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Abstract. Mrtual Interacting Network Communlty (Vinci) is a software archi-
tecture that exploits virtualization to share in a securg @aa information and
communication technology infrastructure among a set afsuséh distinct secu-
rity levels and reliability requirements. To this purpos@ci decomposes users
into communities, each consisting of a set of users, their applications, afsedr-
vices and of shared resources. Users with distinct priedend applications with
distinct trust levels belong to distinct communities. Eaommunity is supported
by a virtual network, i.e. a structured and highly paralleéday that intercon-
nects virtual machines (VMs), each built by instantiatimg @f a predefined set
of VM templates. Some VMs of a virtual network run user apgticns, some
protect shared resources, and some others control trafim@mmommunities to
discover malware or worms. Further VMs manage the infrastine resources
and configure the VMs at start-up. The adoption of several ¥lates enables
Vinci to minimize the complexity of each VM and increases thbustness of
both the VMs and of the overall infrastructure. Moreovee security policy that
a VM applies depends upon the community a user belongs tan Agample, dis-
cretionary access control policies may protect files shariiin a community,
whereas mandatory policies may rule access to files sharedgaoommunities.
After describing the overall architecture of Vinci, we pees the VM templates
and the performance results of a first prototype.

1 Introduction

Among the benefits of virtualization, the most well known @ithe cost saving achieved
by consolidating several servers on a single physical nmadii]. We believe that a fur-
ther noticeable advantage is an increase of system rolassh@ezause we can include
in a virtual architecture components that check and coniv®lother ones in a trans-
parent way. As an example, a virtual network can include sptde. virtual machines
(VMs), which run the applications and other nodes that nuoorifte previous ones in a
completely unobtrusive way [2]. Furthermore, the abilifyagcessing any component
of a virtual node enables the definition of more rigorous amhjglete checks to detect
anomalies or intrusions, as when special purpose hardwiteare available. Finally,
an architecture composed of a large number of virtual nodesicrease the robustness
of each node, and of the overall system, by minimizing théngoke each node runs.
These considerations have led to the definitioniofual Interacting Network Com-
munlty (Vinci), a software architecture that aims to exploit attbgdgualization tech-
nologies to share in a secure way an information and comratiaittechnology (ICT)



infrastructure. To this purpose, Vinci adopts a two-tiepagach where several virtual
networks, or overlays, are introduced and each overlaydblpiparallel because it
composes a large number of VMs. To increase the robustnesacbf overlay, Vinci
minimizes the functionalities of each VM by defining sevari templates. As an ex-
ample, Vinci instantiategpplication VMs to run user applications, according to the
applications trust level and to the user privileges, i.@rsecurity levels, so that each
Application VM only runs the smallest number of software keges and libraries to
support the considered applications. Other VM templatesrdgroduced to control re-
sources shared among Application VMs of the same overlay distinct ones, or in-
formation flowing among VMs. In Vinci, each physical nodelud infrastructure runs a
virtual machine monitor (VMM) [3] on top of the hardware-fimare level to multiplex
the node physical resources among VMs and strongly confera.th

The number of overlays that share the infrastructure depepdn usecommuni-
ties, because a distinct overlay, a@rtual community network (VCN), is introduced for
each community. A community consists of a set of users thatue applications and
of services that these applications exploit. The users pplications in a community
can be handled in a uniform way because they have homogeseousty and relia-
bility requirements. Communities can also cooperate acti@xge information. Proper
consistency and security checks are applied within a conitypuhile more severe
checks are enforced to cross the community border. Whenidgfancommunity, an
administrator pairs it with global level, which defines the set of users that can join
the community, the applications they can run and the regsutiey can access. In this
way, the global level is the same for all the VMs in a commuaityl they can be ho-
mogeneously managed because they have similar requirsntégrice, the notion of
community simplifies the management of the VMs, because Vivibke same com-
munity require the same reliability level and the data theghange can be protected
through the same mechanisms.

The rest of the paper is organized as follows. Section 2 pteghe overall archi-
tecture of Vinci and discusses the various VM template®thiced to run user appli-
cations, to build the overlays and to support the correctigyaf the infrastructure
among VMs and among communities. Section 3 presents a firsif ggerformance
results. Section 4 reviews some related works. Finallyf.Sedraws some conclusions.

2 Vinci Overall Architecture

An example of an infrastructure where Vinci can be applieth& one of a hospital
that is shared, at least, among the doctor community, theencommunity and the
administrative community. Since each community managgsrivate information but
also shares some information with the other ones, a comsnghduld be able to de-
fine its own security policy, its reliability requirementadato control information to
be shared with the other ones. As an example, users in a damtanunity can update
the information about prescriptions whereas those in theencommunity can read but
not update the same information. The nurse community anddb®r one share some
other information with the administrative community, whibas to bill the patient in-
surances. In the most general case, each user belongs talsmremunities according



to the applications she needs to run and the data she wardsdssa Consider a doctor
that is the head of the hospital: as a doctor she belongs tddtr community but,
because of her administrative duties, she belongs to thénastrative community as
well. Furthermore, the community the doctor joins to aceggial health information
differs from that she joins when surfing the Internet.

In the general case, we assume that the infrastructuretectinie is a private net-
work that spans several locations, it includes a ratheelatgmber of physical nodes,
and it is centrally managed by a set of administrators. We atsume that most of
the nodes of the infrastructure are personal computersatteabnly accessed by one
person at time and that the infrastructure includes a seefes nodes, which store
shared data and execute server applications. Vinci regjthise each node runs a virtual
machine monitor (VMM), a thin software layer on top of thedarachine that creates
and manages several concurrent emulation environmewtd/Ms. The VMM is re-
sponsible of the confinement among the VMs and guaranteésactzss to the node
resources.

One of the main advantages of virtualization is the abilitgttoosing the appropri-
ate combination of OS and applications for each VM to minarilze overall complex-
ity. To exploit at best this feature, Vinci defines a set oftiygspecialized and simple
VM templates that are dynamically instantiated and coretkictto overlays, i.e. virtual
community networks (VCNSs). A Vinci VCN includes both VMs thain applications
and VMs that support and monitor the previous ones. A VCNmgllpresembles a vir-
tual private network (VPN) but an important difference liasthe granularity of the
computation because we are interested in minimizing thepbexity of the services
each VM implements. As an example, some VMs are introduced@N just to ap-
ply consistency and security checks to the overall commutat

In Vinci, each VCN is built by composing VMs that are instasnicé the following
templates:

1. Application VM: it runs a set of applications on behalf of a single user;

2. Community VM: it manages the private resources of a community by enfgrcin
mandatory and/or discretionary access control (MAC/DAQ)qies;

3. File System VM: it belongs to several VCNSs to protect files shared amongdine ¢
responding communities. It can implement MAC and Multi-eESecurity policies
and a tainting mechanism to prevent illegal information 8aeross communities;

4. Communication and Control VM: it implements and monitors information flows
among communities, i.e. flows among Communication and ©@bvivs of distinct
communities, or private flows among VMs of the same community

5. Assurance VM: it checks that Application VMs only run authorized softeiaand
attests the software of a VM.

Moreover, Vinci introducesnfrastructure VMs that do not belong to any VCN and ex-
tend the VMMs with new functionalities to manage the ovdrdiastructure. As shown

in Fig. 1, since VMs that are instances of the same template li@mogeneous require-
ments and system configurations, they are easy-to-deptmaVappliances created on
demand from a generic baseline image. Moreover, when a VNsisuntiated, its run-

time environment is highly customized [4] according to tiseand the community of
interest through parameters such as the amount of mememyiiming kernel modules,



and the OS and applications versions. This results in tHe&yabf strengthening each
VM by tailoring its configuration to minimize the softwareriins and avoid useless
functionalities.

VM Templates
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Fig. 1. VM Templates.

In the following, we describe the current implementatiotvfci that exploits Xen
[5] to create the VMs and connect them into VCNs. NFSv3 [6] 8edurity-Enhanced
Linux (SELinux) [7] [8] have been modified to apply securityligies based upon the
security levels of users or the global levels of communitigeally, interconnections
among VMs are handled through iptables [9] and OpenVPN [10].

2.1 Community and VCN

The key concepts of Vinci are those of community and of virteammunity network
(VCN). A community is composed by users and applicationdritathe same secu-
rity and reliability requirements. Users run their apptioas in Application VMs and,
therefore, a community can also be seen as built around d s¢iptication VMs that
share the samglobal level, i.e. the community level. This level constrains the sdguri
and reliability requirements of users that can join a comityuaind the applications
they can run. The number of communities reflects the distilasises of users that share
the private infrastructure. As an example, an administrafoca corporate enterprise
can configure Vinci to support the following communitieslesa marketing, manage-
ment, finance, R&D, engineering, customer support, Interte. The adopted defini-
tion stresses the notion of a community as a collaborative@mment where sharing
of information among applications does not result in a Idssegurity or reliability. A
VCN includes both the set of Application VMs of a communitydefarther VMs that
manage the resources of a community and interaction amanghcmities.



2.2 Application VMs

Each Application VM runs applications of a single user angaged with the global
level inherited from the corresponding community. In gethethe resources and ser-
vices an Application VM can access depend upon the useriselavel and the global
level of the community the VM belongs to. Since a user can fiitinct communities
through distinct Application VMs, she can access distiesburces/services according
to the global level of each community. In some cases, theyeaxigt some resources a
user can access regardless of the community she curremtigdseto. As an example,
each user can always access its private files. While the blebal of a community
constrains the users that can join the community and thecapipins they can run, an
administrator can also dictate which resources a commuaityaccess and/or share
with other communities. Thus, when a user wishes to join arnanity, and she has
the rights to do so, the community statically defines the $etpplications that the
Application VM can run and the resources it can access.

In Vinci, during the login phase, a user chooses the commushié wants to join.
Then, the Infrastructure VM of the local node configures a@aats up a correspond-
ing Application VM to run those applications that the comrntypolicy allows and
it inserts the Application VM into the proper VCN. A user camrseveral Applica-
tion VMs on the same node concurrently, each belonging taainee community or to
distinct ones.

In the current prototype, each Application VM is associatéth a minimal partition
on one of the disks in the physical node, which stores the G&ckbaded during the
boot-up of the Application VM. Other files may be stored eitloeally, in a Community
VM in the same VCN, orin a File System VM shared with other VCNs simplify the
implementation of security policies, at boot time an IP &ddris statically assigned to
an Application VM and both the VM global level and the usensiyg level are paired
with this address. Since the IP address uniquely deterntiveesesources the VM and
the user can access, Communication and Control VMs implemeper checks to
detect any spoofed traffic in a VCN.

2.3 Community VMs

A Vinci VCN always includes at least one Community VM to maeand control the
resources shared within the corresponding communityaieng its Application VMs
only. This VM stores the community private files, which ind&s configuration files,
system binaries, shared libraries and user home direstorie

In the current prototype, files shared through Community Vlis protected by
MAC and DAC security policies where the subject of the poliythe user security
level, which is deduced from the IP address of the reque#pgication VM. To this
purpose, we have extended SELinux and NFS so that the NF&rsaTiorces a policy
where the subject is the user paired with the IP address aketipgesting Application
VM. In more detail, SELinux labeling and access rules hawntextended to introduce
a new subject that corresponds to an Application VM, and fmde¢he operations it can
invoke. We have also extended the object class of SELinuxar&tobject fode) to in-
sert the operations that the NFS server executes on belthal oéquesting Application



VM such as read, write or create files or directories. A nodediis used to control
the network traffic, for example to grant or deny a procesgp#renissions to exchange
data with a specific IP address and it is associated with tlagltfPess of an Application
VM. In this way, the administrator can define a distinct patiten domain for each Ap-
plication VM by dynamically pairing the NFS server procesdwhe security context
of the Application VM currently requesting the operationafile.

SELinux stores most runtime security information about rilnening processes in
thet ask_securi ty_struct structure. We have extended this structure to include
the security identifier bound to the node type and, theretorthe corresponding sub-
ject. Moreover, we have introduced a functiomp_i p, which maps the Application
VM |IP address into a security identifier (SID) according te tturrent policy in the
SELinux security policy database. In this way, the secwatytext can be deduced from
the IP address of the Application VM that is trying to acceshared file. Every time
the NFS server processes a request, if the policy pairs theesting IP address with
a node typeap_i p returns the SID of the requesting Application VM. Otherwise
map_i p returns a default unprivileged SID. Before invoking the §ifestem operation,
the Application VM SID is copied into theask _securi t y_st r uct paired with the
NFS daemon process serving the request. In this way, anytienFS server invokes
an operation on a shared file system on behalf of ApplicatibisMhe Community VM
kernel triggers a Linux Security Module (LSM) hook to delegythe security controls
to SELinux. Accordingly, we have modified the LSM hooks pdivéth file system op-
erations so that the subject of the security policy is the Sdided with the IP address
of the Application VM that has invoked the operation rattent the NFS server.

2.4 FileSystem VMs

A community can share some files with other communities thhcaufile system imple-
mented by a File System VM that belongs to several VCNs. Thergg policies that
this VM enforces extend those of a Community VM by considghoth the user secu-
rity level and the community each user belongs to. Furtheentéile System VMs ex-
ploit the capabilities of dainting module to prevent the flowing of information among
predefined communities. This module has been introducefi) toonfine information
flows among communities; (ii) increase the robustness véipect to contamination
attacks; (iii) log the actual flow of information among commities. To this end, the
Tainting module pairs each community with a bit mask, i.e.cbmmunity mask, with
exactly one bit set td that represents the community. Furthermore, it pairs edeh fi
with a mask that represents the communities that either heeeacted with the file
or have exchanged some information through the file. Anytinoser tries to apply an
operation on a file, the module computes@of the masks of the file and of the user
community. If the result shows an illegal information flow @ng communities, then
the operation is forbidden, otherwise the result becomes#w mask of the file, in the
case of a write operation, or of the community, in the case refaa operation. In any
case, the Tainting module logs into a file the operation tiename of the community
and of the file and the original and the new masks.

Periodically, the Tainting module parses the log file andaieslin an incremental
way the dependency graph [11] that represents the infoom#tws among communi-



ties and files. Each node in the graph represents either arfdecommunity and it is
paired with a unique identifier of the community or of the fiteveell as with the corre-
sponding mask. A node that represents a file is created thérfies the file is involved
in an operation. An arc represents an operation and is agedaith the information
about the requested operation. To identify how informaflows, a read operation is
represented by an arc from a node that represents a file t(haheepresents a commu-
nity, while a write operation by an arc from a community to a.fihs shown in Fig. 2,
an administrator can query the module to analyze the depegdgraph to discover
those communities that have exchanged some informatiargde the source of a con-
tamination and track all the files/communities that may hasen contaminated by a
community/file.

Since the implementation of a File System VM generalizes dfi@ Community
VM, the same extensions of Community VMs have been appliddiéoSystem VMs
as well. Moreover, we have extended the File System VM Linesnkl to insert the
Tainting module in-between the NFS server and the Virtue ystem (see Fig. 2). To
this purpose, we have modified thé sd_per m ssi on function, which verifies file
requests, andf sd_vfs_readandnfsd_vfs_writetocheck, respectively, read

and write requests.
-Trace the origin

NFS Server | of a contamination

| -Track contaminated

A | files/communities

Ifile system call I -Exchange of information

J ¢ among communities/files?

Y

f deny/grant VINCI Graph
Poll.cy' Security - p
Description Enforcement Analyzer
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Fig. 2. File System VM Policy Enforcement and Query Generation.
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2.5 Communication and Control VMs

A Communication and Control VM protects and monitors infation flows by im-
plementing and managing a local virtual switch that supgpooimmunications among
VMs. Communication and Control VMs can be further specelim: (i) Virtual Pri-
vate Network (VPN) VMs, which create an authenticated and protected communicatio
channel among VMs of the same community on distinct physiodes of the infras-
tructure; (i) Firewall VMs, which filter information flows so that only authorized Ap-
plication VMs can access the infrastructure and interath wther communities; (iii)
IDS VMs, which monitor information flowing among VMs in the same coumity or



in distinct ones. The introduction of a Firewall VM enablég administrators to de-
fine which communities can interact and, hence, to definedbal linterconnections
among distinct VCNs. As an example, a community can be isdlat communities
with a lower global level may not be allowed to communicatéwthose with higher
global levels. Firewall VMs can decide whether to forwardaket, based on the source
and destination communities. Furthermore, Firewall VMgsurt the authentication of
shared resource requests through the IP address of theatiigy VM because they
control that Application VMs do not spoof traffic on the viaiiswitches interconnect-
ing the VMs. Finally, IDS VMs monitor information flows amoiMs in the same or
in distinct communities to discover attacks. An IDS VM casaatetrieve and corre-
late partial information from other IDS VMs in the same VCNiprdistinct ones to
minimize the time to detect a distributed attack [12].

2.6 AsauranceVMs

Assurance VMs exemplify the advantages of virtualizatiorbtild a robust system.
In fact, these VMs have been introduced just to monitoraaltipplication VMs and
the VMs of a VCN that manage critical components, to attesir timtegrity and to
authenticate their configuration as well. Furthermore,gfing severe tests, Assurance
VMs use virtual machine introspection [13] to retrieveical data structures in the VM
memory and evaluate assertions on these structures. Esettias is an invariant for
the original application and it is false only if the applicat has been attacked.

The software attestation implemented by Assurance VMslesal/M to verify the
integrity of critical code in another VM. As an example, arsAgance VM can compare
a hash of the software of a VM against a value computed offtirédcover anomalous
updates of the configuration of the VM. Consider a criticaleein an Application VM
that is remotely accessed by other Application VMs. In thise; the server Application
VM may require not only the client authentication but alsedhaome assurance that
the software stack of the client VM is not compromised and the client version is
correct.

2.7 InfrastructureVMs

Infrastructure VMs extend the VMMSs to configure and managet&Ns. In particular,
distinct Infrastructure VMs cooperate to monitor the oWldrdrastructure and update
the topology of the virtual overlays and their mapping. Thi®@tion of these VMs
simplifies the implementation of some functionality too quex to be applied at the
VMM level, thus minimizing the VMM size. An InfrastructureM runs a minimal
kernel, it does not run any Internet service and the funefitias it implements cannot
be directly accessed by any user but the administrators.

As shown in Fig. 3, all the Infrastructure VMs, one per nodsphg to aManage-
ment Community that does not interact with any other community. During thesation
of the Management Community, one Infrastructure VM is desfgd as théMaster
Infrastructure VM that contacts the other Infrastructure VMs to set up propen-c
munication channels to support cooperation in the Manage@emmunity. To prop-
erly configure the Vinci runtime environment, Infrastrug/Ms can: (i) create/kill,
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Fig. 3. Example of Communities and VCNSs.

freeze/resume any VM in their node or request this operatianother Infrastructure
VM; (i) configure a VM through specific parameters such asmoek configuration,
amount of memory, the number of VCPUSs; (iii) retrieve infation about the current
mapping of VMs and the resulting resource usage; (iv) upttetenapping by migrat-
ing VMs, which requires an interaction with some Communaraend Control VMs
to manage the resulting communications; (v) setup, congild deliver to each File
System and Community VM the general security policy it hasriforce.

Among the challenges that the Management Community hasce @me is con-
cerned with data management issues, to enable a fast ad@essmmunity to its data
[14], or with VMs mapping. Alternative mapping strategieayrevenly distribute Ap-
plication VMs running server applications on the availafbeles, or map Community
VMs onto physical hodes directly connected to those thatmempplication VMs of
the corresponding community. The Management Communitymigyate VMs among
physical nodes to handle errors and faults, to reduce therortation latency or to
balance the computational load.

Infrastructure VMs also authenticate users through a aéréd authentication pro-
tocol, so that users can log on Application VMs with the sammlgination of user-
name and password anywhere in the infrastructure. In this tha association among
users and privileges is managed in a centralized way. Thefseters of all the com-
munities that share the infrastructure is globally knowtst Vinci can uniquely iden-
tify users through their user-name or their associated iggsttifier (UID). The UID
is paired with the privileges of the user, i.e. with its sétyulevel. Whenever a user
has been authenticated and has chosen the community shetwin, the Infrastruc-
ture VM starts up an Application VM, which includes only tieogpplications that the
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community policy allows and with the proper global leveltéfthe login and boot-up
phases, the local Infrastructure VM contacts the proper @armication and Control
VMs to update the topology of the VCN to insert this ApplicetivVM into a VCN and
to add communication rules to handle the correspondingrimé¢ion flows. Finally, the
security policies of Community VMs and File System VMs mayupelated. Figure 4
shows the various interactions among the VMs running on aiphi/node. Currently,
Infrastructure VMs are assigned to Xen Domain 0 VMs, i.eythee privileged VMs
that can access the control interface to manage a physidal awod the VMs that the
node runs.

If a high degree of assurance is required, Vinci may requie¢d some nodes of
the infrastructure are equipped with a Trusted Platform MedTPM) subsystem [15],
which can also be virtualized on the VMs the node runs [16¢ TRM acts as oot of
trust to build and setup the software environment and its mechanisay be exploited
to ensure that a platform has loaded its software propettythat the VMM and the
Infrastructure VM of the local node are started in a safeestsltoreover, the TPM can
protect secrets such as the asymmetric and symmetric kegtablish secure commu-
nications among VMs, to authenticate the VMs or to remotélsathe software that a
VM runs. If a high degree of assurance is required but a TPMbisamailable, admin-
istrator should guarantee that each node cannot be phydigaipered with so that the
VMM and the Infrastructure VM can be safely initialized. g case, the Infrastruc-
ture VM may emulate the features of the TPM and export it teptiMs through the
virtual TPM.

3 Performance Results

This section shows a preliminary performance evaluatidgh®turrent Vinci prototype.
The tests were performed on several machines equipped mighCore 2 Duo E6550
2.33GHz CPUs. A first experiment evaluated in an integratayg thhe performance
of file sharing through File System VMs and Communication &uahtrol VMs. An



Application VM on a node ran the 10zone [17] NFS test while i Bystem VM, on
a distinct physical node, stored the requested files. Regjuwese transmitted along a
communication channel implemented by two Firewall VMs arelghysical nodes were
connected through 800MB Ethernet. Fig. 5 compares the throughput of thré t e
test against the one of the insecure version that does nbt #yepsecurity checks. The
overhead due to the enforcement of the security policied)eraverage case, is lower
than9%. Instead, the tests on the enforcement of security polgresCommunity VM
resulted in a reduction of the final throughput lower th&h. The same tests executed
on an Application VM connected to a remote File System VM tiglotwo VPN VMs
resulted in an overhead that, in the worst case, is lower tB%h

We also evaluated the overhead due to the security cheoicedfby an Assurance
VM on the kernel code of an Application VM. To this purpose Agpplication VM ex-
ecuted the commandar -xjf |inux-2.6.20.tar.bz2 while an Assurance
VM, which runs on the same node, checked an increasing nuafl#grplication VM
kernel pages by computing their hashes and comparing thamsidheir original val-
ues. The period of time between two consecutive executibtieecconsistency checks
was set t@ seconds. The relative overhead was lower thZnin the worst case. The
coverage of these checks is rather satisfactory, becaegethckly detect, for instance,
any attempt to install a rootkit.
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4 Related Works

[18] proposes an architecture where computing servicedbeaoifloaded intdlrusted
Virtual Domains, i.e. execution environments that meet a set of securityirements.
Trusted Grid Architecture [19] is a framework to build a trustworthy grid architecture
by using a combination of Trusted Computing and virtual@atechnologies. The pro-
posed approach allows a user to check that a selected priwvide trusted state before
accessing a submitted grid job. Both the previous architestconsist of a grid of nodes
where clients require services, using some form of negotigdb locate a trustworthy
provider. Vinci, on the other hand, is more resemblant ofditional client/server ap-
proach, where services and applications are mostly sigtizaund to physical nodes.



Moreover, in Vinci users are managed by a central authohniég &lso administers the
whole architecture. [20] proposes an access control actite that enables corpora-
tions to verify client integrity properties using a TPM, atwdestablish trust upon the
capability of the client to enforce the policy before allogithe client to access the
corporate Intranet. This framework could be easily intégplanto Vinci, for example
when a remote user tries to access the corporate infragteu&/Grid [21] introduces
distinct execution environments for the applications amel $torage areas, to protect
file systems and network services from untrusted grid appbas. In addition to these
features, Vinci aims also to provide assurance on the rgsoftware on critical VMs.
Moreover, Vinci introduces a large number of VMs templatgsthat each VM only
runs a small amount of softwareoly? [22] is a framework aimed at segregating appli-
cations and networks and at minimizing OSes. The proposprbaph separates net-
work services onto different systems and it isolates spetifies of network traffic.
To this purpose, administrative and application-specififfit are mapped onto dis-
tinct networks. Moreover, minimized OSes should only pdevihe services required
by a specific network application. Vinci shares with thistfiework the minimization
of OSes and applications but it introduces distinct overatworks for each commu-
nity and dynamically manages the configuration of theselaysr Moreover, Vinci
applies introspection to provide assurance on the runrafigiare. [23] considers VMs
as sandboxes that simplify the deployment of collaboragiweironments over wide-
area networks. Each VM sandbox can be seen as a virtual apeliaade available to
several users by the administrator, so that new nodes céy jgas and be integrated
into the virtual network. A feature that characterizes Vimith respect to the previ-
ous framework is the concept of community, which simplifies inanagement of users
with similar security and reliability requirements. Plénab [24] is a global overlay
network that runs concurrently multiple servicesdices, i.e. networks of VMs that
include some amount of processing, memory, storage andnetasources. A slice is
conceptually similar to a Vinci VCN, but in Vinci resourcegdhose of a private infras-
tructure and their allocation is mostly static, wherea:mBlhab exploits the concept of
an open grid of machines where resources can be dynamidaltated and discovered.
Furthermore, Vinci introduces the concept of communityjclitallows administrators
to define flexible security policies. Another important difince is that PlanetLab ex-
ploits OS-level virtualization, while Vinci exploits handre-level virtualization and,
therefore, it introduces a VMM that results in a better coarfitent among the VMs of
the same node.

5 Conclusion

The focus of Vinci is on the definition of highly parallel olays, i.e. VCNs, which
simplify management and sharing of a private ICT infragnee. Moreover, VCNSs in-
crease the overall robustness due to the introduction dfislzed VMs that enforce
security checks within and across VCNs. Each VCN supportea community, i.e. a
set of users with similar security and reliability requirents. This approach requires
that each physical node runs a virtual machine monitor treages and protects the
physical resources and it results in the definition of séveéM templates. Distinct



templates are used to support the execution of user agphsato enforce consistency
checks or to apply security policies that protect resoustesed within or across dis-
tinct communities. We have shown that proper componentbeantroduced to protect
the communities from contamination as well as to trace amgamination that can
arise. Moreover, a specialized community includes a setM§ that manage the con-
figuration of the other VMs to achieve the required level dfatality and security.
Preliminary results of our prototype show that Vinci can lw®pted in a real-world
scenario, such as the one of a hospital, a bank, or a corpamtaeprise, which need to
guarantee high security requirements and confine critessdurces.

Concerning the shortcomings of state-of-the-art virzeation, we note that manag-
ing and configuring a node to support virtualization and toaiset of VMs, each with
a customized OS, requires more effort than managing a nadetiy runs a standard
OS, especially in the case of a para-virtualization apgrdhat requires the OSes to
be modified to run inside the virtual environment. Howevercs virtualization is be-
coming increasing popular, there is a large amount of tdws lhelp the administrator
to set-up and manage virtual nodes. Another counterpaheofitivantages of virtual,
highly parallel and secure overlays is the overhead duestoadhtext switching that the
VMM applies to multiplex the physical resources. A multire@rchitecture [25] can
strongly reduce this overhead because of the native sufgganiultiplexing. Moreover,
it can run several VMs in consolidation and assign a deditedee to some VMs. This
guarantees that VMs that implement critical tasks, suchasagement and protection
of other VMs, are never delayed. Moreover, the virtualzatverhead can be strongly
reduced because of the extension of hardware instructisnsefficiently support vir-
tualization technology [26].
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