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Abstract. In this paper we describe the first implementation on smart-
card of the code-based authentication protocol proposed by Stern at
Crypto’93 and we give a securization of the scheme against side channel
attacks. On the whole, this provides a secure implementation of a very
practical authentication (and possibly signature) scheme which is mostly
attractive for light-weight cryptography.

1 Introduction

While Cryptography aims at preventing persons from cheating, Coding The-
ory has been originally designed to prevent accidental errors coming from the
imperfections of the transmission systems (e.g. phone lines, microwaves, satellite
communications, CDs, etc.). Nowadays, it studies more generally how to protect
information transiting over unperfect channels from alterations. The core idea
is to send over the channel more data than the initial amount of information
to convey. The added information, usually called redundancy, is structured in
such a way that it is possible to detect and (eventually) to correct almost all the
errors that could occur during the data transmission.

After a first scheme proposed by McEliece in 1978 using error-correcting
codes for encryption, the idea of using error-correcting codes for authentication
purposes was due to Harari, followed by Stern (first protocol) and Girault. The
protocols of Harari and Girault were subsequently broken, while Stern’s one
was five-pass and unpractical. Eventually, the first practical and secure protocol
based on error-correcting codes was proposed by Stern at Crypto’93 [15]. This
zero-knowledge authentication protocol is based on an error-correcting codes
problem usually referred as the Syndrome Decoding (SD in short) Problem.
Stern’s protocol is a Fiat-Shamir-like protocol but with a cheating probability of
2/3 rather than 1/2 for Fiat-Shamir. It is hence considered as a good alternative
to the numerous authentication schemes whose security relies on classical number
theory problems such as the factorization or the discrete logarithm problems.



Although the Stern Scheme was proposed almost 15 years ago, it has (as far
as we know) never been implemented on smart card until now. This is merely due
to the usual drawback of code-based systems: the size of the public data is large.
Indeed, since the prover and the verifier have to know a large random matrix
with at least 100-kbits, it is hard to use the scheme on devices with low resources
such as smart cards or RFID tags. This drawback has been recently solved by
Gaborit and Girault in [2] where they propose to use the parity check matrix
of a random quasi-cyclic code rather than a pure random matrix. This solution
permits to preserve the security of the scheme and decreases the description of
the random matrix to only a few hundred bits. This new advance opens the door
to the use of the Stern protocol in devices with low resources.

Contribution In this paper we give for the first time a precise description of
the implementation of Stern’s Protocol (which is very different from the classi-
cal number-theory based protocols) and we show how to protect the main steps
of the algorithm against side channels attacks. Eventually, we obtain for our
implementation an authentication in 6 seconds and a signature in 24 seconds,
both without any crypto-processor. This is a promising result when compared
to an RSA implementation which would take more than 30 seconds in a similar
context without crypto-processor. Stern’s Protocol may have a natural applica-
tion in contexts where the time constraints are not tight such as: authentication
for pay-TV or authentication for counterfeiting of expensive goods (e.g. ink car-
tridges of copy machines or expensive clothes). Besides this, the protocol has
also the 4 following advantages :

1) it can be an alternative to the number-theory based protocols in case a puta-
tive quantum computer may exist;

2) since it essentially involves linear operations, the protocol seems easier to pro-
tect against side channel attacks than the number-theory based protocols;

3) the linear operations (scalar products or bit-permutations) are easy to imple-
ment in hardware and are very efficient in this context;

4) the secret key is smaller than the one of the other protocols (a few hundred
bits) for the same security level.

Organisation of the paper The paper is organized as follows. In Section
2, we describe Stern’s Authentication and Signature schemes and we precise the
four main steps of the implementation. In Section 3, we present the side channel
attacks in the coding theory context and in Section 4 we propose a secure version
of our implementation against side channel attacks. In Section 5, we comment
the implementation and eventually we conclude.

2 Stern Authentication Scheme

2.1 Basic Scheme

Stern’s Scheme (see [15] for more details) is an interactive zero-knowledge
protocol which aims at enabling any user (usually called the prover P) to identify
himself to another one (usually called the verifier V). Let n and k be two integers
such that n > k. Stern’s Scheme assumes the existence of a public (n — k) x n



matrix H defined over the field 5 and the choice of an integer ¢ < n. The matrix
H and the weight t are protocol parameters and may be used by several (even
numerous) different provers.

Each prover P receives a n-bit secret key sp (also denoted by s if there
is no ambiguity about the prover) of Hamming weight ¢ and computes a public
identifier iy such that iy = H S;. This identifier is calculated once in the lifetime
of H and can thus be used for several authentications. A user P can prove to
V' that he is the person associated to the public identifier iy, by performing the
following protocol, (for h a standard hash function):

1. [Commitment Step] P randomly chooses y € F" and a permutation o defined
over 5. Then P sends to V the commitments ¢1, ¢z and ¢z such that :

1 = h(o|Hy"); c2=h(o(y)); s =h(o(y®s)),

where h(a|b) denotes the hash of the concatenation of the sequences a and b.
[Challenge Step] V sends b € {0,1,2} to P.
[Answer Step] Three possibilities:
— if b=0: P reveals y and o.
— ifb=1: P reveals (y @ s) and o.
— if b=2: P reveals o(y) and o(s).
4. [Verification Step] Three possibilities:
— if b=0: V verifies that c1, c2 have been honestly calculated.
— if b=1:V verifies that c1, cs have been honestly calculated.
— if b = 2 : V verifies that cz2,c3 have been honestly calculated, and that the
weight of o(s) is t.
5. Iterate the steps 1,2,3,4 until the expected security level is reached.

W

Fig. 1. Stern’s Protocol

Based on the difficulty of the SD problem, it is proven that the protocol
is zero-knowledge with a probability of cheating of (2/3) for one round. An
appropriate confidence level is reached by repetition of the protocol.

Remark 1. By using the so-called Fiat-Shamir Paradigm [1], it is theoretically
possible to convert Stern’s Protocol into a signature scheme, but then the sig-
nature is very long: about 140-kbit long for 28 security.

Despite the advantages of the protocol (it can be an alternative to number
theory based protocol, it is fast and it uses simple linear operations), Stern’s
Scheme has rarely been used since its publication in 1993. Indeed, the scheme
presents the two following drawbacks, which together makes it unpracticable in
many applications: 1) many rounds are required (typically 28 if we want the
cheater success probability to be less than 2716), 2) the public key element His
very large (typically 150-kbit long).

The first point is inherent to interactive protocols and in some situations,
it does not really constitute a drawback. For instance, if the prover and the



verifier entities can be connected during a long period, then authentication can
be achieved gradually. In this case the entire authentication process is performed
by executing, time to time during a prescribed period (e.g. one hour), an iteration
of Algorithm 2.1 until the expected level of security is reached. Such kind of
gradual authentication may be of practical interest in pay TV or in systems where
a machine (e.g. a copy machine or a coffee dispenser) wants to authenticate a
physical resource (e.g. an ink or a coffee cartridge).

The second drawback has been recently considered by Gaborit and Girault
in [2]. We recall the outlines of their approach in the next section.

2.2 Alternative Scheme Based on Quasi-cyclic Codes

The idea of [2] is to replace the random matrix H by the parity matrix of a
particular type of codes whose representation is very compact: the quasi-cyclic
codes. Let [ be an integer value, the parity matrix H of a [2l,],] quasi-cyclic
code takes the form H = (I|A), where I denotes the [ x [ identity matrix and A
is a circulant matriz, that is a matrix defined for every (a1, as,as,--- ,a;) € F

by:

aip az ag --- a
ap ay az --- Qp—1

az a3 Qq -+ 41

As it can be easily checked, representing H does not require to store all the
coefficients of the matrix (as it is the case in the original Stern’s Scheme) but
requires only the [-bit vector (a1, az,as, - ,a;) (which is the first row of A).
Let n equal 2[, when replacing the random matrix by a random double-circulant
one, the parameter sizes of Stern’s Scheme become:

Private data: the secret s of bit-length n.

Public data: the public syndrome iy of size § and the first row of A of size
5, which results in n bits.

It is explained in [2] that for this kind of matrices it is enough to take [ =
347 and ¢ = 74 (and hence n = 694). As the new version of Stern’s Scheme
involves parameters with small sizes and continues to use only elementary logical
operations, it becomes highly attractive for light-weight implementations. This
is especially true for environments where memory (RAM, PROM, etc.) is a rare
resource. The version of Stern Scheme discussed in the rest of the paper involves
a 5 x n double circulant matrices.

2.3 Main Operators

A quick analysis of Stern’s Protocol shows that the different steps are merely
composed of the four following main operators:

Matrix-vector product: the multiplication of a vector by a random double
circulant matrix;



Hash function: the action of a hash function;

Permutation: the generation and the action of a random permutation on words;

PRNG: a pseudo-random generator used to generate random permutations and
random vectors.

By using quasi-cyclic codes, it becomes possible to implement the prover
application of Stern’s Scheme in an embedded device (as e.g. a smartcard).
However, being implemented in a low resource device, the prover application
becomes vulnerable to side-channel attacks and appropriate countermeasures
must therefore be added. In the two following sections, we discuss about the
problematic of side-channel attacks in our context and then, we precise for each
of the above operators a way to implement it and how to protect it against
side-channel attacks.

3 Side-channel Attacks

Side-channel attacks aim at recovering information about sensitive variables
appearing in the description of the algorithm under attack. We shall say that a
variable is sensitive if it is a function of both public data and of a secret (resp.
private) parameter of the algorithm.

In the protocol we described in Fig. 1, we only want to implement Steps 1
and 3 (the ones that rely on the prover) in an embedded device. The other Steps
2 and 4 (that rely on the verifier) may indeed be performed on a PC. For Steps
1 and 3, we have the following list of sensitive variables that can be potentially
targeted by SCA:

Threat A. the random vector y in the computations of ¢; (when performing
HyT) and of ¢, (when performing o(y)): if an attacker is able to retrieve y
during one of these steps, then with a probability 1/3 he is able to recover s
when A answers y @ s to the (b = 1)-challenge.

Threat B. the private vector s during the computation o(s): in this case the
attacker recovers A’s private parameter.

Threat C. the private vector s during the computation o(y @ s): in this case
the attacker recovers A’s private parameter.

Threat D. the bit-permutation o during the computation of o(s) or o(y @ s):
if an attacker is able to retrieve o during one of these steps, then with a
probability 1/3 he is able to recover s when A answers o(s) to the (b = 2)-
challenge.

Threat E. the bit-permutation ¢ during the computation of the hash value
h(o|Hy™): if an attacker is able to retrieve o, then with a probability 1/3 he
is able to recover s when A answers o(s) to the (b = 2)-challenge.

Remark 2. When looking for sensitive variables in Fig. 1, we have assumed that
the analysis of the device behavior during the storage or the loading of a data
does not bring useful information about it. In other terms, we made the classical
assumption that information about a data only leaks from calculus involving it



(and eventually other public information) and that data manipulations them-
selves do not leak enough information on current devices.

To retrieve information about the sensitive data listed above, we assume
in the rest of the paper that the SCA adversary can only perform an attack
belonging to one of the following three categories:

1. The so-called timing attacks consist in analyzing the time taken to execute
cryptographic algorithms.

2. The so-called simple analysis attacks (SPA in short) are on-line attacks
that consist in directly interpreting power consumption measurements and
in identifying the execution sequence.

3. The so-called correlation attacks (DPA in short) work as greedy algorithms:
the side-channel information is analyzed by statistical means until the secrets
are extracted.

It may be noticed that other categories of SCA attacks exist as for instance
the templates or the Higher Order SCA ones. We chose to not consider these
attacks for our implementation since they rely on a much stronger (and hence
less realistic) adversary than the ones involved in the attacks listed above. For
more details about SCA, the reader is referred to [7].

Let us now present the outlines of the defense strategy we shall apply to
protect the implementation of the algorithm described in Fig. 1.

Defense Strategy To deal with timings attacks issue, both hardware and soft-
ware countermeasures are usually involved simultaneously. At the software level,
a classical defense strategy consists in implementing all the operations involving
sensitive data in a way that does not depend on the data value (for instance
methods based on conditional branches are precluded). We chose to follow this
strategy for all the operations that are susceptible to manipulate sensitive data.

The most common way of thwarting SPA and DPA involves random values
(called masks) to de-correlate the leakage signal from the sensitive data which
are manipulated. This protection method is usually called first order masking.
It has been argued in several recent papers (e.g. [3,9,14]) that this method is
sound (when combined with usual hardware protections) to protect an algorithm
against SPA and all kinds of first order DPA.

In a first order masking of an algorithm, every sensitive variable y appearing
in the algorithm is never directly manipulated by the device and is represented by
2 values y (the masked data) and M (the mask). To ensure the DPA-resistance,
the mask M takes random values and to ensure completeness, ¥y satisfies

y=yeM . (1)

Since y is sensitive, every function S of y is also sensitive as long as .S is known
by the attacker. Let z denote this new sensitive value S(y). To mask the pro-
cessing of z without revealing information on y, two new values zZ and N must



be computed from (g, M) (which represents y in the implementation) in such a
way that
ZON=2z=5() . (2)

The critical point of such a method is to deduce the new pair of (masked
value)/mask (2, N) from the previous pair (y, M) without compromising the
security of the scheme with respect to first order DPA. This problem is usually
referred as the mask correction Problem.

When S is linear, it can be resolved very efficiently since we have:

z=8y)=SyeMaeM)==Sy) &SM) , (3)

Hence, we simply have to define Z and N such that Z = S(y) and N = S(M).

Dealing with the mask correction Problem when S is non-linear is much more
difficult. Numerous papers have been published which aim to tackle this issue
(an overview of the existing methods is proposed in [14]). As argued in [14], when
the input and output dimensions n and m of the function S are small, then the
so-called Re-computation method (REC in short) is the most appropriate one
since it only requires one memory transfer and the pre-processing of a RAM
table of 2™ elements (one time per algorithm execution):

Re-computation method. Let M and N be two random variables and let
us assumed that the RAM look-up table S* associated to the function y —
S(y@®M)® N has be pre-processed. Then, to compute S(y)®N from § = yH M,
the REC method performs a single operation: the table look-up S*[g].

As we will see in the next sections, applying first order masking to Stern’s
Protocol induces only a very small timing overhead and an acceptable memory
overhead, since almost all the performed operations are linear (and thus Relation
(3) applies most of the time). Moreover, for the few non-linear operations that
must be protected (in particular when the bit-permutation ¢ is computed), we
can apply efficiently the REC method since the dimensions of the involved sub-
functions are small.

4 Algorithm Specification

In this following, we focus on the four operators defined in Section 2. For
each of them, we exhibit an efficient implementation and we discuss about how
to protect it effectively against SPA and DPA.

4.1 Matrix-vector Product

Algorithm Description For a Quasi-cyclic Matrix When double-circulant
matrices are involved, very efficient algorithms exist to compute the matrix-
vector product. In the following, we detail the computation of the product Hxv
between the 4 x n double-circulant matrix H= (I|A) and the n-bit vector v. In
our description, we shall denote by matrixz the 5 —bit row vector of A and by
result an F-bit temporary vector. Also, we shall denote by |reg| the number of



bits contained in a register of the processor and by nblocs the number of blocs in
matriz: nblocs = [m] Additionally, we will denote by vy, (resp. by vg) the
least significant half part of v (resp. the most significant half part of v): namely,

we have vg, = (v, -+ ,Vy2) and vgp = (U241, ,Vn)-

Algorithm 1 Quasi cyclic matrix vector product
INPUT: matriz = H v,|reg|
OuTPUT: result = HvT

1. for i from 1 to § do result[i] = vr[i]; // initialisation with the first half of the vector
2. for i from 1 to |reg| do

3. if i > 1; vg is rotated of one bit to the left;

4. for j from 1 to |nblocs| do

5. if the i-th bit of matriz[j] == 1; // add vr to the result beginning with the jth bloc
6. br=1

7. for jj from j to |nblocs| do

8. resultlbr] = resultbr] @ vr[jjl;br = br + 1;

9. for jj from 1toj—1

10. result[br] = result[br] ® vr[jj]; br = br + 1;

11. return result

SCA-Security Discussion As argued in Section 3, information about the
sensitive data y may leak during the matrix-vector product H y? (Threat A)
and a first order masking must thus be applied. As this product is linear for
the bitwise addition and due to (3), masking the calculus is straightforward and
implies an acceptable timing/memory overhead.

Before computing result = Efyt7 the vector y is masked with a n-bit mask M
(randomly generated). Then Algorithm 1 is input with matriz (i.e. the first row
of A) and § = y@® M. The corresponding output is H{' = result ® N, where we
denoted by N the value HM". As all the coordinate-bits of y are masked with
a uniformly distributed random value, the SPA or the first order DPA analysis
of the matrix-vector product does not bring information about y. To make the
future unmasking of § possible, a second matrix-vector product N = HMT is
performed and stored in memory together with g.

Complexity Discussion : Secure Version For a quasi-cyclic matrix of size

5 xn whose first row is of weight p+1, the following steps have to be undertaken:

— masking the matrix § =y & M.

— computing Hi' = result & N, where N = HM?".

— a second matrix-vector product N = HM7 is performed and stored in mem-
ory together with g. ~

— extract and test the n/2 bits of the matrix first row for the product H 7t

— extract and test the n/2 bits of the matrix first row for the product HM?*

— [5o=2——] binary-shifts of the vector g

2X |register|



~ [ 3xfregrster | binary-shifts of the vector M
gister|
— 2p x (W} registers to be added to the two results

The secure version requires two products matrix vector one for the mask and
one for the product to determine. The cost is therefore around the double of the
one of the non-secure version.

4.2 Hash Function

To counteract Threat E, the Stern Protocol Implementation must involve a
hash function implementation that is secure against first order DPA. Until now,
the securing of hash function implementations against SCA has been rarely fo-
cused, essentially because these functions usually operate on non-sensitive (often
public) data. However, Lemke et al. [4] or McEvoy et al. [8] have shown that,
in some applications like HMAC authentication, mounting DPA attacks against
hash functions makes sense when secret (or private) data have to be hashed to-
gether with public data. In [8], the authors exhibit a way to protect an hardware
implementation of the hash function SHA-256 against first order DPA. In the
rest of this section, we will assume that the device on which is implemented the
Stern Protocol possesses such a secure hardware implementation of SHA-256. It
may be noticed that the masking method used by McEvoy et al. for hardware
implementations may also be followed to design a masked software implemen-
tation of SHA-256. However, in this case, the timing and memory overheads
become too large. Actually, if the device does not have a secure SHA-256 im-
plementation, it may be pertinent to use a hash function based on block cipher
constructions (the State of the Art of hash functions published by Preneel in
[13] give several examples of such functions). Indeed, in such a case the hash
function can inherit the DPA-security from the involved block cipher algorithm
and the nowadays embedded devices possess almost always a DES Hardware
and sometimes an AES Hardware that include anti-DPA mechanisms. In the
case where neither secure hash function nor secure block cipher algorithms are
implemented in the device, then it is always possible to use one of the numerous
DES or AES DPA-secure software implementations proposed in the Literature
(see for instance [9,14]) and to involve them in a hash function based on block
ciphers (like for instance MDC-4).

Remark 3. For a hash function to provide a satisfying security, the bit-length
of the hash values it produces must be at least 160. When using hash functions
based on block ciphers, it may be difficult to get hash values of such a bit-length.
In this case, a solution may be to concatenate several output blocks until the
bit-length 160 is achieved or exceeded and, if necessary, to truncate in order to
get a length of exactly 160 bits (for instance two AES ciphering will result in
256 bits which can be truncated to 160 bits).

Algorithm Description : Secure Hardware Implementation of SHA-256
In [8], McEvoy et al. describe a first order masked hardware implementation of



the HMAC algorithm based on SHA-256. Using an implementation on a com-
mercial FPGA board, they present a masked hardware implementation of the
algorithm, which is designed to counteract first-order DPA attacks.

SCA-Security Discussion In [8], the resistance of the SHA-256 implementa-
tion is formally analyzed and demonstrated.

Complexity Discussion It is shown in [8] that the processor and the interface
circuitry corresponding to the masked SHA-256 utilize 1734 slices (37% of the
FPGA resources) and that the critical path in the design (i.e. the longest com-
binational path) is 18.6. As argued in [8], the area has almost doubled compared
with the unprotected implementation but the speed has not been overly affected.

4.3 Permutation Method

Defining a vectorial permutation o over F} (like the one used in Figure 1)
amounts to define an index permutation ¢ over {0,---,n — 1} such that for
every y = (y[0],--- ,y[n — 1]) € F3 we have o(y) = (y[¢:(0)],- -, y[t(n — 1)]).
In this paper, we chose to design the permutation v by following the approach
suggested by Luby and Rackoff in [5,6] and improved in [10,12]. The core idea
of this approach is to involve a few pseudo random functions in a Feistel Scheme.
As argued by the authors in [10,12], such a method makes it possible to design
random permutations very efficiently since only a few Feistel rounds are needed
and since the input/output dimensions of the involved functions are more or less
logarithmic in the size of the words on which the permutation operates.

Let us first recall some basic facts about the so-called Luby-Rackoff schemes.

Luby-Rackoff’s Scheme For every function f defined from F} into FZ*, the
Feistel round involving f, denoted by ¢(f), is defined for every pair (L,R) €
Fo* x T by ¢(f)[L,R] = [R,L ® f(R)]. The composition of k Feistel rounds,
that is the function ¢¥(fx) o ... 0 9(f1), is denoted by ¥(f1,..., fr) or by ¥ in
short if there is no ambiguity about the involved functions.

If f and g are two randomly generated independent functions defined from
FZ3* into itself, then it has been argued in [10, 12] that the function ¢(g, f,g, f) is
indistinguishable from an uniform distribution by an observer, even if the latter
has access to the inverse permutation. As a consequence, to design an index-
permutation ¢ over {0,---,2%™ — 1} (and thus a vectorial bit-permutation o
over FY with log,(n) = 2m), we simply need to generate the two independent
random functions f and g.

Once the Luby-Rackoff scheme has been designed for two functions f and g,
there are merely two strategies to compute the bit-permutations o(y), o(y @ s)
and eventually o(s) in Stern’s Protocol. The fist one consists in pre-computing
(i) for every i < n and then to store the sequence (¢(i));<, as a representa-
tion of o. In this case, each time o must be applied to a vector, then its table



representation is accessed n times (one time for each bit-index). This strategy
requires the RAM allocation of n x [log,(n)] bits, which is quite expensive in a
low resource context. The second strategy consists in computing (¢(¢));<» each
time one needs to determine the bit index corresponding to ¢ in ¢. This strategy,
which has been chosen for our implementation, is more time consuming than the
previous one but it does not require any RAM allocation.

By construction, Luby-Rackoff Scheme only permits to construct index per-
mutations 1 such that n is a power of 2. Since the size parameter n we consider
for Stern’s Scheme is 347 (see Section 2), we couldn’t use Luby-Rackoff Scheme
straightforwardly, but a slightly modified version of it.

Algorithm Description In Section 2 we argued that the parameters size (of s
and y) should be at least n = 694 = 2 x 347. Let m denote the value [log,(n)]/2.
To implement a permutation on vectors of any bit-length n such that [logy(n)]
is even, we suggest hereafter to randomly generate two functions f and g defined
from F5* into itself and to use the Luby-Rackoff Scheme in the following way:

Algorithm 2 Bit-permutation for any n such that [log,(n)] is even

INPUT: the vector v to permute, the bit-length n of v, the value n’ = 20821 45
Luby-Rackoff Scheme (g, f, g, f) with f and g defined from F£10g2(n)]/2 into itself.
OUTPUT: the vector result = o(v)

1. for i from Oton' —1 do T[i] « 0

2. for i from 0 to n’ — 1 do

3. new_index — (i); result[new_index] — v[i]; T[new_index] — 1;
4. j «—n;

5. for i from 0 ton—1 do

6. if (T[:] =0)

7. while (T[j]=0) do j < j+1;
8. resulti] — result[j]; j—j+1
9

. return result

Remark 4. Table T needs to be computed only one time per each permutation
0. Once computed, it can be used for all the permutation involving o.

In Algorithm 2, each iteration of the second loop computes the bit-index
new_index in result where to store the bit-value v[i]. During this processing,
Table T keeps trace of the result bit-coordinates that are updated during this
process. When the loop is ended, a third loop is iterated to fill the bit-coordinate
of index i < n that has not been initialized by the second loop (which are the
ones such that T[i] = 0), with the bit-coordinates of index n < j < n/ that has
been initialized (which are such that T'[j] = 1).



SCA-Security Discussion In order to thwart Threats C and D (see Section
3), we chose to mask the computations of o and . Since o is at most used
3 times before being re-generated, it may be targeted by SPA attack but does
not suffer from DPA. The linearity of o makes it easy to mask its processing:
we mask the input y with a random mask M (which results in a masked input
g =1y @ M) and we unmask the output o(g) by simply x-oring it with o(M).

In Algorithm 2, the same function v is applied 27" times on known input
before being re-generated. It can thus be targeted by DPA attacks. To counter-
act them, we chose to mask the intermediate variables that appear during the
processing of ¥ and to apply the REC method to deal with the mask correc-
tion problem when the functions f and g are used. Each time new functions
f and g are generated (thus defining a new function ), we generate two ran-
dom masks r,s € Fy’* and we define two new functions f* and g¢g* such that
[ (x) = flzrdr)@s and g*(z) = g(x @ s) ® r. We describe the normal and
secure processing of ¢ in Figure 2.

Fig. 2. Luby Rackoff permutation - unsecure and secure versions.
Complexity Discussion The function @ must be re-generated at each ex-
ecution of Algorithm 2. This requires the generation of 2 x m x 2™ random
bits to define the functions f and g. The un-secure processing of ¢ involves 4
look-up tables and 4 bitwise m-bit additions. Its secure processing requires the
pre-computation of the new RAM lookup-tables f* and ¢g* (with complexity
0(2™)) and 8 additional bitwise m-bit additions (4 for the mask correction and
2% 2 for the masking /unmasking of the input/output) compared to the un-secure
calculus.

Algorithm 2 involves two n’-bit local variables T and result. It processes n’
times the function 1 and executes two loops involving around respectively 2 x n’
and 4 x n/ elementary operations. This results, for the o processing, in 14n’ =
8xn'+2xn'+4xn’ elementary operations and in the generation of 2 x m x 2™
random bits for the processing of ¢ without any SCA countermeasure. In the



SCA-secure mode, the processing of o requires 22n’ = (84+8) xn'+2xn'+4xn’
elementary operations and the generation of 2 x m x 2" random bits for f and
g, one n-bit vectors M to mask the input y of o and one 2m-bit vector (m,., m;)
to mask all the input of 1. To make the final unmasking of o(y @ M) possible,
the vector o(M) must also be computed, which adds 22n’ elementary operations
(note that the mask (m,,m;) does not need to be re-generated to protect the
processing of ¢ for o(M)). Finally, we get for the secure processing in the secure
mode, around 44n’ (i.e. 44 x 2[1°82(")1) elementary operations and the generation
of n+2 x m x 2™ +2m random bits (i.e. n+ [logy(n)] x 2M1°82(M1/2 4 [log, (n)]).

Ezample 1. For the choice of parameter size done in Section 2 (i.e. n = 694), we
have m = [log,(n)]/2 = [log,(694)]/2 = 5 and n’ = 2M°g2("1 = 210 — 1024, In
such a case, the processing of ¢ without any security requires around 14 x 103 &
14 % 1024 elementary operations and the generation of 320 = 10 x 32 random
bits. In the SCA-secure mode, it requires around 45 x 103 ~ 44 %1024 elementary
operations and the generation of 1024 = 694 + 10 x 32 + 10 random bits.

Ezample 2. For n = 512 (which is the choice of parameter size done in Section
5), the processing of o without any security requires around 7 x 10% a~ 14 x 512
elementary operations and the generation of 224 = 4 x 2* + 5 x 2° random bits
(note that in this case, since log,(512) = 9 is odd, the functions f and g cannot
have the same dimensions and we chose f being from F3 into F5 and g being
from 3 into F3). In the SCA-secure mode, it requires around 22 x 10% a2 44 %512
elementary operations and the generation of around 450 random bits.

4.4 Pseudorandom Generator

We need a pseudorandom generator to construct the seed of the code and the
permutation. Nowadays, most of the pseudo-random generators used in commer-
cial applications are either based on stream cipher or on block cipher algorithms.
Hardware implementations of stream cipher are often faster than the ones of
block ciphers. However, there are only available in some specific devices (and
are for instance not available in most of the smart cards), whereas block ciphers
algorithms such as DES or AES are almost systematically implemented in hard-
ware. We consider that the Pseudo Random Number Generator (PRNG) that
we will use to generate the seed is not biased and secure against SPA and DPA
attacks. In [11], the author present a block cipher-based PRNG secure against
side-channel key recovery.

5 Implementation

5.1 Experimental Results

We have realized the implementation of Stern Authentication with double
circulant matrices for [ = 256 (i.e. n = 512) on a 8051-architecture without
crypto-processor nor hardware SHA-256, and with a CPU running at 12 MHz.



Time for 1 round Time (ms)
PRNG (vector y, function f and g) 16.7
Matrix-vector product 22.0
Permutations (and an xor) 22.6
Hash function (SHA-256) 107.6
lTotal for one round [ 168.9 ‘
[Authentication (35 rounds) | 59115 |

Table 1. Performances of the implementation

Remark 5. Timing performances given in Table 1 do not take the communication
cost into account. This choice has been made because the transmission rate
highly depends on the application type. For instance, the today VISA norm
imposes 9600 bauds (which is quite low), whereas the nowadays technologies
make it possible to have 110000 bauds for transmission rate.

We obtain an authentication in ~ 6 seconds and a signature in ~ 24 seconds
for a security of 28°. The communication cost is around 40-kbits in the authenti-
cation scheme and around 140-kbits for the signature. It must be noticed that the
timing performances would be highly improved by using a hardware SHA-256
instead of a software implementation.

The implementation detailed above doesn’t include SCA countermeasures.
According to the study conducted in Section 4, the timing/memory overhead
expected after securization is around (x3). This value is really small compared
for instance to a secure software version of the AES where the overhead is around
x10.

6 Conclusion and Future Work

We have described in this paper the first implementation of Stern protocol
on smart card (in fact it is also more generally the first code-based system
implemented on smart-card with usual resources). For a satisfying security level,
the size of the public key is only 694 bits using a quasi cyclic representation
of the matrix considered. The double-circulant matrices are a good trade-off
between random and strongly structured matrices. In this case the operations
are indeed really simple to perform and can be implemented easily in hardware.
Moreover, the fact that the protocol essentially performs linear operations makes
the algorithm easy to protect against side channel attacks. We thus think that the
protocol is a new option to carry out fast strong authentication on smart cards.
Additionally, we think that the use of a dedicated linear-algebra co-processor
should significantly improve the timing performances of our implementation.

Future work besides this one includes considering Fault injection attacks (this
was beyond the scope of this paper) and implementation of other variations
of Stern protocol which can have other small advantages (see [2]) for protocol
variations.
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