to decrease when we continue to increase the request rate. The profit
with three servers decreases to 19 percents at 400 requests per second and to 16
percents at 600 requests per second. The pull-based load balancer becomes even
less interesting than the push-based load balancer in the worst cases. We mean,
by worst cases, scenarios when the request rate is high and the server resources
are sufficiently scaled. Both the pull-based and push-based load balancers suffer
from the bottleneck effect at a high load. However, this phenomenon is signif-
icantly more important with the pull-load strategy. These experimental results



are confirmed by the drop rates presented in figures 4 and 5, where we observed
the requests are maintained and then dropped by the load balancer.

We also analyzed the behavior of our pull-based strategy, by comparing ex-
perimental results to queuing theoretical models [12]. In our experiments, the
authoritative decision of servers is limited to a simple condition on a given re-
source (maximal processing rate). As a consequence, the system converges to
a behavior very similar to a set of servers processing the same queue (M/M/k
queuing model). This convergence may be less evident if we consider the full
autonomy of servers. Moreover, our research group attempted in [5] a direct im-
plementation of a pull-based load balancer using a Java application in an attempt
to demonstrate that pull-based methods would be superior to push methods. The
prototype showed performance can often be hostage to implementation issues.

4 Related Approaches

A large variety of algorithms and techniques were proposed for balancing work-
load to traditional back end servers [5]. Dynamic algorithms can exploit client-
state and server-state information. The server-state information can be obtained
in an implicit manner: the load balancer estimates the load on the servers by
passively monitoring network parameters such as ongoing connections or by acti-
vating probes. For instance, we previously mentioned that the least-connections
scheme selects the server with the lowest number of ongoing connections. In all
of these approaches, the load balancing is performed in a push-based manner.
We have already described in [4] (but with traditional servers) a comparative
study of these push-based load balancing algorithms used to distribute packets
among a set of web servers. Server-state information can also be obtained in an
explicit manner. For instance, the Dynamic Feedback Protocol (DFP) [6] per-
mits a dispatcher to deploy agents directly on the back end servers. These agents
periodically report relative weights to the load balancer in the form of load vec-
tors. The load balancer then exploits the reported weights to select more efficient
servers. This requires a substantial overhead and infrastructure. In distributed
systems and grid computing, management platforms [13] and service middle-
wares [14, 15] can dynamically align the allocation of resources to infrastructure
and business requirements. A significant amount of effort has been expended
to design resource management methods based on analytical queuing models
[11], decision theory [16], and planning and scheduling techniques [17]. These
optimizations are made possible thanks to server-state information collected by
agents. In our approach, we show that there is no need for these feedback loops,
completely autonomous behavior suffices to solve the problem effectively by vol-
untary cooperation [3].

5 Conclusions and Future Work

We have explored the motivation for the use of pull-based load balancing be-
tween autonomic servers and have quantified the benefits and limits of such a



scheme, as one approaches the theoretical limit of a perfect implementation.
Autonomic computing advocates greater decentralization of autonomy and only
weak coupling of components through cooperative communication. It makes tra-
ditional server-state and least-connection inapplicable or inefficient. Our study
shows that relaxing the desire for mandatory control of servers using a central
controller, and instead allowing them to cooperate voluntarily through only weak
coupling, is not the disadvantage that skeptics imagine; quite the opposite, it has
the potential to exceed the performance of a push approach, while maintaining
better security for each component.

Comparing experimental results to push-based results with autonomic servers
we find, as expected, that the pull-based balancer is more sensitive to the bot-
tleneck’s resources than the push-based balancer. It surpasses the push-based
balancer when the workload is high compared to the expected server accep-
tance rate (i.e., at high ”voluntary utilization”), and when it is sufficiently low
to avoid the bottleneck limitation. When we restrict the decision of autonomic
servers to a simple condition on a given local resource, the pull-based load bal-
ancer converges as expected to an M /M /k model. This convergence may be less
evident with servers having a full autonomy. In future work, we are interested in
measuring the performance of voluntary dispatch in a large scale virtualization
environment [18] where these considerations are especially relevant. We are also
planning to model the behavior of autonomic servers using high order internal
chain architectures, and in evaluating how these new parameters impact on our
pull-based load balancer.
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