DSA Signature Scheme Immune to the Fault
Cryptanalysis

Maciej Nikodem

maciej.nikodem@pwr.wroc.pl

The Institute of Computer Engineering, Control and Robotics
Wroctaw University of Technology
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw, POLAND

Abstract. In this paper we analyse the Digital Signature Algorithm
(DSA) and its immunity to the fault cryptanalysis that takes advantage
of errors inducted into the private key a. The focus of our attention is
on the DSA scheme as it is a widely adopted by the research community,
it is known to be vulnerable to this type of attack, but neither sound
nor effective modifications to improve its immunity have been proposed.
In our paper we consider a new way of implementing the DSA that en-
hances its immunity in the presence of faults. Our proposal ensures that
inducting errors into the private key has no benefits since the attacker
cannot deduce any information about the private key given erroneous
signatures. The overhead of our proposal is similar to the overhead of
obvious countermeasure based on signature verification. However, our
modification generates fewer security issues.

1 Introduction

In recent years a variety of implementations based on tamper-proof devices (e.g.
smart cards) have been proposed in order to provide better support for data
protection. The main reason for this trend originate from the fact that such
devices are expected to be characterized by high reliability and security. This
is obtained thanks to their ability to perform complex arithmetical operations,
to control incoming and outgoing communication, and to prevent unauthorized
access. Cryptographic devices, on the other hand, are endangered by faults which
can compromise their security.

In 1997 Bao et al.[3] and Boneh et al.[6] showed that if faults occur when
the device performs cryptographic operation, then they may decrease security
and leak the key stored inside of the device. The described problem has been
presented for most of modern cryptographic algorithms such as the RSA en-
cryption and signature scheme, identification protocols, and signature schemes
based on the discreet logarithm problem (e.g. ElGamal, Schnorr, and DSA). The
same year, Biham and Shamir [4] demonstrated that secret key cryptosystems
are vulnerable to the fault cryptanalysis as well.

Since 1997, many researchers have been investigating the problem of fault
cryptanalysis, in an effort to discover methods of enhancing security of different

cryptographic schemes. However, a handful solutions have been proposed only
for the RSA algorithm [2,12,21] and symmetric key cryptosystems [9,10,13].
Less attention has been paid to signature schemes, of which security is based on
the Discrete Logarithm Problem (DLP).

All of existing solutions can be divided into three groups:

— fault prevention,
— error detection and error correction,
— error diffusion, also refereed to as ineffective computation [21].

The main purpose of using fault prevention techniques is to minimise the prob-
ability of fault injection. This is achieved by hardware circuits responsible for
shielding a device, and protecting it from reverse engineering, radiation, ion
beams, power spikes, and signal glitches [1,16]. Unfortunately, none of these
methods work properly — some have design bugs while others can be simply
switched off [16]. If fault prevention fails then the device is susceptible to errors,
and other types of countermeasures have to be taken.

Error detection and error correction aim to detect and report an error in
order to prevent successful cryptanalysis. Existing error detection schemes are
based on well-known error detection techniques that utilise reverse computations
(e.g. ciphertext decoding or signature verification) or parity checks and residue
codes. Such simple solutions allow to enhance immunity to the fault analysis, and
may be easily implemented in symmetric encryption algorithms [14]. Some steps
to protect the RSA algorithm have been taken too [8]. Unfortunately reverse
computations usually introduce delays and computation overhead which may be
impractical. Moreover both methods require comparing procedure, that actually
verifies whether computations were error free or not, which is may be a target
of fault injection, and therefore, may become a bottleneck of the whole solution
[15,20,21]. This threat is not present when the error correction is used, since it
is performed regardless of if errors have been inducted or not, and thus requires
no comparisons. Unfortunately, only one error correction scheme for the AES
algorithm has been proposed so far [9].

The error diffusion is another method of preventing fault cryptanalysis. In
contrast to previous solutions it attempts to modify a cryptographic algorithm in
such a way that any inducted error is spread among different cryptographic com-
putations and the output. The goal of the error diffusion is to produce erroneous
output that is useless for the attacker. This is possible, since most fault attack
scenarios assume that the attacker induces particular types of errors. Moreover,
it is often required that errors are inserted into selected part of the algorithm.
Changing and dispersing the error increases the overhead of fault cryptanalysis
causing such attacks to be ineffective. For that reason this type of countermea-
sure is also refereed to as ineffective computations. Although error diffusion was
proposed five years ago [21], so far it has been adopted only for the RSA-CRT
algorithm. In last year a number of different error diffusion techniques for the
RSA-CRT were proposed (e.g. [5,8,21]) but most of them have been broken [15,
22]. Moreover, no countermeasures of this type have been proposed for other
cryptographic algorithms.

2 Related work

A feasibility for implementation of the fault cryptanalysis in case of DLP-based
signature schemes was first announced in 1997 [3]. Attack described in this pa-
per utilises bit-flip errors inducted into random bit of the private key a. Due to
such error the resulting signature is affected with error that may be effectively
guessed by the attacker at the cost of 2n modular exponentiations. This result
was put forth in 2000 by Dottax who presented how one can implement fault
cryptanalysis to ECDSA. In 2004, Giraud and Knudsen [11] extended previous
results and analysed an attack on the DSA scheme that take advantage of byte
errors instead of bit errors. Paper [11] presents detailed analysis of attack com-
plexity, and the number of faulty signatures required to restrict possible private
key values to the requested amount. On the other hand, it does not describe any
countermeasures that can be applied in order to improve security.

The security of the DSA scheme was also analysed by Rosa [19] who pre-
sented a lattice-based fault attack. This attack can be carried out irrespectively
of the fact whether a tamper-proof device performs result checking before output
or not. It requires for the attacker to substitute g used during signing procedure
with ¢’ = g8 mod p for some 1 < 3 < p with ord () = d in Z; and ged(d, ¢) = 1.
This can be difficult to achieve with fault induction, when the DSA is imple-
mented in hardware but, as presented in [19], it can be performed if the scheme
is implemented in software. An obvious countermeasure for software implemen-
tation, as presented in [19], is to make manipulation on the parameters of the
DSA scheme impossible.

The lattice-based fault attack was also presented by Naccache et al. [17].
Their attack is based on faults inducted into random integer k in order to force
a number of the least significant bytes (LSBs) of k to flip to 0. Afterwards the
attacker applies lattice attack on the ElGamal-like signature which can recover
private key, given sufficiently many signatures such that a few bits of corre-
sponding & are zeroed. As presented in [17], when one LSB of each k is zeroed,
then 27 signatures are sufficient to disclose the private key. In their paper Nac-
cache et al. presented theory and methodology of the attack as well as possible
countermeasures (e.g. checksums, randomisation or refreshments).

Although DLP-based signature algorithms are known to be prone to fault
cryptanalysis, neither sound nor effective countermeasures have been proposed
for these so far. Precisely, there exist only one obvious solution that utilises
signature verification procedure in order to check whether generated signature is
correct or not. If verification fails then either signing or verification was affected
with faults and the signature has to be rejected. This countermeasure seems to
work but in fact it utilises comparison procedure which is susceptible to fault
attacks and thus may become a bottleneck of the whole proposal [15, 20].

In this paper we give a practical method of how to increase immunity of
the DSA scheme in the presence of faults that affect private key a. We assume
that the pseudo random generator that chooses k operates correctly while the
attacker is able to induce random bit-flip or byte change errors into a. Our
proposal is based on error diffusion which ensures that any error e, inducted

into a, is spread within the signature s. This results in erroneous signature s
that is affected with error E, which depends both on e and unknown random
integer k. Relation between E, e and k ensures that E can neither be computed
nor effectively guessed by the attacker. Therefore, in order to perform the attack,
one has to verify all of 2169 possible values of k one by one which cause the whole
attack to be ineffective. Immunity to the fault cryptanalysis is attained at the
expense of the increased computational overhead which is similar to the overhead
of signature verification. Relatively small overhead enables to implement the
proposed scheme in small cryptographic devices like smart cards.

3 DSA Signature Scheme

The DSA signature scheme was proposed in 1991 by U.S. National Institute of
Standards and Technology (NIST), and became first digital signature standard
(DSS) ever recognised by any government. The DSA is a variant of the ElGamal
signature scheme which requires a hash function h : {0,1}* — Z4 for prime
integer q. Its security is based on the discreet logarithm problem.

Key generation in the DSA scheme is done as follows:

— select a prime number ¢ such that ¢ is 160 bit long (2% < ¢ < 2160),

— choose t so that 0 < ¢t < 8, and select a prime number p where 2311164t <
p < 2512464t with the property that q|(p — 1),

— select a generator g of the unique cyclic group of order ¢ in ZJ,

— select a random integer a such that 1 <a < ¢q—1,

— compute y = g® mod p,
the public key is (p, ¢, g,y), and the private key is a.

After key generation the device stores the private key a and system parameters
P, q, g for future use. Signing for a given message m goes as follows:

— select a random integer 0 < k < g,

— compute r = (gk modp) mod ¢,

— compute s = k! (h(m) + ar) mod g,
the signature for m is a pair (r, s).

Given the message m, signature (r,s), and the public key (p,q,g,y) one can
verify whether the signature is actually correct. This is done as follows:

— compute w = s~ ! modg,
— compute v1 = ¢""™"¥ mod p and vy = y™* mod p,

— verify if v1 - v2 mod pmod ¢ o

If last equation holds, then the signature is accepted, otherwise the signature is
rejected.

4 Fault cryptanalysis of the DSA signature scheme

As presented in [3,11,17, 19] hardware implementations of the DSA scheme can
be compromised with fault cryptanalysis. This can be done in a few ways: by
affecting random integer k [17], public parameter g [19] or by inducting errors
into the private key register during signing procedure [3,11]. In the remaining
part of the paper we focus on the fault cryptanalysis that attempts to affect a
private key a. Its purpose is to generate a faulty signature which is then used to
deduce the key. Let us briefly present an attack scenario described in [3].

Assume that the attacker has a possibility to induct random bit-flip errors
into the private key register. Since errors are inducted randomly and the private
key register is of the size n = log, a so the probability that i-th bit will be
affected with error equals 1/n. Moreover, inducting exactly one bit-flip error
into the i-th bit of the register cause a change of the private key which is now
equal to @ = a & 2° where sign + depends on the original value of this bit.

The erroneous signing procedure executes as follows:

— select a random integer 0 < k < ¢,

— compute r = (gk modp) mod gq,

— compute 5 = k~! (h(m) + ar) mod g,
erroneous signature for m is a pair (r,3).

Because the error has changed the private key into @ = a % 2¢, therefore, an
element 3 of the erroneous signature (r,3) is equal

5=k (h(m)+ar) modqg =k~ (h(m)+ (a £2")r) modq
=k~ (h(m) + ar) £ 27k mod ¢
= s+ 2'rk ! mod q. (1)

Due to (1) and because the fact attacker knows 7 = g¥ mod pmod ¢ the fault
analysis can be performed. This is done in a similar way as for the signature
verification:

— compute w =35 'modg, v
— compute v; = ghmw mod p and vy = y" (g””)ﬂl mod p,
— look for the fault value £2* for which following equation holds

h(m)w, rw

r=wvivymodpmodg =g Y (gm)

mod pmodg. (2)
According to (2), in order to perform cryptanalysis the attacker needs to find a
value of the inducted fault 2%, Since we assume errors are inducted at random
hence the attacker does not know which bit of the private key was flipped.
Therefore, to perform cryptanalysis the attacker needs to check all possible fault
values and find the one for which (2) holds. The time required to perform this
attack is dominated by 2n exponentiations that have to be computed.

Each iteration of the above procedure allows the attacker to recover one bit
of the private key. Attacker can then repeat this procedure to get remaining bits,

but since errors are inducted at random it could happen that successive errors
affect bits already known. This is a difficulty that increases attack overhead but
as presented in [6] the attacker can repeat above procedure as long as demanded
amount of the private key bits is known. Afterwards he can perform exhausting
search in order to find remaining bits.

5 DSA scheme immune to the fault cryptanalysis

As mentioned in the previous section, the fault analysis countermeasure proposed
in this paper is based on the error diffusion. The purpose of this solution is to
check whether the public key a, used during signature generation, was affected
with error or not. This has to be done without any comparisons and conditional
operations since these may be a bottleneck of the whole proposal, similarly as
in case of error detection schemes. Therefore, we propose to use public key y in
order to verify the correctness of a. The outcome of this verification is called an
error diffusion term 7', and it is equal zero only if all computations were error
free. Later on this term is used in signature generation in such a way that for
T = 0 the signature s is correct while for T" £ 0 erroneous value of 5 depends
both on error inducted e and random integer k. The relation between s, e, and k
ensures that the attacker will find it difficult to guess the error e given erroneous
signature (r,3) for message m.

Implementation of the above countermeasure requires that computation of
the signature s is split into two steps

v =k + armod g, (3)
s =k (h(m)+v) — 1modg. (4)

These two steps are separated by one additional and one modified computation:
— additional computation of error diffusion term T’
T = (y "¢g"modpmod g) — rmodg, (5)
— modified computation of multiplicative inverse
K =(keT) " modg. (6)

With these modifications the whole signing procedure goes according to the
scheme 1.

According to the 4-th step of the proposed signature scheme the error diffu-
sion term 7' = 0 if and only if

y~"g" modpmod ¢ = r. (7)

If the attacker inducts an error e into the private key a, then the erroneous value
of ¥ equals

T =k+armodqg=k+ (a+e)rmodq=k+ ar+ ermodq. (8)

Scheme 1 Proposed modification of the DSA scheme

Require: message m, private key, and public key of the DSA scheme
Ensure: the DSA signature (r, s)

select a random integer k with 0 < k < ¢,

compute r = ¢¥ mod pmod g,

compute v = k + ar mod gq,

compute T = (yfrg“ mod p mod q) — rmodgq,

compute k' = (k®T)™" modg,

compute s = k' (h(m) + v) — 1mod g

Due to faulty value of T left side of (7) equals

vy "¢ mod pmod ¢ = ¢~ ¢* " mod pmod ¢ = g~ ¢* " mod pmod ¢
= ¢***" mod pmod q. (9)
This equals r if and only if
k+ ermodq = k, (10)
which is equivalent to
ermod g = 0. (11)

However, r < ¢ since it was computed modulo ¢, and e is not a multiplicity of
q — otherwise (i.e. gle) @ = a + emod ¢ = a and no error affects the private key.
Therefore, er mod g # 0 for any error e, and hence, T = 0 only if no errors were
inducted, and T # 0 otherwise. It is worth to mention that non-zero value of T
equals

T = ¢***" mod pmod ¢ — rmod ¢ = ¢°" mod pmod gq. (12)

According to (12) and assuming that the attacker inducts particular type of er-
rors (e.g. bit-flip errors) he is able to guess possible values of T' = ¢°" mod pmod g,
given erroneous signature (r,s). This information, however, do not simplify the
attack considerably.
Error diffusion in the proposed scheme is obtained by the modified inverse
computation
kK =(keT) " modg. (13)

Because inverse is a nonlinear transformation thus the value of ¥’ depends on the
term 7" and the random integer k in a nonlinear way. Therefore, if T' £ 0 then
k' = k~' 4+ E where E is a non-linear function of 7" and k. Since k is unknown
to the attacker, he cannot compute the error F even if he knows the value of T'.
Moreover, there are ¢—2 possible values of E because k is chosen randomly every
iteration of the scheme. Finally, using &’ for the computation of the signature s
yields its erroneous value s to be affected both with error e and E. Therefore, to
perform a cryptanalysis the attacker needs to guess both errors, and since there
are 2160 possible values of E such attack is infeasible.

On the other hand, if no errors were inducted into the private key a, then
the proposed scheme outputs correct DSA signature. This is quite obvious since
in such situation we obtain

T = (y_rg” mod p mod q) —rmodgq = (g_‘“"gk+”) mod pmod g — rmod g
= ¢* modpmod g — rmod ¢ = 0, (14)
and
K =((keaeT) " modg=Fk'modg. (15)

This gives the signature equal

s =k (h(m)+v) —1modq =k~ (h(m) + k + ar) — 1modq
=k~ (h(m) + ar) mod g, (16)

which is a standard DSA signature.

6 Security of the proposed scheme

The attack scenarios presented in [3,11] assume that the attacker inducts par-
ticular types of errors. This allows him to guess inducted error effectively, and
use this knowledge to restrict the number of possible private keys.

In our proposal erroneous signature s is affected with error e and E, where
the value of F depends on inducted error e and random integer k, chosen by the
device. Because k is unknown and cannot be computed by the attacker, thus he
can perform no better than guessing. Precisely, for each possible value of e the
attacker has to find ¢ for which following equation holds

gfl
(gh(m)yrg”> ¢t modpmodq = 7. (17)

Taking into account that 5 = K (h(m)+ar +er) modgq, k' = (k@& T) " =
k~! + E and assuming that the attacker guessed the inducted error e correctly,
we can simplify the above equation

g(k_lJrE)_l k@T+t

¢*modpmodg =g mod pmod g = 7. (18)

Equation (18) shows that the attacker has to guess proper value of ¢ such that
k®T +tmodg = k, (19)

or equivalently
k@ (¢°" mod pmod ¢) + tmod ¢ = k. (20)

Accordingly, the sought value of ¢ is a function of e and k. Furthermore, because
k is chosen at random from the set (1,q), there are ¢ — 2 possible values of ¢
for each e. Therefore, to perform an attack and to recover partial information
on the private key a, the attacker has to guess the inducted error e and find ¢

that satisfies (18). This requires at least n2'! exponentiations, assuming that
the attacker inducts single bit-flip errors.

A careful reader may realise that the proposed modification may be simplified
since some surplus operations are performed. In fact, the proposed modification
can be simplified, and will still work if we substitute equations (3-5) with fol-
lowing

v = armod g, (21)
s =k" (h(m) +v) mod g, (22)
T =y "¢g" mod pmodq, (23)

which are created by simply removing k, 1 and r from equations (3), (4), and (5)
respectively. According to these changes the simplified signing goes according to
the scheme 2.

Scheme 2 Simplified modification of the DSA scheme

Require: message m, private key, and public key of the DSA scheme
Ensure: the DSA signature (r, s)

select a random integer k with 0 < k < ¢,

compute r = ¢g¥ mod pmod g,

compute v = ar mod gq,

compute T' =y~ "¢" mod pmod g,

compute k' = (k@ T)~" modg,

compute s = k' (h(m) + v) mod g

Let us now briefly analyse the security of the simplified scheme. It is a quite
simple task to verify that this simplified version has properties similar to the
previous scheme (scheme 1):

— for any error e inducted into the private key a the error diffusion term 7" =
¥~ "g* ¢ mod pmod ¢ = ¢¢" mod pmod g = 0 only if er mod ¢ = 0. Similarly
to the scheme 1 this holds only if e = 0,

— for any error e, k' is affected with error E that depends on e and the random
integer k. Since E may not be computed thus the attacker can do no better
than guessing. However this is infeasible since there are 2150 possible values
of E.

It seems that the simplified scheme offers the same security as first proposal at
the cost of smaller computation overhead.

However, this is not true as the simplified scheme can be attacked with lattice
based fault cryptanalysis. This type of attack utilises errors in order to simplify
the attack down to the problem of solving hidden number problem (HNP). HNP
O]
K3 K3

problem states that given pairs <ui,t(l)>, where u; is a random integer, ¢

denotes [subsequent bits of t; = b+ au; mod ¢, and a, b are constant (usually it is

10

assumed that tgl) denotes most significant bits of ¢; but this is not a requirement),
one has to deduce the exact values of a and b [7]. As presented in [7], HNP
problem can be solved if [> ev/log g for any fixed € > 0. Moreover, an algorithm
that solves HNP may be used to attack the ElGamal-like signature scheme [7,
18]. In such case a partial knowledge on k enables the attacker to recover the
private key with less than 30 signatures. A similar attack can be also applied to
the simplified modification of the DSA scheme.

To achieve this the attacker needs to induct errors into v used in the last
step of the simplified signing procedure. Due to a such error the erroneous value
5 equals

5=k (h(m)+v+e) modg, (24)

and may be used to guess the inducted error. This can be done by searching for
e that satisfies
s_lh(m)ys_lr s

g g e mod pmod q = 7. (25)

When proper e is found then the attacker gets partial information about v. Since
v = armodq and 7 is known, thus the attacker may collect sufficiently many
data and solve the HNP problem for a.

Such an attack cannot be carried out in case of the previously proposed
scheme (scheme 1) since it computes v as

v =k + ar mod g, (26)

and k is randomly chosen every iteration of the protocol. On the other hand,
this modification requires additional additions to be performed in 4-th and 6-th
step of signing.

Proposed modification of the DSA scheme is also immune to multiple fault
attacks that can be inducted in practice [15]. Since there is no comparison proce-
dure in our proposal, hence possible attack scenario may focus on inducting two
errors: first error e into the private key a and the second error into one of the
successive computations. Purpose of the second error is to mask error e during
the inverse computation and thus force the device to output the erroneous sig-
nature that is suitable for fault cryptanalysis. Although this is possible scenario,
it will be very difficult to achieve. This is due to error diffusion term 7" that
depends on e and r which are unknown to the attacker during execution of the
signing procedure. Therefore, probability that inducting multiple faults enables
the attacker to break the proposed scheme is negligible.

7 Overhead of the proposed scheme

As presented in previous sections there is one additional (5) and three modified
computations (3), (4), and (6) in the proposed modification of the DSA signature
scheme (scheme 1). The overhead of the modified computations is similar to the
overhead of the original computations since only two additions modulo q and
one EXOR operation is added. An additional computation of the error diffusion
term T requires two exponentiations, one multiplication modulo p and ¢, and

11

one addition modulo q. Accordingly, the computation overhead of the proposed
modification is dominated by the time required to perform two exponentiations
and a multiplication. Therefore, the overhead of our proposal is smaller than the
overhead of signature verification which requires three exponentiations and two
multiplications modulo p and gq.

Storage overhead of the proposed scheme is also higher compared to the stor-
age required by the standard DSA scheme. It is so since our proposal utilises the
public key y to verify the correctness of the private key used for signature gen-
eration. Therefore, the public key has to be stored inside of the device affecting
storage requirements. However, in a real implementation this storage overhead
can be neglected since cryptographic devices usually store the public key anyway.

Implementation overhead can be further reduced if we change the way error
diffusion term 7T is computed. One of possible solutions is to limit the number
of modular exponentiations. This can be achieved by using private key a instead
of y, so that

T= (g_’”+” mod p mod q) — rmodgq. (27)

This reduces the computational and storage overhead significantly but also af-
fects the security of the whole proposal. In fact, it is now susceptible to attackers
that can induct permanent errors or the same random error twice: first into a
during computation of v, second during computation of 7. In this way conduct-
ing a multiple fault attack enables to brake the proposal. Above mentioned flaw
can be eliminated if we use ¢! mod g instead of @ and compute T as follows

—1

T = (ga (*=k)=" mod pmod q) — 1modg. (28)

Because multiplicative inverse is a nonlinear transformation thus the relation
between error e, inducted into unknown private key a, and corresponding error
affecting a~! mod ¢ is unknown to the attacker. Therefore, probability that the
multiple error attack succeeds is negligible. This is achieved at the cost of in-
creased storage overhead which is required to store multiplicative inverse of the
private key.

8 Conclusions

In this paper we have analysed the DSA scheme and its immunity to the fault
cryptanalysis. We have demonstrated that introducing the error diffusion we
can improve an immunity of the DSA scheme in the presence of faults affecting
private key a. Our modification (scheme 1) ensures that in order to recover
the private key a the attacker needs to guess error F that depends both on
inducted error e and randomly selected integer k (which is unknown to the
attacker). Since E cannot be computed thus the attacker needs to check all of
2160 possible values of F for each e, which render the whole attack ineffective.
Unlike simplified scheme (scheme 2) the proposed modification is also immune
to lattice-based attacks that take advantage of errors affecting v in the last step
of signature generation.

12

Proposed modification also eliminates the comparison procedure which is an
inherent part of signature verification and cause the obvious countermeasure to
be susceptible to multiple fault attacks. Since there is no such procedure in our
proposal thus such attacks do not apply.

The overhead of the proposed scheme is similar to the overhead of the obvi-
ous countermeasure based on the signature verification. However, computational
overhead can be further reduced if error diffusion term is calculated using inverse
of the private key instead of the public key.

References

1. Ross J. Anderson, Markus G. Kuhn: Tamper Resistance - a Cautionary Note, The
Second USENIX Workshop on Electronic Commerce Proceedings, pp.18-21, 1996

2. Ch.Aumller, P.Bier, W.Fischer, P.Hofreiter, J.P.Seifert: Fault Attacks on RSA with
CRT: Concrete Results and Practical Countermeasures, CHES ’02: Revised Papers
from the 4th International Workshop on Cryptographic Hardware and Embedded
Systems, pp.260-275, Springer-Verlag, 2003

3. F.Bao, R.Deng, Y.Han, A.Jeng, A.D.Narasimhalu, T.-H.Ngair: Breaking Public
Key Cryptosystems on Tamper Resistance Devices in the Presence of Transient
Fault, In 5" Security Protocols WorkShop, LNCS, vol.1361, pp.115-124, Springer-
Verlag, 1997

4. E.Biham, A.Shamir: Differential Fault Analysis of Secret Key Cryptosystems, Ad-
vances in Cryptology - CRYPTO0’97, LNCS, vol.1294, pp.513-525, Springer-Verlag,
1997

5. J.Blmer, M.Otto, and J.-P.Seifert: A New CRT-RSA Algorithm Secure Against
Bellcore Attacks, In Proc. ACM Computer and Communications Security 2003
(ACM CCS 2003), pp. 311-320, ACM Press, 2003

6. D.Boneh, R.A.DeMillo, R.J.Lipton: On the Importance of Checking Cryptographic
Protocols for Faults, Advances in Cryptology - EUROCRYPT’97, LNCS, vol.1233,
pp-37-51, Springer-Verlag, 1997

7. D.Boneh, R.Venkatesan: Rounding in Lattices and Its Cryptographic Applications,
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theo-
retical, Experimental Analysis of Discrete Algorithms), pp.675-681, 1997

8. L.Breveglieri, [.Koren, P.Maistri, M.Ravasio: Incorporating Error Detection in an
RSA Architecture, LNCS, vol.4236, pp.71-79, 2006

9. M.Cgzapski, M.Nikodem: Error Correction Procedures for Advanced Encryption
Standard, Int. Workshop on Coding and Cryptography (WCC 2007), pp.89-98,
INRIA, April 16-20, 2007

10. P.Dusart, G.Letourneux, O.Vivolo: Differential Fault Analysis on A.E.S., ArXiv
Computer Science e-prints, January 2003

11. C.Giraud, E.Knudsen: Fault Attacks on Signature Schemes, ACISP 2004, LNCS,
vol.3108, pp.478-491, Springer-Verlag, 2004

12. M.Joye, A.Lenstra, J.J.Quisquater: Chinese Remaindering Based Cryptosystems
in the Presence of Faults, Journal of Cryptology, vol.12, pp.241-245, 1999

13. M.Karpovsky, K.J.Kulikowski, A.Taubin: A Differential Fault Analysis Attack
Resistant Architecture of the Advanced Encryption Standard, Proceedings of
CARDIS 2004, Kluwer, pp.177-192, 2004

14.

15.

16.

17.

18.

19.

20.

21.

22.

13

R.Karri, K.Wu, P.Mishra, Y.Kim: Concurrent error detection schemes for fault-
based side-channel cryptanalysis of symmetric block ciphers, IEEE Trans. on CAD
of Integrated Circuits and Systems, vol.21(12), pp.1509-1517, 2002

C.-H. Kim and J.-J. Quisquater, Fault Attacks for CRT Based RSA: New At-
tacks, New Results, and New Countermeasures, In Information Security Theory
and Practices, Smart Cards, Mobile and Ubiquitous Computing Systems, LNCS,
vol.4462, pp.215-228, Springer-Verlag, 2007

O.Kémmerling, M.G. Kuhn: Design Principles for Tamper-Resistant Smartcard
Processors, USENIX Workshop on Smartcard Technology - Smartcard 99, USENIX
Association, pp.9-20, 1999

D.Naccache, P.Q.Nguyen, M.Tunstall, C.Whelan: Experimenting with Faults, Lat-
tices and the DSA, Public Key Cryptography — PKC 2005, 8th International Work-
shop on Theory and Practice in Public Key Cryptography, LNCS, vol.3386, pp.16-
28, Springer-Verlag, 2005

P.Q.Nguyen, I.LE.Shparlinski: The Insecurity of the Digital Signature Algorithm
with Partially Known Nonces, Journal of Cryptology, vol.15(3), pp.151-176, 2002
T.Rosa: Lattice-based Fault Attacks on DSA - Another Possible Strategy, Proceed-
ings of the conference Security and Protection of Information 2005, Brno, Czech
Republic, pp.91-96, 3-5 May 2005

S.M.Yen, M.Joye: Checking Before Output May Not Be Enough Against Fault-
Based Cryptanalysis, IEEE Transactions on Computers, vol.49(9), pp.967-970,
September 2000

S.M.Yen, S.Kim, S.Lim, S.Moon: RSA Speedup with Chinese Remainder Theorem
Immune Against Hardware Fault Cryptanalysis, IEEE Transactions on Computers,
vol.52(4), pp.461-472, April 2003

S.M.Yen, D.Kim, S.Moon: Cryptanalysis of Two Protocols for RSA with CRT
Based on Fault Infection, In Fault Diagnosis and Tolerance in Cryptography
(FDTC 2006), LNCS, vo0l.4236, pp.53-61, Springer-Verlag, 2006.

