
Secure Sharing of an ICT Infrastructure Through Vinci

Fabrizio Baiardi∗ Daniele Sgandurra†

∗Polo G. Marconi, La Spezia
†Dipartimento di Informatica

Università di Pisa
{baiardi, daniele}@di.unipi.it

Abstract. Virtual Interacting Network CommunIty (Vinci) is a software archi-
tecture that exploits virtualization to share in a secure way an information and
communication technology infrastructure among a set of users with distinct secu-
rity levels and reliability requirements. To this purpose,Vinci decomposes users
into communities, each consisting of a set of users, their applications, a setof ser-
vices and of shared resources. Users with distinct privileges and applications with
distinct trust levels belong to distinct communities. Eachcommunity is supported
by a virtual network, i.e. a structured and highly parallel overlay that intercon-
nects virtual machines (VMs), each built by instantiating one of a predefined set
of VM templates. Some VMs of a virtual network run user applications, some
protect shared resources, and some others control traffic among communities to
discover malware or worms. Further VMs manage the infrastructure resources
and configure the VMs at start-up. The adoption of several VM templates enables
Vinci to minimize the complexity of each VM and increases therobustness of
both the VMs and of the overall infrastructure. Moreover, the security policy that
a VM applies depends upon the community a user belongs to. As an example, dis-
cretionary access control policies may protect files sharedwithin a community,
whereas mandatory policies may rule access to files shared among communities.
After describing the overall architecture of Vinci, we present the VM templates
and the performance results of a first prototype.

1 Introduction

Among the benefits of virtualization, the most well known oneis the cost saving achieved
by consolidating several servers on a single physical machine [1]. We believe that a fur-
ther noticeable advantage is an increase of system robustness because we can include
in a virtual architecture components that check and controlthe other ones in a trans-
parent way. As an example, a virtual network can include nodes, i.e. virtual machines
(VMs), which run the applications and other nodes that monitor the previous ones in a
completely unobtrusive way [2]. Furthermore, the ability of accessing any component
of a virtual node enables the definition of more rigorous and complete checks to detect
anomalies or intrusions, as when special purpose hardware units are available. Finally,
an architecture composed of a large number of virtual nodes can increase the robustness
of each node, and of the overall system, by minimizing the software each node runs.

These considerations have led to the definition ofVirtual Interacting Network Com-
munIty (Vinci), a software architecture that aims to exploit at best virtualization tech-
nologies to share in a secure way an information and communication technology (ICT)



infrastructure. To this purpose, Vinci adopts a two-tier approach where several virtual
networks, or overlays, are introduced and each overlay is highly parallel because it
composes a large number of VMs. To increase the robustness ofeach overlay, Vinci
minimizes the functionalities of each VM by defining severalVM templates. As an ex-
ample, Vinci instantiatesApplication VMs to run user applications, according to the
applications trust level and to the user privileges, i.e. user security levels, so that each
Application VM only runs the smallest number of software packages and libraries to
support the considered applications. Other VM templates are introduced to control re-
sources shared among Application VMs of the same overlay or of distinct ones, or in-
formation flowing among VMs. In Vinci, each physical node of the infrastructure runs a
virtual machine monitor (VMM) [3] on top of the hardware-firmware level to multiplex
the node physical resources among VMs and strongly confine them.

The number of overlays that share the infrastructure depends upon usercommuni-
ties, because a distinct overlay, orvirtual community network (VCN), is introduced for
each community. A community consists of a set of users that execute applications and
of services that these applications exploit. The users and applications in a community
can be handled in a uniform way because they have homogeneoussecurity and relia-
bility requirements. Communities can also cooperate and exchange information. Proper
consistency and security checks are applied within a community, while more severe
checks are enforced to cross the community border. When defining a community, an
administrator pairs it with aglobal level, which defines the set of users that can join
the community, the applications they can run and the resources they can access. In this
way, the global level is the same for all the VMs in a communityand they can be ho-
mogeneously managed because they have similar requirements. Hence, the notion of
community simplifies the management of the VMs, because VMs of the same com-
munity require the same reliability level and the data they exchange can be protected
through the same mechanisms.

The rest of the paper is organized as follows. Section 2 presents the overall archi-
tecture of Vinci and discusses the various VM templates introduced to run user appli-
cations, to build the overlays and to support the correct sharing of the infrastructure
among VMs and among communities. Section 3 presents a first set of performance
results. Section 4 reviews some related works. Finally, Sect. 5 draws some conclusions.

2 Vinci Overall Architecture

An example of an infrastructure where Vinci can be applied isthe one of a hospital
that is shared, at least, among the doctor community, the nurse community and the
administrative community. Since each community manages its private information but
also shares some information with the other ones, a community should be able to de-
fine its own security policy, its reliability requirements and to control information to
be shared with the other ones. As an example, users in a doctorcommunity can update
the information about prescriptions whereas those in the nurse community can read but
not update the same information. The nurse community and thedoctor one share some
other information with the administrative community, which has to bill the patient in-
surances. In the most general case, each user belongs to several communities according



to the applications she needs to run and the data she wants to access. Consider a doctor
that is the head of the hospital: as a doctor she belongs to thedoctor community but,
because of her administrative duties, she belongs to the administrative community as
well. Furthermore, the community the doctor joins to accesscritical health information
differs from that she joins when surfing the Internet.

In the general case, we assume that the infrastructure architecture is a private net-
work that spans several locations, it includes a rather large number of physical nodes,
and it is centrally managed by a set of administrators. We also assume that most of
the nodes of the infrastructure are personal computers thatare only accessed by one
person at time and that the infrastructure includes a set of server nodes, which store
shared data and execute server applications. Vinci requires that each node runs a virtual
machine monitor (VMM), a thin software layer on top of the bare machine that creates
and manages several concurrent emulation environments, the VMs. The VMM is re-
sponsible of the confinement among the VMs and guarantees a fair access to the node
resources.

One of the main advantages of virtualization is the ability of choosing the appropri-
ate combination of OS and applications for each VM to minimize the overall complex-
ity. To exploit at best this feature, Vinci defines a set of highly specialized and simple
VM templates that are dynamically instantiated and connected into overlays, i.e. virtual
community networks (VCNs). A Vinci VCN includes both VMs that run applications
and VMs that support and monitor the previous ones. A VCN strongly resembles a vir-
tual private network (VPN) but an important difference liesin the granularity of the
computation because we are interested in minimizing the complexity of the services
each VM implements. As an example, some VMs are introduced ina VCN just to ap-
ply consistency and security checks to the overall computation.

In Vinci, each VCN is built by composing VMs that are instances of the following
templates:

1. Application VM: it runs a set of applications on behalf of a single user;
2. Community VM: it manages the private resources of a community by enforcing

mandatory and/or discretionary access control (MAC/DAC) policies;
3. File System VM: it belongs to several VCNs to protect files shared among the cor-

responding communities. It can implement MAC and Multi-Level Security policies
and a tainting mechanism to prevent illegal information flows across communities;

4. Communication and Control VM: it implements and monitors information flows
among communities, i.e. flows among Communication and Control VMs of distinct
communities, or private flows among VMs of the same community;

5. Assurance VM: it checks that Application VMs only run authorized software and
attests the software of a VM.

Moreover, Vinci introducesInfrastructure VMs that do not belong to any VCN and ex-
tend the VMMs with new functionalities to manage the overallinfrastructure. As shown
in Fig. 1, since VMs that are instances of the same template have homogeneous require-
ments and system configurations, they are easy-to-deploy virtual appliances created on
demand from a generic baseline image. Moreover, when a VM is instantiated, its run-
time environment is highly customized [4] according to the user and the community of
interest through parameters such as the amount of memory, the running kernel modules,



and the OS and applications versions. This results in the ability of strengthening each
VM by tailoring its configuration to minimize the software itruns and avoid useless
functionalities.

Fig. 1. VM Templates.

In the following, we describe the current implementation ofVinci that exploits Xen
[5] to create the VMs and connect them into VCNs. NFSv3 [6] andSecurity-Enhanced
Linux (SELinux) [7] [8] have been modified to apply security policies based upon the
security levels of users or the global levels of communities. Finally, interconnections
among VMs are handled through iptables [9] and OpenVPN [10].

2.1 Community and VCN

The key concepts of Vinci are those of community and of virtual community network
(VCN). A community is composed by users and applications having the same secu-
rity and reliability requirements. Users run their applications in Application VMs and,
therefore, a community can also be seen as built around a set of Application VMs that
share the sameglobal level, i.e. the community level. This level constrains the security
and reliability requirements of users that can join a community and the applications
they can run. The number of communities reflects the distinctclasses of users that share
the private infrastructure. As an example, an administrator of a corporate enterprise
can configure Vinci to support the following communities: sales, marketing, manage-
ment, finance, R&D, engineering, customer support, Internet, etc. The adopted defini-
tion stresses the notion of a community as a collaborative environment where sharing
of information among applications does not result in a loss of security or reliability. A
VCN includes both the set of Application VMs of a community and further VMs that
manage the resources of a community and interaction among communities.



2.2 Application VMs

Each Application VM runs applications of a single user and ispaired with the global
level inherited from the corresponding community. In general, the resources and ser-
vices an Application VM can access depend upon the user security level and the global
level of the community the VM belongs to. Since a user can joindistinct communities
through distinct Application VMs, she can access distinct resources/services according
to the global level of each community. In some cases, there may exist some resources a
user can access regardless of the community she currently belongs to. As an example,
each user can always access its private files. While the global level of a community
constrains the users that can join the community and the applications they can run, an
administrator can also dictate which resources a communitycan access and/or share
with other communities. Thus, when a user wishes to join a community, and she has
the rights to do so, the community statically defines the set of applications that the
Application VM can run and the resources it can access.

In Vinci, during the login phase, a user chooses the community she wants to join.
Then, the Infrastructure VM of the local node configures and starts up a correspond-
ing Application VM to run those applications that the community policy allows and
it inserts the Application VM into the proper VCN. A user can run several Applica-
tion VMs on the same node concurrently, each belonging to thesame community or to
distinct ones.

In the current prototype, each Application VM is associatedwith a minimal partition
on one of the disks in the physical node, which stores the OS kernel loaded during the
boot-up of the Application VM. Other files may be stored either locally, in a Community
VM in the same VCN, or in a File System VM shared with other VCNs. To simplify the
implementation of security policies, at boot time an IP address is statically assigned to
an Application VM and both the VM global level and the user security level are paired
with this address. Since the IP address uniquely determinesthe resources the VM and
the user can access, Communication and Control VMs implement proper checks to
detect any spoofed traffic in a VCN.

2.3 Community VMs

A Vinci VCN always includes at least one Community VM to manage and control the
resources shared within the corresponding community, i.e.among its Application VMs
only. This VM stores the community private files, which includes configuration files,
system binaries, shared libraries and user home directories.

In the current prototype, files shared through Community VMsare protected by
MAC and DAC security policies where the subject of the policyis the user security
level, which is deduced from the IP address of the requestingApplication VM. To this
purpose, we have extended SELinux and NFS so that the NFS server enforces a policy
where the subject is the user paired with the IP address of therequesting Application
VM. In more detail, SELinux labeling and access rules have been extended to introduce
a new subject that corresponds to an Application VM, and to define the operations it can
invoke. We have also extended the object class of SELinux network object (node) to in-
sert the operations that the NFS server executes on behalf ofthe requesting Application



VM such as read, write or create files or directories. A node object is used to control
the network traffic, for example to grant or deny a process thepermissions to exchange
data with a specific IP address and it is associated with the IPaddress of an Application
VM. In this way, the administrator can define a distinct protection domain for each Ap-
plication VM by dynamically pairing the NFS server process with the security context
of the Application VM currently requesting the operation ona file.

SELinux stores most runtime security information about therunning processes in
thetask security struct structure. We have extended this structure to include
the security identifier bound to the node type and, therefore, to the corresponding sub-
ject. Moreover, we have introduced a function,map_ip, which maps the Application
VM IP address into a security identifier (SID) according to the current policy in the
SELinux security policy database. In this way, the securitycontext can be deduced from
the IP address of the Application VM that is trying to access ashared file. Every time
the NFS server processes a request, if the policy pairs the requesting IP address with
a node type,map_ip returns the SID of the requesting Application VM. Otherwise,
map_ip returns a default unprivileged SID. Before invoking the filesystem operation,
the Application VM SID is copied into thetask security struct paired with the
NFS daemon process serving the request. In this way, anytimethe NFS server invokes
an operation on a shared file system on behalf of Application VMs, the Community VM
kernel triggers a Linux Security Module (LSM) hook to delegate the security controls
to SELinux. Accordingly, we have modified the LSM hooks paired with file system op-
erations so that the subject of the security policy is the SIDpaired with the IP address
of the Application VM that has invoked the operation rather than the NFS server.

2.4 File System VMs

A community can share some files with other communities through a file system imple-
mented by a File System VM that belongs to several VCNs. The security policies that
this VM enforces extend those of a Community VM by considering both the user secu-
rity level and the community each user belongs to. Furthermore, File System VMs ex-
ploit the capabilities of aTainting module to prevent the flowing of information among
predefined communities. This module has been introduced to:(i) confine information
flows among communities; (ii) increase the robustness with respect to contamination
attacks; (iii) log the actual flow of information among communities. To this end, the
Tainting module pairs each community with a bit mask, i.e. the community mask, with
exactly one bit set to1 that represents the community. Furthermore, it pairs each file
with a mask that represents the communities that either haveinteracted with the file
or have exchanged some information through the file. Anytimea user tries to apply an
operation on a file, the module computes anOR of the masks of the file and of the user
community. If the result shows an illegal information flow among communities, then
the operation is forbidden, otherwise the result becomes the new mask of the file, in the
case of a write operation, or of the community, in the case of aread operation. In any
case, the Tainting module logs into a file the operation type,the name of the community
and of the file and the original and the new masks.

Periodically, the Tainting module parses the log file and updates in an incremental
way the dependency graph [11] that represents the information flows among communi-



ties and files. Each node in the graph represents either a file or a community and it is
paired with a unique identifier of the community or of the file as well as with the corre-
sponding mask. A node that represents a file is created the first time the file is involved
in an operation. An arc represents an operation and is associated with the information
about the requested operation. To identify how informationflows, a read operation is
represented by an arc from a node that represents a file to one that represents a commu-
nity, while a write operation by an arc from a community to a file. As shown in Fig. 2,
an administrator can query the module to analyze the dependency graph to discover
those communities that have exchanged some information, totrace the source of a con-
tamination and track all the files/communities that may havebeen contaminated by a
community/file.

Since the implementation of a File System VM generalizes that of a Community
VM, the same extensions of Community VMs have been applied toFile System VMs
as well. Moreover, we have extended the File System VM Linux kernel to insert the
Tainting module in-between the NFS server and the Virtual File System (see Fig. 2). To
this purpose, we have modified thenfsd permission function, which verifies file
requests, andnfsd_vfs_read andnfsd_vfs_write to check, respectively, read
and write requests.

Fig. 2. File System VM Policy Enforcement and Query Generation.

2.5 Communication and Control VMs

A Communication and Control VM protects and monitors information flows by im-
plementing and managing a local virtual switch that supports communications among
VMs. Communication and Control VMs can be further specialized in: (i) Virtual Pri-
vate Network (VPN) VMs, which create an authenticated and protected communication
channel among VMs of the same community on distinct physicalnodes of the infras-
tructure; (ii) Firewall VMs, which filter information flows so that only authorized Ap-
plication VMs can access the infrastructure and interact with other communities; (iii)
IDS VMs, which monitor information flowing among VMs in the same community or



in distinct ones. The introduction of a Firewall VM enables the administrators to de-
fine which communities can interact and, hence, to define the legal interconnections
among distinct VCNs. As an example, a community can be isolated or communities
with a lower global level may not be allowed to communicate with those with higher
global levels. Firewall VMs can decide whether to forward a packet, based on the source
and destination communities. Furthermore, Firewall VMs support the authentication of
shared resource requests through the IP address of the originating VM because they
control that Application VMs do not spoof traffic on the virtual switches interconnect-
ing the VMs. Finally, IDS VMs monitor information flows amongVMs in the same or
in distinct communities to discover attacks. An IDS VM can also retrieve and corre-
late partial information from other IDS VMs in the same VCN orin distinct ones to
minimize the time to detect a distributed attack [12].

2.6 Assurance VMs

Assurance VMs exemplify the advantages of virtualization to build a robust system.
In fact, these VMs have been introduced just to monitor critical Application VMs and
the VMs of a VCN that manage critical components, to attest their integrity and to
authenticate their configuration as well. Furthermore, to define severe tests, Assurance
VMs use virtual machine introspection [13] to retrieve critical data structures in the VM
memory and evaluate assertions on these structures. Each assertion is an invariant for
the original application and it is false only if the application has been attacked.

The software attestation implemented by Assurance VMs enables a VM to verify the
integrity of critical code in another VM. As an example, an Assurance VM can compare
a hash of the software of a VM against a value computed offline to discover anomalous
updates of the configuration of the VM. Consider a critical server in an Application VM
that is remotely accessed by other Application VMs. In this case, the server Application
VM may require not only the client authentication but also have some assurance that
the software stack of the client VM is not compromised and that the client version is
correct.

2.7 Infrastructure VMs

Infrastructure VMs extend the VMMs to configure and manage the VCNs. In particular,
distinct Infrastructure VMs cooperate to monitor the overall infrastructure and update
the topology of the virtual overlays and their mapping. The adoption of these VMs
simplifies the implementation of some functionality too complex to be applied at the
VMM level, thus minimizing the VMM size. An Infrastructure VM runs a minimal
kernel, it does not run any Internet service and the functionalities it implements cannot
be directly accessed by any user but the administrators.

As shown in Fig. 3, all the Infrastructure VMs, one per node, belong to aManage-
ment Community that does not interact with any other community. During the creation
of the Management Community, one Infrastructure VM is designated as theMaster
Infrastructure VM that contacts the other Infrastructure VMs to set up proper com-
munication channels to support cooperation in the Management Community. To prop-
erly configure the Vinci runtime environment, Infrastructure VMs can: (i) create/kill,



Fig. 3. Example of Communities and VCNs.

freeze/resume any VM in their node or request this operationto another Infrastructure
VM; (ii) configure a VM through specific parameters such as network configuration,
amount of memory, the number of VCPUs; (iii) retrieve information about the current
mapping of VMs and the resulting resource usage; (iv) updatethe mapping by migrat-
ing VMs, which requires an interaction with some Communication and Control VMs
to manage the resulting communications; (v) setup, compileand deliver to each File
System and Community VM the general security policy it has toenforce.

Among the challenges that the Management Community has to face, one is con-
cerned with data management issues, to enable a fast access of a community to its data
[14], or with VMs mapping. Alternative mapping strategies may evenly distribute Ap-
plication VMs running server applications on the availablenodes, or map Community
VMs onto physical nodes directly connected to those that runthe Application VMs of
the corresponding community. The Management Community maymigrate VMs among
physical nodes to handle errors and faults, to reduce the communication latency or to
balance the computational load.

Infrastructure VMs also authenticate users through a centralized authentication pro-
tocol, so that users can log on Application VMs with the same combination of user-
name and password anywhere in the infrastructure. In this way, the association among
users and privileges is managed in a centralized way. The setof users of all the com-
munities that share the infrastructure is globally known sothat Vinci can uniquely iden-
tify users through their user-name or their associated useridentifier (UID). The UID
is paired with the privileges of the user, i.e. with its security level. Whenever a user
has been authenticated and has chosen the community she wants to join, the Infrastruc-
ture VM starts up an Application VM, which includes only those applications that the



Fig. 4. Interactions among Communities.

community policy allows and with the proper global level. After the login and boot-up
phases, the local Infrastructure VM contacts the proper Communication and Control
VMs to update the topology of the VCN to insert this Application VM into a VCN and
to add communication rules to handle the corresponding information flows. Finally, the
security policies of Community VMs and File System VMs may beupdated. Figure 4
shows the various interactions among the VMs running on a physical node. Currently,
Infrastructure VMs are assigned to Xen Domain 0 VMs, i.e. they are privileged VMs
that can access the control interface to manage a physical node and the VMs that the
node runs.

If a high degree of assurance is required, Vinci may require that some nodes of
the infrastructure are equipped with a Trusted Platform Module (TPM) subsystem [15],
which can also be virtualized on the VMs the node runs [16]. The TPM acts as aroot of
trust to build and setup the software environment and its mechanisms may be exploited
to ensure that a platform has loaded its software properly and that the VMM and the
Infrastructure VM of the local node are started in a safe state. Moreover, the TPM can
protect secrets such as the asymmetric and symmetric keys toestablish secure commu-
nications among VMs, to authenticate the VMs or to remotely attest the software that a
VM runs. If a high degree of assurance is required but a TPM is not available, admin-
istrator should guarantee that each node cannot be physically tampered with so that the
VMM and the Infrastructure VM can be safely initialized. In this case, the Infrastruc-
ture VM may emulate the features of the TPM and export it to other VMs through the
virtual TPM.

3 Performance Results

This section shows a preliminary performance evaluation ofthe current Vinci prototype.
The tests were performed on several machines equipped with Intel Core 2 Duo E6550
2.33GHz CPUs. A first experiment evaluated in an integrated way the performance
of file sharing through File System VMs and Communication andControl VMs. An



Application VM on a node ran the IOzone [17] NFS test while a File System VM, on
a distinct physical node, stored the requested files. Requests were transmitted along a
communication channel implemented by two Firewall VMs and the physical nodes were
connected through a100MB Ethernet. Fig. 5 compares the throughput of thewrite
test against the one of the insecure version that does not apply the security checks. The
overhead due to the enforcement of the security policies, inthe average case, is lower
than9%. Instead, the tests on the enforcement of security policiesby a Community VM
resulted in a reduction of the final throughput lower than5%. The same tests executed
on an Application VM connected to a remote File System VM through two VPN VMs
resulted in an overhead that, in the worst case, is lower than13%.

We also evaluated the overhead due to the security checks enforced by an Assurance
VM on the kernel code of an Application VM. To this purpose, anApplication VM ex-
ecuted the commandtar -xjf linux-2.6.20.tar.bz2 while an Assurance
VM, which runs on the same node, checked an increasing numberof Application VM
kernel pages by computing their hashes and comparing them against their original val-
ues. The period of time between two consecutive executions of the consistency checks
was set to2 seconds. The relative overhead was lower than8% in the worst case. The
coverage of these checks is rather satisfactory, because they quickly detect, for instance,
any attempt to install a rootkit.

Fig. 5. IOzone NFS Read Performance without (left) and with (right)Policy Enforcement.

4 Related Works

[18] proposes an architecture where computing services canbe offloaded intoTrusted
Virtual Domains, i.e. execution environments that meet a set of security requirements.
Trusted Grid Architecture [19] is a framework to build a trustworthy grid architecture
by using a combination of Trusted Computing and virtualization technologies. The pro-
posed approach allows a user to check that a selected provider is in a trusted state before
accessing a submitted grid job. Both the previous architectures consist of a grid of nodes
where clients require services, using some form of negotiation to locate a trustworthy
provider. Vinci, on the other hand, is more resemblant of a traditional client/server ap-
proach, where services and applications are mostly statically bound to physical nodes.



Moreover, in Vinci users are managed by a central authority that also administers the
whole architecture. [20] proposes an access control architecture that enables corpora-
tions to verify client integrity properties using a TPM, andto establish trust upon the
capability of the client to enforce the policy before allowing the client to access the
corporate Intranet. This framework could be easily integrated into Vinci, for example
when a remote user tries to access the corporate infrastructure.SVGrid [21] introduces
distinct execution environments for the applications and the storage areas, to protect
file systems and network services from untrusted grid applications. In addition to these
features, Vinci aims also to provide assurance on the running software on critical VMs.
Moreover, Vinci introduces a large number of VMs templates,so that each VM only
runs a small amount of software.Poly2 [22] is a framework aimed at segregating appli-
cations and networks and at minimizing OSes. The proposed approach separates net-
work services onto different systems and it isolates specific types of network traffic.
To this purpose, administrative and application-specific traffic are mapped onto dis-
tinct networks. Moreover, minimized OSes should only provide the services required
by a specific network application. Vinci shares with this framework the minimization
of OSes and applications but it introduces distinct overlaynetworks for each commu-
nity and dynamically manages the configuration of these overlays. Moreover, Vinci
applies introspection to provide assurance on the running software. [23] considers VMs
as sandboxes that simplify the deployment of collaborativeenvironments over wide-
area networks. Each VM sandbox can be seen as a virtual appliance made available to
several users by the administrator, so that new nodes can easily join and be integrated
into the virtual network. A feature that characterizes Vinci with respect to the previ-
ous framework is the concept of community, which simplifies the management of users
with similar security and reliability requirements. PlanetLab [24] is a global overlay
network that runs concurrently multiple services inslices, i.e. networks of VMs that
include some amount of processing, memory, storage and network resources. A slice is
conceptually similar to a Vinci VCN, but in Vinci resources are those of a private infras-
tructure and their allocation is mostly static, whereas PlanetLab exploits the concept of
an open grid of machines where resources can be dynamically allocated and discovered.
Furthermore, Vinci introduces the concept of community, which allows administrators
to define flexible security policies. Another important difference is that PlanetLab ex-
ploits OS-level virtualization, while Vinci exploits hardware-level virtualization and,
therefore, it introduces a VMM that results in a better confinement among the VMs of
the same node.

5 Conclusion

The focus of Vinci is on the definition of highly parallel overlays, i.e. VCNs, which
simplify management and sharing of a private ICT infrastructure. Moreover, VCNs in-
crease the overall robustness due to the introduction of specialized VMs that enforce
security checks within and across VCNs. Each VCN supports a user community, i.e. a
set of users with similar security and reliability requirements. This approach requires
that each physical node runs a virtual machine monitor that manages and protects the
physical resources and it results in the definition of several VM templates. Distinct



templates are used to support the execution of user applications, to enforce consistency
checks or to apply security policies that protect resourcesshared within or across dis-
tinct communities. We have shown that proper components canbe introduced to protect
the communities from contamination as well as to trace any contamination that can
arise. Moreover, a specialized community includes a set of VMs that manage the con-
figuration of the other VMs to achieve the required level of reliability and security.
Preliminary results of our prototype show that Vinci can be adopted in a real-world
scenario, such as the one of a hospital, a bank, or a corporateenterprise, which need to
guarantee high security requirements and confine critical resources.

Concerning the shortcomings of state-of-the-art virtualization, we note that manag-
ing and configuring a node to support virtualization and to run a set of VMs, each with
a customized OS, requires more effort than managing a node that only runs a standard
OS, especially in the case of a para-virtualization approach that requires the OSes to
be modified to run inside the virtual environment. However, since virtualization is be-
coming increasing popular, there is a large amount of tools that help the administrator
to set-up and manage virtual nodes. Another counterpart of the advantages of virtual,
highly parallel and secure overlays is the overhead due to the context switching that the
VMM applies to multiplex the physical resources. A multi-core architecture [25] can
strongly reduce this overhead because of the native supportfor multiplexing. Moreover,
it can run several VMs in consolidation and assign a dedicated core to some VMs. This
guarantees that VMs that implement critical tasks, such as management and protection
of other VMs, are never delayed. Moreover, the virtualization overhead can be strongly
reduced because of the extension of hardware instruction sets to efficiently support vir-
tualization technology [26].

6 Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments and sug-
gestions.

References

1. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A., Marting,F., Anderson, A., Bennett, S., Kagi,
A., Leung, F., Smith, L.: Intel Virtualization Technology.Computer38(5) (May 2005)
48–56

2. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling intrusion
analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev.36(SI) (2002)
211–224

3. Goldberg, R.P.: Survey of virtual machine research. IEEEComputer7(6) (1974) 34–45
4. Huang, W., Abali, B., Panda, D.: A case for high performance computing with virtual ma-

chines. Proc. of the 20th annual international conference on Supercomputing (2006) 125–134
5. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., Barham, P.,

Neugebauer, R.: Xen and the art of virtualization. In: Proceedings of the ACM Symposium
on Operating Systems Principles. (October 2003)

6. Callaghan, B., Pawlowski, B., Staubach, P.: NFS V3 Protocol Specification. RFC 1813



7. Loscocco, P., Smalley, S.: Integrating flexible support for security policies into the linux
operating system. In: Proceedings of the FREENIX Track: 2001 USENIX Annual Technical
Conference, Berkeley, CA, USA, USENIX Association (2001) 29–42

8. Loscocco, P.A., Smalley, S.D.: Meeting critical security objectives with security enhanced
linux. In: Proceedings of the 2001 Ottawa Linux Symposium. (2001)

9. Netfilter.org: Netfilter/Iptables projectwww.netfilter.org/.
10. OpenVPN: OpenVPN - An Open Source SSL VPN Solutionhttp://openvpn.net/.
11. King, S.T., Chen, P.M.: Backtracking intrusions. ACM Trans. Comput. Syst.23(1) (2005)

51–76
12. S. G. Cheetancheri, e.a.: A distributed host-based wormdetection system. In: LSAD ’06:

Proc. of the 2006 SIGCOMM workshop on Large-scale attack defense, New York, NY, USA,
ACM Press (2006) 107–113

13. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture for intru-
sion detection. In: NDSS. (2003)

14. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A case for grid computing on virtual machines.
In: ICDCS ’03: Proceedings of the 23rd International Conference on Distributed Computing
Systems, Washington, DC, USA, IEEE Computer Society (2003)550

15. Pearson, S.: Trusted Computing Platforms, the Next Security Solution. Beaverton, USA:
Trusted Computing Group Administration (2002)

16. Berger, S., Cáceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM: virtual-
izing the trusted platform module. In: USENIX-SS’06: Proceedings of the 15th conference
on USENIX Security Symposium, Berkeley, CA, USA, USENIX Association (2006) 21–21

17. IOzone: IOzone Filesystem Benchmarkhttp://www.iozone.org/.
18. Griffin, J., Jaeger, T., Perez, R., Sailer, R., van Doorn,L., Caceres, R.: Trusted Virtual Do-

mains: Toward secure distributed services. Proc. of 1st IEEE Workshop on Hot Topics in
System Dependability (HotDep) (2005)

19. Löhr, H., Ramasamy, H.V., Sadeghi, A.R., Schulz, S., Schunter, M., Stüble, C.: Enhancing
Grid Security Using Trusted Virtualization. In: ATC. (2007) 372–384

20. Sailer, R., Jaeger, T., Zhang, X., van Doorn, L.: Attestation-based policy enforcement for
remote access. In: CCS ’04: Proceedings of the 11th ACM conference on Computer and
communications security, New York, NY, USA, ACM Press (2004) 308–317

21. Zhao, X., Borders, K., Prakash, A.: SVGrid: a secure virtual environment for untrusted grid
applications. In: MGC ’05: Proceedings of the 3rd international workshop on Middleware
for grid computing, New York, NY, USA, ACM Press (2005) 1–6

22. Bryant, E., Early, J., Gopalakrishna, R., Roth, G., Spafford, E., Watson, K., William, P.,
Yost, S.: Poly2 Paradigm: A Secure Network Service Architecture. ComputerSecurity
Applications Conference, 2003. Proceedings. 19th Annual (2003) 342–351

23. Wolinsky, D.I., Agrawal, A., Boykin, P.O., Davis, J., Ganguly, A., Paramygin, V., Sheng,
P., Figueiredo, R.J.: On the Design of Virtual Machine Sandboxes for Distributed Comput-
ing in Wide Area Overlays of Virtual Workstations. In: FirstWorkshop on Virtualization
Technologies in Distributed Computing (VTDC). (November 2006)

24. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.:
Planetlab: an overlay testbed for broad-coverage services. SIGCOMM Comput. Commun.
Rev.33(3) (2003) 3–12

25. Gepner, P., Kowalik, M.F.: Multi-core processors: New way to achieve high system per-
formance. In: PARELEC ’06: International symposium on Parallel Computing in Electrical
Engineering, Washington, DC, USA, IEEE Computer Society (2006) 9–13

26. Leung, F., Neiger, G., Rodgers, D., Santoni, A., Uhlig, R.: Intel Virtualization Technol-
ogy: Hardware support for efficient processor virtualization. Intel Technology Journal10(3)
(August 2006) 167–178


