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Abstract. We investigate an application of RFIDs referred to in the literature
as group scanning, in which several tags are “simultaneously” scanned by a
reader device. Our goal is to study the group scanning problem in strong ad-
versarial models. We present a security model for this application and give a for-
mal description of the attending security requirements, focusing on the privacy
(anonymity) of the grouped tags, and/ or forward-security properties. Our model
is based on the Universal Composability framework and supports re-usability
(through modularity of security guarantees). We introduce novel protocols that
realize the security models, focusing on efficient solutions based on off-the-shelf
components, such as highly optimized pseudo-random function designs that re-
quire fewer than 2000 Gate-Equivalents.

1 Introduction and previous work

Radio Frequency Identification (RFID) tags were initially developed as small electronic
hardware components whose main function is to broadcast a unique identifying number
upon request. The simplest type of RFID tags arepassivedevices—i.e., without an
internal power source of their own, relying on an antenna coil to capture RF power
broadcast by an RFID reader. In this paper, we focus on tags that additionally feature a
basic integrated circuit and memory. This IC can be used to process challenges issued
by the RFID reader and to generate an appropriate response. For details on these tags,
and more generally on the standards for RFID systems, the reader is referred to the
Electronic Protocol Code [10] and the ISO 18000 standard [11].

The low cost and high convenience value of RFID tags gives them the potential for
massive deployment. Accordingly, they have found increased adoption in manufactur-
ing (assembly-line oversight), supply chain management, inventory control, business
automation applications, and in counterfeit prevention. Initial designs of RFID identifi-
cation protocols focused on performance issues with lesser attention paid to resilience
and security. As the technology has matured and found application into high-security
and/or high-integrity settings, the need for support of stronger security features has
been recognized. Many works have looked into the issue of secure identification and
authentication, including [1, 2, 5–8, 14, 15, 19, 9, 20–22, 13].
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Ari Juels introduced the security context of a new RFID application—which he
called a yoking-proof [12], that involves generating evidence of simultaneous pres-
ence of two tags in the range of an RFID reader. As noted in [12], interesting secu-
rity engineering challenges arise in regards to yoking-proofs when the trusted server
(or Verifier) is not online during the scan activity. The first proposed protocol intro-
duced in [12] was later found to be insecure [18, 4]. Yoking-proofs have been ex-
tended togrouping-proofsin which groups of tags prove simultaneous presence in
the range of an RFID reader—see e.g. [18, 17, 4]. In this paper, we examine the lat-
ter solutions and identify similar weaknesses in their design.

Our main contribution in this paper is to present a comprehensive security frame-
work for RFID grouping-proofs, including a formal description of the attending security
requirements. In previous work, the group scanning application has only been described
at relatively informal levels, making it difficult to provide side-to-side comparisons be-
tween alternative proposals. We then construct practical solutions guided by the security
requirements and constraints of this novel model.

As Juels already pointed out, there are several practical scenarios where grouping-
proofs could substantially expand the capabilities of RFID-based systems. For example,
some products may need to be shipped together in groups and one may want to monitor
their progress through the supply chain—e.g., of hardware components or kits. Other
situations include environments that require a high level of security, such as airports. In
this case, it may be necessary to couple an identifier, such as an electronic passport, with
a physical person or with any of his/her belongings, such as their bags. In battlefield
contexts, weaponry or equipment may have to be linked to specific personnel, so that it
may only be used or operated by the intended users.

In some of the above scenarios, the RFID reader may not enjoy continuous con-
nectivity with the trusted Verifier, and delayed confirmation may be acceptable. For
instance, this may be the case with supply chain applications, due to the increased
fragmentation and outsourcing of manufacturing functions. A supplier of partially as-
sembled kits may perform scanning activities that will be verified later when the kits
are assembled at a different site. Therefore, efficient and optimized realizations of this
primitive that achieve strong security guarantees—such as we describe in this paper—
are practically relevant contributions in the design space of RFID protocols.

2 RFID deployments and threat model

A typical deployment of an RFID system involves three types of legitimate entities:
tags, readersand aVerifier. The tags are attached to, or embedded in, objects to be
identified. In this paper we focus on passive RFID tags that have no power of their own
but have a small footprint CMOS integrated circuit, ROM, RAM and non-volatile EEP-
ROM. The RFID readers typically contain atransceiver, a control unitand acoupling
element, to interrogate tags. They implement a radio interface to the tags and a high
level interface to the Verifier that processes captured data.

The Verifier (a back-end server) is a trusted entity that maintains a database con-
taining the information needed to identify tags, including their identification numbers.
In our protocols, since the integrity of the whole RFID system is entirely dependent on



the proper behavior of the Verifier, we assume that the Verifier is physically secure and
not attackable.

Grouping-proofs involve several tags being scanned by an RFID reader in the same
session. The reader establishes a communication channel that links the tags of a group
and enables the tags to generate a proof of “simultaneous presence” within its broadcast
range. The proof should be verifiable by the Verifier. Throughout this paper, we assume
the following about the environment characterizing group scanning applications:

– The tags are passive,i.e., have no power of their own, and have very limited com-
putation and communication capabilities. However, we assume that they are able
to perform basic cryptographic operations such as generating pseudo-random num-
bers and evaluating pseudo-random functions.

– RFID tags do not maintain clocks or keep time.However, the activity time span of
a tag during a single session can be limited using techniques such as measuring the
discharge rate of capacitors, as described in [12].

– RFID readers establish communication channelsthat link the tags of a group. This
takes place at the data link layer of the RFID network: after tags that claim to
belong to a group are “identified” (tags may use pseudonyms) a common (wireless)
channel linking the tags via the reader is established.

– RFID readers are trusted to manage the interrogation of tags.They enable the tags
of a group to generate a grouping proof during an interrogation session, and keep a
record of such proofs for each session. These records cannot be manipulated by the
adversary. In the offline case readers must also store private information regarding
interrogation challenges obtained from the Verifier.

– The Verifier is a trusted entity,that may share some secret information with the
tags such as cryptographic keys. The Verifier has a secure channel (private and
authenticated) that links it to the (authenticated) RFID readers.

– Grouping proofs are only valid if they are generated according to their protocol in
the presence of an authorized RFID reader.In particular if the flows of the protocol
are ordered, the ordering cannot be violated. Also, proofs generated during different
sessions are not valid (even if correct).

The Verifier can be online or offline and different solutions are required in each
case. We further distinguish between onlinefully-interactivemode and onlinebatch
mode. In fully-interactive mode the Verifier can receive and send messages to specific
tags throughout the protocol execution. In contrast, the interaction of the Verifier in
batch mode is restricted to broadcasting a challenge that is valid for a (short) time span,
collecting responses from the tags (via RFID reader intermediates), and checking for
legitimate group interactions—the Verifier in batch mode never unicasts messages to
particular groups of tags.

It is straightforward to design solutions for the fully-interactive mode of the grouping-
proof problem—indeed, it is sufficient for individual tags to authenticate themselves
to the Verifier, which will then decide on the success of the grouping-proof by using
auxiliary data, e.g., the tag identifiers of the groups. Therefore, research on grouping-
proofs has focused on the offline case, with some results also targeted at the online
batch modality. Accordingly, in this paper, we focus on offline solutions, except for the
forward-secure protocol, where we only describe a solution in the online batch mode.



2.1 Attacks on RFID tags

Several types of attacks against RFID systems have been described in the literatrure.
While each of these are types known in other platforms, unique aspects of the RFID
domain make it worthwhile to discuss them anew.

– Denial-of-Service(DoS) attacks: The adversary causes tags to assume a state from
which they can no longer function properly.

– Unauthorized tag cloning: The adversary captures keys or other tag data that allow
for impersonation.

– Unauthorized tracing: The adversary should not be able to trace and/or recognizes
tags.

– Replay attacks: The adversary uses a tag’s response to a reader’s challenge to im-
personate the tag.

– Interleaving and reflection attacks: These areconcurrencyattacks in which the
adversary combines flows from different instantiations to get a new valid transcript.

These attacks are exacerbated by the mobility of the tags, allowing them to be manipu-
lated at a distance by covert readers.

2.2 The threat model for RFID

The extremely limited computational capabilities of RFID tags imply that traditional
multi-party computation techniques for securing communication protocols are not fea-
sible, and that instead lightweight approaches must be considered. Yet the robustness
and security requirements for RFID applications can be quite significant. Ultimately,
security solutions for RFID applications must take as rigorous a view of security as
other types of applications. Accordingly, our threat model assumes a Byzantine adver-
sary. In this model all legitimate entities (tags, readers, the Verifier) and the adversary
have polynomially bounded resources. The adversary controls the delivery schedule of
the communication channels, and may eavesdrop into, or modify, their contents, and
also instantiate new channels and directly interact with honest parties.

We are mainly concerned with security issues at the protocol layer and not with
physical or link layer issues—For details on physical/link layer issues the reader is
referred to [10, 11].

2.3 Guidelines for secure RFID applications

Below we present effective strategies that can be used to thwart the attacks described in
Section 2.1. These strategies are incorporated in the design of our protocols.

– DoS attacks: One way to prevent the adversary from causing tags to assume an
unsafe state is by having each tag share with the Verifier a permanent secret key
ktag , which the tag uses to generate a response when challenged by an RFID reader.

– Cloning attacks: The Verifier should be able to check a tag’s response, but the
adversary should not be able to access a tag’s identifying data. This can be assured
by using cryptographic one-way functions.



– Unauthorized tracing: The adversary should not be able to link tag responses to
particular tags. This can be guaranteed by (pseudo-)randomizing the values of the
tags’ responses.

– Interleaving and Replay attacks: The adversary should not be able to construct
valid transcripts by combining flows from different sessions. This can be assured
by binding all messages in a session to the secret key and to fresh (pseudo-)random
values.

– Generic concurrency-based attacks:Protocols that are secure in isolation may be-
come vulnerable under concurrent execution (with other instances of itself or of
other protocols). To guarantee security against such attacks it is necessary to model
security in a concurrency-aware model. In this paper, we use the Universal Com-
posability model.

3 Previous Work: RFID Grouping-Proofs

In this section we describe three grouping-proofs proposed in the literature and discuss
their vulnerabilities.

3.1 The Yoking-proof.This is a proof of simultaneous presence of two tags in the
range of a reader [12]. The reader scans the tags sequentially. The tags have secret
keys known to the Verifier but not the reader, and counters, and use a keyed message
authentication code and a keyed hash function to compute a “yoking-proof”. Saito and
Sakurai observed [18] that a minimalist version of this proof (that does not use counters)
is subject to an interleaving attack. The attack was shown [4] to extend to the full version
of the proof, but it was also shown that it can be easily be prevented.

There are two other weaknesses we shall discuss here. The first concerns the fact
that the tags do not (and cannot) check each other’s computation. This implies that in
the offline mode unrelated tags can participate in a yoking session, and that the fail-
ure will only be detected by the Verifier at some later time, not by the reader. While,
from an authentication perspective, this may not represent a security threat, in many
practical applications it is an undesirable waste of resources, and could be character-
ized as a DoS vulnerability. To appreciate how accidental pairing may create challenges
to real-world applications—e.g., where yoking is used to ensure that components are
grouped in a shipment, consider the following scenario. A reader is configured to take
temporary measures after a failed yoking attempt, e.g., notify an assembly worker of a
missing component in a shipment pallet. This capability is denied if a tag (either acci-
dentally or maliciously) engages in yoking sessions with unrelated tags, and possibly
even with itself—for the latter, we refer the reader to the modified re-play attack sce-
nario described in [18]. Accidental occurrences of this type might not be unlikely, in
particular with anonymous yoking-proofs, and they are facilitated by the fact that the
scanning range of readers may vary according to different environmental conditions. In
order to prevent this kind of vulnerability, in our protocols we use a group secret key
kgroup, which is shared by all the tags belonging to that group.3

3 Although group keys will prevent faulty tags from participating in a grouping-proof that in-
volves non-faulty tags, they cannot preventmalicioustags from submitting an invalid proof to



A more serious weakness concerns the nature of the “proof”PAB generated by the
tags: this isnot a proof thattagA andtagB were scanned simultaneously while in the
presence of an authorized reader. Indeed, one cannot exclude the possibility thatPAB

was generated while the tags were in the presence of a rogue reader, and that at a later
timePAB was replayed by a corrupted tag (impersonating successivelytagA andtagB)
in the presence of the authorized reader. To avoid this kind of attack in our protocols
the challenge of authorized tags will include a nonce (rsys).

3.2 Proofs for multiple RFID tags.These extend yoking-proofs to handle arbitrary
number of tags in a group [18] and use time-stamps, to thwart re-play attacks. Pira-
muthu [17] replaced the time-stamps by random numbers. This is important, because
time-stamps can be predicted, allowing for attacks that collect prior responses and com-
bine them to forge proofs of simultaneous interaction. As with the yoking-proofs, these
fail to satisfy the security guidelines in Section 2.3. In particular, the random numbers
used and are vulnerable to a multi-proof session attacks [16].

3.3 Clumping-proofs for multiple RFID tags[16]. These combine the strengths of
yoking-proofs and multiple tag proofs and address some of their weaknesses. The tags
use counters and the reader uses a keyed hash of a time-stamp, obtained from the Veri-
fier, to make its requests unpredictable. For details, we refer the reader to [16].

Clumping-proofs use counters to reduce the search complexity of the Verifier. How-
ever their value is updated regardless of the received flows, so they can be incremented
arbitrarily by the adversary (via rogue readers). Therefore, they cannot be relied upon
to identify tags, and in the worst case an exhaustive search through the keys may have
to be used. A security proof is provided in the Random Oracle Model [3]. However, this
does not address concurrency threats, a substantial limitation of the analysis, consider-
ing that the original yoking-proofs [12] admit a similar security proof and are vulnerable
to concurrency-based attacks.

4 Our Protocols: Robust grouping-proofs

We present three RFID grouping proofs. The first one does not provide anonymity, the
second adds support to anonymity and the third improves on the second by incorporat-
ing forward-secrecy.

In the first protocol, the proof sent from the tags to the reader and from the reader to
the Verifier includes a group identifierIDgroup. For the second protocol, no identifier is
passed to the reader: the proof uses values that depend on the group’s identifier and key
and on the Verifier’s challenge but the dependency is known only to the Verifier. Thus,
only the Verifier is able to match the proof with a given group of tags: this guarantees
unlinkability and anonymity. In the third protocol the secret keys and the group keys of
the tags are updated after each execution, thus providing forward-secrecy.

There are two reasons why we present different protocols. First, prior work on
group scanning has considered both the anonymous and non-anonymous settings. Since

a reader, since proofs can only be verified by the Verifier. Our last protocol (Section 4.3), in
which the groups are authenticated by the reader, addresses this issue.



anonymizing protocols requires additional computational steps and correspondingly
larger tag circuitry, simpler alternatives are preferred whenever anonymity is not a con-
cern. Second, the introduction of protocols of increasing complexity follows a natural
progress that facilitates the understanding of the protocols structure.

Although for simplicity we illustrate our protocols with two tags, the extension to
any number of tags is straightforward. Irrespective of the number of tags involved, a
specific tag in the group always plays the role of “initiator,” transmitting either a counter
(in the non-anonymous protocol), a random number, or a random password (in the other
versions). This has the security benefit of curtailing reflection attacks. To implement this
feature, it is not necessary that tags engage in any sort of real-time agreement protocol,
it is sufficient to hard-code the behavior of tags.

We consider situations in which the Verifier is not online while the tags are scanned.
Each tag stores in non-volatile memory two secret keys (both shared with the Verifier):
agroup keykgroup used to prove membership in a group, and anidentification keyktag

used to authenticate protocol flows. Tags instances are denoted astagA or tagB , and
the key for instancetagA is written in shorthand askA.

Each protocol starts with a reader broadcasting a random challengersys, which
is obtained from the trusted Verifier at regular intervals. This challenge defines the
scanning period, i.e., each group should be scanned at most once between consecu-
tive challenge values. In other words, the Verifier cannot (without further assumptions)
determine simultaneity of a group scan to a finer time interval than the scanning period.

4.1 A robust grouping-proof

Our first non-anonymous grouping-proof is presented for two tags,tagA and tagB ,
wheretagA is the initiator tag—see Fig. 1. The current state of the group is deter-
mined by a counterc stored by the initiator tag. The counter is updated with each
execution of the protocol. Each group is assigned an identifierIDgroup and the Ver-
ifier stores these values together with the private keys of each tag in a databaseD =
{(IDtag, ktag, kgroup)}. The protocol has three phases. In the first phase the reader
challenges the tags in its range withrsys and the tags respond with their group identi-
fier IDAB . In the second phase—which takes place at the data-link layer—the tags are
linked by channels through the reader. In the third, the tags prove membership in their
group.

Each phase can be executed concurrently with all the tags in the group, except that
the third phase must be initiated by the initiator tag (tagA in the diagram). The various
phases cannot be consolidated without loss of some security feature. If we remove the
first phase (rsys) the protocol would be subject to a “full-replay” attack (Section 2.3).
If we remove the second phase (the exchange ofIDAB), the reader would be unable
to match the tags. Phase three consists of three rounds of communication, and each is
crucial to provide the data for the proof. If we were to suppress the exchange ofsB

andxB , or if we did not implement the timeout, then replay attacks would be success-
ful. Also, the implementation of the third round enables an authorized reader to detect
certain protocol failures immediately, namely those that lead the initiator tag to time-
out. The update of the counterc immediately after it is sent bytagA allows the state



Fig. 1.A robust grouping-proof—for two tags

tagA(IDAB , kAB , kA, c) READER(rsys) tagB(IDAB , kAB , kB)

rsys� rsys -

IDAB - IDAB�

link tagA to tagB

{tagA, tagB} is linked� {tagA, tagB} is linked-
Set timer

rA||sA ← f(kAB ; rsys||c)
rA, c - rA, c -

c← c + 1 Set timer

rB ||sB ← f(kAB ; rsys||c)
if rB 6= rA then timeout
elsexB ← f(kB ; rsys||rB)

sB� sB , xB�
timeout

If sA 6= sB then timeout
elsexA ← f(kA; rsys||rA)

xA -
timeout

PAB = (rsys, IDAB , c, rA, sB , xA, xB)

to be updated even if the protocol round should be interrupted. This, along with timers
prevents replay attacks.

The extension of the protocol to more than two tags is achieved as follows. In the
first and second phases, the reader communicates with all tags concurrently. In the first
round of the third phase, the reader communicates only with the initiator tag; it commu-
nicates with all other tags concurrently in the second round; and again with the initiator
tag in the third round, providing it with concatenated answers from the second round.

In the protocol eachtagX uses its group keykAB to evaluatef(kAB ; rsys||c), where
f is a pseudo-random function and “||” denotes concatenation. This is parsed to get
numbersrX , sX of equal length, used to identify the parties of the group and prove
membership in the group. Tags use their secret key to confirm correctness of the proof.
The proof of simultaneous scanning isPAB = (rsys, IDAB , c, rA, sB , xA, xB). In our
protocol, it is possible for an authorized reader to know whether grouped tags were
actually scanned or not because, in the latter case, one or more of the tags would time-
out. This represents an improvement over the past protocols, in which the success or
failure of the yoking- or grouping-proof, could only be detected by the Verifier. This
protocol can be implemented very efficiently, with a footprint of fewer than 2000 Gate-
Equivalents. For a discussion on optimized implementations of pseudo-random func-
tions suitable for RFID applications, we refer the reader to [13].

Security analysis. The universal composability (UC) framework defines the security
of a protocol in terms of its simulatability by an idealized functionalityF (which can



be thought of as specifications of the achievable security goals for the protocol).F is a
trusted entity that can be invoked by using appropriate calls. We say that a protocolρ
UC-realizesF , if for any adversaryA, any real-world simulation ofρ in the presence
of A can be emulated by an ideal-world simulation in which the adversary invokesF ,
in such a way that no polynomial-time environmentZ can distinguish between the two
simulations. In ideal-world simulations, the adversary has access to all the outputs of
F , as in the real-world it can eavesdrop into all communications.

For our first protocol the functionalityFgroup comprises the behavior expected of a
grouping-proof. It is invoked by five calls:activate, initiate, link, complete, andverify.
The first call is used by the environmentZ to activate the system by instantiating the
Verifier, an authorized reader and some tags. Note that keys initially shared between
the Verifier and the tags are not under control of the adversary in this model—in the
UC model this is called a trusted setup. The second call is used by readers to initiate
an interrogation session, and corresponds to anrsys challenge, and by tags to declare
their group membership. The calllink, links the tags specified inactivate, and the call
initiate for tags gives their response to the reader’s challenge. The callcomplete is for
initiator tags and completes a proof: it corresponds toxA. The callverify can be used
to submit a putative proof transcript to the Verifier. The adversary can arbitrarily invoke
Fgroup and mediates between all parties involved in its interactions withFgroup.

All the outputs resulting from calls toFgroup, except for the tag calls that produce
identifiers, are random strings. The functionality keeps a record of every output string,
and uses these strings in the same way as the protocolρ uses the corresponding outputs.
Fgroup will only accept (verify) those proofs that it has generated itself during a partic-
ular session as a result of the activation of the system, the initiation and linking by an
authorized reader, the initiation of all the tags that belong to a particular group, and the
completion by an initiator tag (in this order). In the full version of this paper we shall
show that our first protocol UC-realizes theFgroup functionality.

4.2 A robust anonymous grouping-proof

For our second protocol, group identifiers are replaced by randomized group pseudonyms
psgroup. To protect against de-synchronization failure or attacks, one (or more in groups
of n > 2 tags) of the tags must maintain both a current and an earlier version of the
state of their pseudonyms. For this purpose all tags in agroup store in non-volatile
memory one or more values of a pseudo-random numberrtag.4 Initiator tags store only
the current value, while the other tags store two values,rold

tag, rcur
tag . These values are

used to compute the group pseudonym. Firstf(kgroup; rsys||rtag) is evaluated, where
rsys is the random challenge of the Verifier. Then, this is parsed to get two numbers
psgroup, cnf tag, of equal length, wherecnf tag is a confirmation used to authenticate
the pseudonym. Initiator tags compute one pseudonympsgroup; the other tags compute
two pseudonymspsold

group andpscur
group (in a similar way).

The tags ingroup update the value(s) of their group pseudonym(s) with each suc-
cessful execution of their part of the grouping protocol. The protocol is presented in

4 We usertag instead ofrgroup to distinguish between the actions of individual tags ingroup
during the execution of the protocol. The values of these numbers are the same for all tags in
group when the adversary is passive.



Fig. 2.A robust anonymous grouping-proof—for two tags

tagA(kAB , kA, rA) READER(rsys) tagB(kAB , kB , rold
B , rcur

B )

rsys� rsys -

Set timer Set timer

psAB ||cnf A ← f(kAB ; rsys, rA) psold
AB ||cnf old

B ← f(kAB ; rsys, rold
B )

pscur
AB ||cnf cur

A ← f(kAB ; rsys, rcur
B )

psAB - psold
AB , pscur

AB�

if psAB ∈ {psold
AB , pscur

AB} then linktagA, tagB

grouppsAB is linked� grouppsAB is linked-

if psAB 6∈{psold
AB , pscur

AB} then timeout

else ifpsAB =psj
AB

, j∈{old, cur}

thenxj
B
← f(kB ; rsys||psAB)

if j =old thenrcur
B ← psAB , if j =cur

then(rold
B , rcur

B )← (rcur
B , psAB)

cnf j
B� cnf j

B
, xj

B�
timeout

If cnf A = cnf j
B

then

rA ← psAB

xA ← f(kA; rsys||psAB)

xA -
timeout

PAB = (rsys, psAB , cnf j
B , xA, xj

B)

Fig. 2, wheretagA is the initiator and for simplicity we depict only one additional tag,
tagB . It is easy to see how this protocol can be extended to groups ofn > 2 tags. In
particular, the reader will link all the tags for which at least one pseudonym ispsgroup,
provided there aren such tags.

The Verifier keeps a databaseD = (rsys, {(ktag, kgroup, psgroup)}) that links, for
sessionrsys, the secret key of each tag to its group key and the group pseudonym
of the corresponding initiator tag. The pseudonyms are updated with each successful
execution of the protocol (using the next value ofrsys). The databaseD is also used
to optimize the performance of the protocol: if the adversary has not challenged the
tags ofgroup since their last interaction (e.g., via rogue readers), then the value of the
pseudonym inD will be the one that is actually used by the initiator tag, and therefore
the corresponding secret keys can be found directly (one lookup) and used to verify the
correctness of the authenticatorxtag of the initiator tag. The secret keys of the other
tags ingroup can be found in the databaseD from the group keykgroup, and used
to verify the correctness of their authenticators. If no value inD corresponds to the
pseudonym used by the initiator tag then the Verifier will have to find the secret key of
the initiator from its authenticatorxtag = f(ktag; rsys||psgroup) by exhaustive search
over all secret keys (of initiator tags). The pseudo-random numbersrtag are initialized



with random valuesrA: for the initiatortagA: rtag ← rA, while for all othertagX in
its group:(rold

X , rcur
X ) ← (rA, rA).

Observe that initiator tags respond with only one pseudonym and therefore can be
distinguished from other tags (which respond with two pseudonyms). There are several
ways to address this privacy issue, if it is of concern. One way is to assign to all tags
a pair of pseudonyms, and identify groups by selecting those sets of tags that have one
pseudonymps∗ in common. There will always be at least one tag in this set for which
pscur

group = ps∗. The reader elects an initiator tag among those tags sharing the common
pseudonym deterministically, probabilistically, or in some ad hoc way: e.g., the first to
respond. The reader informs the initiator tag of its selection and indicates to the other
tags which pseudonymps∗ is current. In this modification of the protocol all rounds are
executed concurrently.

As in the previous protocol, each step is essential. The main difference is that in
the anonymous protocol, the tags exchange pseudonymspsAB andpsold

AB , pscur
AB , rather

than a group identifier. The functionality provided by this step, however, is analogous
in the two protocols and enables the Verifier to identify the group.

It is important to notice that even though the values that the reader receives for each
completed round vary, if a malicious reader interrupts the session (round), preventing
the pseudonym update, and then re-usesrsys, it can link the two scannings. However,
the power of this attack is limited because a single round with a non-faulty reader at any
point will restore unlinkability. We shall refer to this property as,session unlinkability.
More formally we have:

Definition 1. An RFID protocol hassession unlinkabilityif, any adversary, given any
two tag interrogationsint1, int2, (not necessarily complete, or by authorized readers),
whereint1 takes place before5 int2, and a history of earlier interrogations, cannot
decide (with probability better than 0.5 +ε, ε negligible) whether these involve the same
tag or not, provided that either:

– The interrogationint1 completed normally (successfully), or
– An interrogation of the tag involved inint1 completed successfully afterint1 and

beforeint2.

Security analysis. The functionalityFsa group of our second protocol comprises the
behavior expected of an anonymous grouping-proof with session unlinkability. The
functionalityFsa group is that same asFgroup except that:

1. The outputs of all its invocations are random numbers, including tag identifiers.
2. If a tag is initiated with the same reader challenge in a session, as in an earlier

session that it was not allowed to complete (and no sessions with this tag completed
in the interim), thenFsa group will output identical values.

This means that the adversary can link the (uncompleted) scannings throughout a given
session. However in the next session,Fsa group will use a different (random) number,

5 A temporal relationship, as observed by the adversary. Note that if the adversary observes two
interrogations overlapping in time, it can certainly assert that they do not belong to the same
tag, since tags are currently technologically limited to single-threaded execution.



Fig. 3.An anonymous grouping-proof with forward-secrecy—for two tags
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so linkability does not extend to any other sessions. In the full version of this paper we
shall show that our second protocol UC-realizes theFsa group functionality.

Notice that our second protocol is not able to provide forward-security: secrecy is
no longer guaranteed if the secret keys are compromised.

4.3 A robust grouping-proof with forward-secrecy

In our last protocol—see Fig.3, the secret keys and the group keys of tags are updated
after each protocol execution for forward-secrecy. All tags, including initiator tags, store
two pairs of keys: group keyski

group and secret keyski
tag, i ∈ {old, cur}, as well as a

pair of random numbersri
tag, i ∈ {old, cur}. The Verifier stores in a databaseD the

current values(rsys, {(kt
tag, k

t
group, pst

group), t∈{old, cur}}): this allows it to link the
values of the keys of each tag to the corresponding group pseudonym. At the end of each



rsys challenge session, the entries inD of all tags in the groups for which the reader
has returned a valid proofPgroup are updated:(kt

tag, k
t
group, pst

group) ← (yt, ut, rt),
t ∈ {old, cur}, using the equal-length parsingsf(kt

group; rsys||rt
tag) = rt||st||ut||vt

andf(kt
tag; rsys||rt) = xt||yt (the use of the other parsed values is explained below).

Since there are no non-volatile values to anchor the key and pseudonym updates to,
we shall use the update chain itself as an anchor. This means that the state of the tags
and the Verifier must be synchronized. In particular the adversary should not be able
to manipulate valid group scans so as to de-synchronize the system. There are several
ways in which this can be achieved. The solution we propose is to have the Verifier
(a trusted party) give all authorized readers a tableD̂ = (rsys, {(pst

group, v
t
group), t∈

{old, cur}}) whose values can be used to authenticate authorized readers to tags. The
entries in this table are obtained by parsingf(kt

group; rsys, r
t
tag) = rt||st||ut||vt as

above, and assigning:(pst
group, v

t
group)← (rt, vt), t∈{old, cur}. In this case however

thenextvalue of the challengersys is used in the evaluation off . The values inD̂ are
updated forall groups in the system, at the beginning of eachnewrsys session.

The protocol is given in Fig. 3 for two tags,tagA, tagB , with tagA the initiator. In
this protocol, adversarial readers cannot disable tags permanently by de-synchronizing
them from the Verifier, because the tags discard old key valueskold

group, k
old
tag, r

old
tag only

after the Verifier has confirmed that it has updated its corresponding values. More
specifically, if the reader is not adversarial, thenpscur

AB = pscur
A = pscur

B , and the
tags will update both current and old key and number values. If the reader is adversarial
and has not returned the proofPAB thenpscur

AB 6= pscur
A , or pscur

B , and the updates will
not affect old values, which therefore remain the same as those stored in the database
D̂. The state of the tags will only return to stable when an authorized reader returns a
valid proof to the Verifier. Note that due to the state synchronization requirements, the
protocol in Fig. 3 can only be implemented in online batch mode, not true offline mode.
In the full paper, we discuss the batch offline case.

Forward-secrecy applies to periods during which the groups of tags are scanned by
authorized readers that are not faulty. More specifically, a group of tags that is compro-
mised can be traced back to the first interaction after the last non-faulty scanning ses-
sion, and no further. We shall refer to this property as,forward session-secrecy. More
formally we have:

Definition 2. An RFID protocol hasforward session-secrecyif session unlinkability
holds for all sessionsint1 andint2 as in Defn. 1, provided that eitherint1 successfully
completed prior to the corresponding tag(s) being compromised, or that a later session
of the tag(s) involved inint1 completed successfully prior to its (their) compromise.

Security analysis. The functionalityFfss group of our third protocol comprises the
behavior expected of an anonymous grouping-proof with forward session-secrecy. The
functionalityFfss group models key compromise, that is it allows for adaptive corrup-
tion. Otherwise it is similar toFsa group. This means that the adversary can link in-
complete scannings of non-compromised tags throughout a given session, but that this
does not extend to other sessions. In the full version of this paper we shall show that
our third protocol UC-realizes theFfss group functionality.



5 Conclusion

Our main contribution in this paper is to present a security model for the group scan-
ning problem. In previous work, this application has been described at relatively infor-
mal levels, making it difficult to provide side-to-side comparisons between alternative
proposals. We have proposed three grouping-proofs that are provably secure in a very
strong setting that guarantees security under concurrent executions and provides for
safe re-use as a building block for more complex protocols. These proofs are also prac-
tically feasible, requiring only pseudo-random functions, which can be instantiated very
efficiently in integrated circuits using a variety of primitives as a starting point, such as
pseudo-random number generators or block ciphers.
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