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Abstract. The application of model-checking tools to complex systewslves
a nontrivial step of modelling the system by a finite-statelei@nd a translation
of the desired properties into a formal specification. Whilgositive answer of
the model checker guarantees that the model satisfies th#isaton, correct-
ness of the modelling is not checked. Vacuity detection isc@eassful approach
for finding modelling errors that cause the satisfactionhef $pecification to be
trivial. For example, the specification “every request isreually followed by a
grant” is satisfied vacuously in models in which requestsnaxer sent. In gen-
eral, a specificatior is satisfied vacuously in a mod&f if ¢ has a subformula
1 that does not affect the satisfactiongin M, where “does not affect” means
we can replace) by a universally quantified proposition. Previous worksu®c
on temporal logics such as LTL, CTL, and CTland reduce vacuity detection to
standard model checking.

A major feature of recent industrial property-specificatianguages is their reg-
ular layer, which includes regular expressions and forswatmstructed from reg-
ular expressions. Our goal in this work is to extend vacuétedtion to such a
regular layer of linear-temporal logics. We focus here orL’RE which is the
extension of LTL with a regular layer. We define when a regalression does
not affect the satisfaction of an RELTL formula by means afersally quan-
tified intervals. Thus, the transition to regular vacuitkes us from monadic
guantification to dyadic quantification. We argue for theeagatity of our defi-
nition and show that regular-vacuity detection is decidablt involves an expo-
nential blow-up (in addition to the standard exponentialblp for LTL model
checking). This suggests that, in practice, one may needot& with weaker
definitions of vacuity or restrict attention to specificaan which the usage of
regular events is constrained. We discuss such weakerta@&igjiand show that
their detection is not harder than standard model checkfgalso show that,
under certain polarity constraints, even general regedatiity detection can be
reduced to standard model checking.

1 Introduction

Model-checkingools are successfully used for checking whether systenesdesired
properties [9]. The application of model-checking toolstonplex systems involves
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a nontrivial step of modelling the system by a finite-state¢hmmatical model, and
translation of the desired properties into a formal spedtific. When the model does
not satisfy the specification, model-checking tools accamya negative answer with a
counterexample, which may point to a real error in the syg&nit is often the case,
however, that there is an error in the modelling of the sysaadior in the formal spec-
ification. Such errors may not be detected when the answaeafibdel-checking tool
is positive: while a positive answer does guarantee thatrtbéel satisfies the speci-
fication, the answer to the real question, namely, whethesstistem has the desired
properties, may be different.

The realization of this unfortunate situation has led todbeelopment of several
sanity checksor formal verification. The goal of these checks is to detobrs in the
modelling of the system and the properties. Sanity checksduastrial tools are typi-
cally simple, often ad hoc, tests, such as checking for @mgbbnditions that are never
enabled [20]. A more systematic approach is basedamuity detectionintuitively, a
specification is satisfied vacuously in a model if it is sa@fin some non-interesting
way. For example, the LTL specificaticgh = globally (re¢ — eventually grant)
(“every request is eventually followed by a grant”) is siid vacuously in a model
with no requests. While vacuity checking cannot ensuretanever a model satis-
fies a formula, the model is correct, it does capture inctgrsises between the model
and the verified property. Being automatic, vacuity cheglamoids hidden false as-
sumptions made by the verifier, and thus it is more likely tptaee modelling and
specification errors.

Several years of experience in practical formal verifiaatiave convinced the veri-
fication group in IBM Haifa Research Laboratory that vacista serious problem [5].
To quote from [5]: “Our experience has shown that typicali{; of specifications pass
vacuously during the first formal-verification runs of a nesrdware design, and that
vacuous passes always point to a real problem in either thigrer its specification
or environment.” The first formal treatment of vacuity is dedsed in [5]. Consider a
model M satisfying a specificatiop. A subformulay) of ¢ does not affecfthe sat-
isfaction of)p in M if M also satisfies all formulas obtained by modifyingIn the
example above, the subformujaant does not affect in a model with no requests.
Now, M satisfiesy vacuously ify has a subformula that does not affectn M. A
general method for vacuity detection was presented in [#B§ showed that when all
the occurrences af in ¢ are of apure polarity (that is, they are either all under an
even number of negations (positive polarity), or all undendd number of negations
(negative polarity)), thew does not affecp iff M satisfies the formula obtained from
¢ by the single extreme modification @f (to true in casey has a negative polarity,
and tofalse otherwise). This observation reduces vacuity detectionddel checking.
The usefulness of vacuity analysis is also demonstrateskevieral case studies in [22].
For more recent work on vacuity checking, see [16, 15].

As shown in [19], the method described there can be used wigorsnulas ofy
are of amixed polarity In practice, however, one often needs to cope with mixedrpol
ity. For example, the subformulahas a mixed polarity in formulas of the (commonly
seen) formglobally (v — 6) A eventually ¢. In fact, industrial-strength property-
specification languages such as Sugar [4], ForSpec [3]ham@tent standards PSL 1.01



and SVA 3.1a[1] contain operators in which even a single oetice of) may not have
a pure polarity (e.gy) XOR 6 or ) < 6).

Once we allow subformulas of a mixed polarity, there is a nee-examine the
definition of wheny does not affecp in M. Indeed, it is only in the pure-polarity case
that the various modifications af may be restricted to the single extreme modifica-
tion. Such a re-examination was done in [2], who considesediity detection for LTL
specifications. While the modifications toin [5] are syntactic i.e., M has to satisfy
all formulasy[y — 1’], namely formulas obtained fromby substituting) by an LTL
formulat’, Armoni et al. argued that a right definition is one in whicle thodifica-
tions toy aresemantici.e., M has to satisfy the formulgrx)p[v) «— ], obtained by
substitutingy by a universally quantified propositidn Gurfinkel et al further extend
this definition to CTL* in [15] arguing that it is more robust than other definitions.
It is shown in [2] that, under such a semantic interpretati@cuity detection of LTL
formulas can still be reduced to LTL model checking. A toatdist Intel for vacuity
detection is also described in [2].

As mentioned earlier, the work in [2] was motivated by thecheextend vacuity
detection to recent industrial property-specificatiorglaages, which are significantly
richer syntactically and semantically than LTL. A majortiga of these languages,
which does not exist in LTL, is agular layer, which includes regular expressions
and formulas constructed from regular expressions. Thdaetpyer does not only add
to the expressive power of the specification language saritexpress the whole-
regular spectrum, but it also seemed to be more intuitiveatallware engineers. For
some languages like SVA 3.1a, the only way to express terhpasgerties is using
regular expressions.

As an example of the use of the regular layer, consider thger formula seq 6,
wheree is a regular expression arids a formula, asserts that somasequence is fol-
lowed by#, and the ForSpec formulatriggers 6, asserts that all sequences are fol-
lowed byé. Our goal in this paper is to extend vacuity detection to suobgular layer
of linear-temporal logics. Rather than treat the full coexly of industrial languages,
we focus here on RELTL, which is the extension of LTL with auleg layer. Thus,
we need to define, and then check, the notion of "does nottdffest only for subfor-
mulas but also for regular expressions. We refer to therlateegular vacuity As an
example, consider the property= globally ((req - (—ack)* - ack) triggers grant),
which says that a grant is given exactly one cycle after tlobeay which a request is
acknowledged. Note that {f~ack)* - ack does not affect the satisfaction @fin M
(that is, replacind—ack)* - ack by any other sequence of events does not catide
violate ¢), we can learn that acknowledgments are actually ignonethtg are given,
and stay on forever, immediately after a request. Such avilmhia not referred to in
the specification, but can be detected by regular vacuitie it if the same regular
expression appears in the left-hand side of betly and triggers formulas or on both
sides of atriggers formula, then this expression has mixed polarity.

4 Amodel M satisfies a formulévz) () if ¢ is satisfied in all computationsthat differ from
a computation of\/ only in the label of the proposition. Note that different occurrences of a
state inm may have different labels.



In order to understand our definition for regular vacuityasider a formulay over
a setAP of atomic propositions. Lel’ be the set of Boolean functions ovéf, and
let e be a regular expression ovErappearing inp. The regular expressianinduces a
language — a set of finite words ovEr For a wordw € X, the regular expressian
induces a set of intervals [3]: these intervals define sutdaofw that are members in
the language of. By saying that does not affecp in M, we want to capture the fact
that we could modify, replace it with any other regular expression, and 3filkatis-
fiesp. As has been the case with propositional vacuity, there isnoavn algorithmic
approach to handle such syntactic modifications in the poesef regular expressions
of mixed polarity. Accordingly, as in [2], we follow a semanfpproach to modifi-
cations ofe, where “does not affect” is captured by means of universahtjtication.
Thus, in RELTL vacuity there are two types of elements we rieethiversally quantify
to check vacuity. First, as in LTL, in order to check whetheRELTL subformulay,
which is not a regular expression, affects the satisfaaifap, we quantify universally
over a proposition that replaceés In addition, checking whether a regular expression
e that appears irp affects its satisfaction, we need to quantify universairgranter-
vals. Thus, while LTL vacuity involved onlyjnonadicquantification (over the sets of
points in which a subformula may hold), regular vacuity iwesdyadicquantification
(over intervals — sets of pairs of points, in which a regubgsression may hold). In
Section 3, we discuss two weaker alternative definitionsstriction of the universally
quantified intervals to intervals of the same duratior,aand an approximation of the
dyadic quantification over intervals by monadic quantifmabver the Boolean events
referred to in the regular expressions. As discussed tlieeedefinition in terms of
dyadic quantification is the most general one.

The transition from monadic to dyadic quantification is vehallenging. Indeed,
while monadic second-order logics are often decidabled];,this is not the case for
dyadic second-order logics. For example, while monadiosgorder theory of one
successor is decidable [7], this is not the case for the dythdory [6]. The main result
of this work is that regular vacuity is decidable. We showt th& automata-theoretic
approachto LTL [27] can be extended to handle dyadic unalgrsantification. Unlike
monadic universal quantification, which can be handled wdtincrease in computa-
tional complexity [2], the extension to dyadic quantificatiinvolves an exponential
blow-up (in addition to the standard exponential blow-upafdling LTL [25]), result-
ing in an EXPSPACE upper bound, which should be contrastédaw SPACE upper
bound for RELTL model checking. Our NEXPTIME-hardness lotveund, while leav-
ing a small gap with respect to the upper bound, shows thatonential overhead on
top of the complexity of RELTL model checking seems inevigali he above results
suggest that, in practice, one may need to restrict atiemtigpecifications in which
regular expressions are of pure polarity. We show that uthdeassumption, the tech-
niques of [19] can be extended to regular vacuity, which han be reduced to standard
model checking. In addition, for specifications of mixedagrdl, the two weaker defi-
nitions we suggest for regular vacuity can also be check@®SRACE — like standard
RELTL model checking.



2 RELTL

The linear temporal logic RELTL extends LTL with a regulayda We consider LTL
in a positive normal form, where formulas are constructednfratomic propositions
and their negations by means of Booleangnd V) and temporal rfext, until, and
its dualrelease) connectives. For details, see [21]. L&P be a finite set of atomic
propositions, and le8 denote the set of all Boolean functions24” — {false, true}
(in practice, members d# are expressed by Boolean expressions el&). Consider
an infinite wordr = 7o, 1, ... € (247). For integerg > i > 0, and a languagé C
B*, we say thatr;, ..., m;_; tightly satisfiesL, denotedr, ¢, j= L, if there is a word
bo - b1 ---bj_1—; € L such thatforalD < k < j — 4, we have thaby (m;1;) = true.
Note that when = j, the intervalr;, ..., m;_1 is empty, in which case, i, j= L iff
e€ L.

The logic RELTL contains two regular modalitie® seq ¢) and (e triggers ),
wheree is a regular expression over the alphaBetandy is an RELTL formula. In-
tuitively, (e seq ) asserts that some interval satisfyings followed by a suffix sat-
isfying ¢, whereage triggers ¢) asserts that all intervals satisfyingre followed by
a suffix satisfyingp. Note that theseq and triggers connectives are essentially the
“diamond” and “box” modalities of PDL [11]. Formally, let be an infinite word over
24P then?®

— m,i = (e seq ) if for somej > i, we haver, i, j& L(e) andr, j = .
— m,i = (etriggers o) if for all j > ¢ such thatr, i, j&= L(e), we haver, j = ¢.

In the automata-theoretic approach to model checking, avestate temporal logic for-
mulas to automata [27]. Aondeterministic generalizediBhi word automatofNGBW,
for short) is a tupled = (X, S, 6, So, F), whereX' is a finite alphabet§ is a finite set
of statesg : S x ¥ — 25 is a transition functionS, C S is a set of initial states, and
F C 2% is a set of sets of accepting states. A punf A is an infinite sequence of states
in S that starts in a state ifiy and obeys. Letinf(p) C S denote the set of states that
are visited infinitely often irp. Since the run is infinite and is finite, it must be that
inf(p) is not empty. An NGBWA accepts an infinite word if it has an infinite run

p overt such that for every” € F, we haveinf(p) N F # 0. The full definition of
NGBW is given in the full version. We now describe a translatbf RELTL formulas
to NGBW. The translation can be viewed as a special case a@fahslation of ETL to
NGBW [27] (see also [17]), but we need it as a preparation tor@andling of regular
vacuity.

Theorem 1. Given an RELTL formula over AP, we can construct an NGBW,, over
the alphabeRA” such thatL(A,) = {x|r,0 |= ¢} and the size ofi,, is exponential

in .

5 In industrial specification languages such as ForSpec ahdttRSsemantics is slightly dif-
ferent. There, it is required that the last letter of thervaesatisfyingL(e) overlaps the first
letter of the suffix satisfying). In the full version we describe a linear translation betwvee
these two semantics.



Proof: The translation ofp goes via an intermediate formujain the temporal logic
ALTL. The syntax of ALTL is identical to the one of RELTL, onthat regular expres-
sions over3 are replaced by nondeterministic finite word automata (Nfé/short)
over24”, The adjustment of the semantics is as expectedt let 7o, 71, ... be an
infinite path overr”. For integers and;j with 0 < i < j, and an NFWZ with al-
phabe4”, we say thatr;, ..., 7;_ tightly satisfies.(Z), denotedr, i, j, = L(Z), if
mi,...,mj—1 € L(Z). Then, the semantics of thgeq and triggers modalities are as
in RELTL, with L(Z) replacingL(e).

A regular expression over the alphabef can be linearly translated to an equiv-
alent NFW Z, with a single initial state [18]. To complete the translatio ALTL,
we need to adjust the constructed NFW to the alphaBiét Given the NFWZ, =
(B,Q,A,qo, W), let Z! = (247 Q, A", qo, W), where for every;, ¢’ € Q, anda €
24P 'we have thaty € A’(q,a) iff there existsb € B such thaty’ € A(q,b) and
b(a) = true. It is easy to see that for alt, ¢, andj, we have thatr,i, ji= L(e) iff
7,4, jE L(Z!). Lety be the ALTL formula obtained fromp by replacing every regular
expressiore in ¢ by the NFWZ!. It follows that for every infinite wordr and: > 0,
we have thatr,i = ¢ iff 7,0 E .

Itis left to show that ALTL formulas can be translated to NGBWt+) be an ALTL
formula. For a statg € @ of an NFW Z, we useZ? to denoteZ with initial stateq.
Using this notation, ALTL formulas of the forrfZ! seq ¢) and(Z. triggers ¢) now
become(Z!" seq ¢) and (Z.* triggers ¢). The closure ofy, denotedl (1)), is the
set{¢|¢ is a subformula ofp} U {(Z7 seq ¢)|(Z seq €) is a subformula of) andq’
is a state ofZ7} U {(Z7 triggers ¢)|(Z9 triggers ) is a subformula of) and¢ is a
state ofZ?}. Let seq(v) denote the set ofeq formulas incl (). A subsetC' C cl(v))
is consistentf the following hold: (1) ifp € C, then—p & C, (2) if o1 A 2 € C, then
p1 € Candypy € C,and (3) ifp1 V w2 € C, thenp; € C orps € C.

Given ¢, we define the NGBWA,, = (24755, Sy, F), whereS C 2¢1¥) x
2s¢a(¥) js the set of all pairéL,, P,) such thatl, is consistent, an@®, C L N seq(v)).
Intuitively, when A,, reads the point of = and is in statd L,, P;), it guesses that the
suffix 7;, w11, . . . Of 7 satisfies all the formulas ifi;. In addition, as explained below,
the setP;, keeps track of the seq formulasin whose eventuality needs to be fulfilled.
Accordingly,So = {(Ls,0) € S : ¢ € Ls}.

Before we describe the transition functiénet us explain how subformulas of the
form (Z% seq ) and (Z9 triggers ) are handled. In both subformulas, something
should happen after an interval that tightly satisfi€sis read. In order to “know”
when an intervak;, 11, ... ;1 tightly satisfiesZ?, the NGBWA,, simulates a run
of Z% on it. The seq operator requires a single interval that tightly satisfidsand
is followed by a suffix satisfyingy. Accordingly, A,, simulates a single run, which it
chooses nondeterministically. For thidggers operator, the requirement is for every
interval that tightly satisfies’¢. Accordingly, hered,, simulates all possible runs of
Z4. Formally,s : (S x 24F7) — 29 is defined as follows(L;, P;) € §((Ls, P;), a) iff
the following conditions are satisfied:

— Forallp € AP, if p € L, thenp € a, and if—p € L, thenp ¢ a.
— If (next 1) € Lg, thenp; € L.
— If (1 until o) € L, then eitherpy € L, orgr € L and(p; until ps) € L.



— If (¢1 release ¢3) € Ly, thenps € L, and eitherp; € Ly, or (1 release ¢3) €
Lt.

Let Z = (247, Q, A, qo, W) be an NFW.

— If (Z%seq v) € Lg, then (a)g € W andy € L, or (b) (Z‘/ seq ) € L for
someqg’ € A(q, a).

— If (Z triggers ¢)) € L, then (a)ify € W, ther € L, and (b)(Z¢ triggers ¢)) €
L;forall ¢’ € A(q,a).

— If Py =0, thenP; = L;Nseq(p). Otherwise, for everyZ? seq ) € Ps, we have
that (a)g € W andy € Ly, or (b) (29 seq ) € P,N L, for someyg’ € A(q, a).

Finally, the generalized Biichi acceptance condition edu® impose the fulfillment
of until and seq eventualities. ThusF = {®1,..., P, Pseq}, Where for every
(s until ;) € cl(p), we have a seb; = {(Ls, Ps) € S|¢; € L, or (¢; until ;) ¢
L}, and in addition we have the s&t., = {(Ls, Ps) € S|Ps = 0}. As in [27], we
count on the fact that as long as a seq formula has not reashedentuality, then some
of its derivations appear in the successor state. In addiiheneverP; is empty, we
fill it with new seq formulas that need to be fulfilled. Thenefpthe membership @,

in F guarantees that the eventualities of all seq formulas dii#tefd. The correctness
of the construction is proved in the full version. l

The exponential translation of RELTL formulas to NGBW ingdia PSPACE model-
checking procedure for it [27]. A matching lower bound is iedifate from LTL being
a fragment of RELTL [25]. Hence the following theorem.

Theorem 2. The model-checking problem for RELTL is PSPACE-complete.

3 Regular Vacuity

As discussed in Section 1, we follow the semantic approasadaity [2]. According
to this approach, a subformujaof an RELTL formulay does not affecp in a model
M if M satisfies(Vz)p[tp — z], wherep[tp — =z] is the result of replacing irp
all the occurrences of the subformulawith the variablex. Thus,s) is replaced by a
universally quantifiegrropositional variable Unlike a subformula), which defines a
set of points in a path (those that satisfy)), a regular expressiondefines a set of
intervals (that is, pairs of points) in (those that tightly satisfy). Accordingly, we
are going to define “does not affect” for regular expressionsneans of universally
quantifiedinterval variables For that, we first define QRELTL, which is a technical
extension of RELTL; it extends RELTL by universal quantifioa over a single interval
variable.

Recall that the regular expressions of RELTL formulas aréndd with respect
to the alphabeBB of Boolean expressions ovetP. Let y be the interval variable,
and lety be an RELTL formula whose regular expressions are definell rggpect
to the alphabe3 U {y}. Then(Vy)¢ and (Jy)p are QRELTL formulas. For exam-
ple, (Vy) globally [(y seq ) A (ab* triggers —))] is a well-formed QRELTL formula,

whiley Vv [(3y)(y seq )] is not.



We now define QRELTL semantics. LEt= {(¢,7)]4,7 € N,j > i} be a set of all
(natural) intervals. Arinterval setis a setg C I. The interval variable ranges over
interval sets and is associated withThus, (i, j) € S means thay is satisfied over
an interval of lengthj — ¢ that starts ai. For a universally (existentially) quantified
formula, satisfaction is checked with respect to every @pimterval set3. We first
define when a word: = ;... 7;_; over24F tightly satisfies, with respect t6, a
languagel. over B U {y}. Intuitively, it means we can partitiof to sub-intervals that
together correspond to a wotdin L. Note that since some of the lettersuinmay be
y, the sub-intervals may be of arbitrary (possibjylength, corresponding to intervals
in 8. Formally, we have the following.

Definition 1. Consider alanguagé C (Bu{y})*, aninfinite pathr over24%, indices
i andj with ¢ < j, and an interval sett C I. We say thatr;, ..., m;_; and g tightly
satisfy L, denotedr, i, j, SE L iff there isw € L such that eithew = ¢ andi = j, or
w = wy, w1, ..., w, andthere is a sequence of integérs lp < I3 < - <lpy1 =7
such that for everg < k < n, the following conditions hold:

— Ifw, € B, thenwk(mk) = true andlkH =1 + 1.
— If wy, =y, then(l, lx41) € B.

For example, ifAP = {p}, 3 = {(3,3),(3,4)}, andw = {{p},0}*, thenr, 2,4, BE
{p - y} sincep({p}) = true and(3,4) € B. Also, m,2,4,5|= {p -y - —p}, since
p({p}) = true, (3,3) € 3, and—p() = true. Note that when the required does
not containy, the definition is independent gfand coincides with tight satisfaction for
languages oves.

The semantics of the RELTL subformulas of a QRELTL formuldé$ined induc-
tively as in RELTL, only with respect to an interval s&tin particular, for theseq and
triggers modalities, we have

- m,i, 0 = (e seq o) iff for somej > i, we haver, i, j, B£ L(e) andr, j, 5 = ¢.
— m,i, 0 = (e triggers ) iff forall j > is.t.m, 4, j, B L(e) we haver, j, 8 E ¢.

In addition, for QRELTL formulas, we have

— m,i | (Vy)yp iff for every interval set3 C I, we haver, i, 5 = ¢.
— m,i | (Jy)yp iff there exists an interval sgt C I, such thatr, i, 5 = .

An infinite word w over24” satisfies a QRELTL formula, denotedr = ¢, if 7,0 =
. A model M satisfiesp, denotedV/ = ¢, if all traces of M satisfyp.

Definition 2. Consider a modeM . Lety be an RELTL formula that is satisfied M
and lete be a regular expression appearing¢n We say that does not affecp in M
iff M = (Vy)ple < y]. Otherwiseg affectsy in M. Finally, ¢ is regularly vacuous in
M if there exists a regular expressierthat does not affecp.

As an example for regular vacuity, consider the property

© = globally ((req - true - true) triggers ack)



which states that adck is asserted exactly three cycles afteea. Wheny is satisfied
in a modelM, one might conclude that all requests are acknowledgedyaha@ccurate
timing. However, the property is also satisfied in a matlethat keepsick high at all
times. Regular vacuity of with respect to(req - true - true) will be detected by
showing that the QRELTL formulévy)p[(req - true - true) « y] is also satisfied in
M. This can direct us to the erroneous behavior.

In the previous example we considered regular vacuity wepect to the entire
regular expression. Sometimes, a vacuous pass can onlydmatkby checking regular
vacuity with respect to a subexpression. Consider the ptppe

© = globally ((req - (—ack)* - ack) triggers grant)

which states that when arck is asserted sometime aftegq, thengrant is asserted
one cycle later. Regular vacuity on the subexpres§jemck)* - ack) can detect that
ack is actually ignored, and thatrant is asserted immediately afteeq and remains
high. On the other hand, regular vacuity would not be deteatethe regular expression
e = (req - (mack)* - ack), as it does affecp. This is because does not hold ik is
replaced by an intervaD, j), in whichreq does not hold in model/.

We now describe two alternative definitions for “does nogetff and hence also for
regular vacuity. We argue that the definitions are weakethénsense that a formula
that is satisfied vacuously with respect to Definition 2, iésfi@ad vacuously also with
respect to the alternative definitions, but not vice versga, [t may declare vacuity when
the general definition does not.) On the other hand, as wesbksn Section 5, vacuous
satisfaction with respect to the alternative definitiorsoisputationally easier to detect.

Regular vacuity modulo duratiol€onsider a regular expressierver 3. \We say that
e is of durationd, for d > 0, if all the words inL(e) are of lengthd. For example,
a - b-cis of duration3. We say thak is of afixed durationif it is of durationd for
somed > 0. Lete = a - b - c and lety = e triggers . The propertyy states that if
the computation starts with the Boolean events, andc, thent) should hold at time
3. Suppose now that in a mod&l, the formulay does not hold at times 0,1, and 2,
and holds at later times. In this caseholds due to the duration ef, regardless of
the Boolean events ia. According to Definition 2¢ affectsy (e.g., if 3 = {(0,1)}).
On the other hand, does not affecp if we restrict the interval variablg to intervals
of length 3. Thuse does not affect the truth @b in M modulo its duration iffy is
still true whene is replaced by an arbitrary interval of tisameduration (providec
is of a fixed duration). Formally, for a duratieh let I; = {(i,i + d) : i € N} be
the set of all natural intervals of durati@h The logicduration-QRELTLis a variant of
QRELTL in which the quantification af is parametrized by a duratieh andy ranges
over intervals of duratiod. Thus,r,i |= (Vay)y iff for every interval set3 C 1, we
haver, i, 8 |E ¢, and dually for(3,y)¢.

Definition 3. Consider a modeM . Letp be an RELTL formula that is satisfied M
and lete be a regular expression of duratiehappearing inp. We say that does not
affecty in M modulo durationff M = (Vqy)ele < y]. Finally, ¢ is regularly vacuous
in M modulo duration if there exists a regular expressiarf a fixed duration that does
not affectp modulo duration.



We note that instead of requirirrgo have a fixed duration, one can restrict attention
to regular expressions of a finite set of durations (in whiz$ee is replaced by intervals
of the possible durations); in particular, regular expssof a bounded duration (in
which case: is replaced by intervals shorter than the bound). As we shdBection 5,
vacuity detection for all those alternative definitionsimaitar.

Regular vacuity modulo expression struct@ensider again the formula= e triggers 1,
fore = a- b - c. The formulay is equivalent to the LTL formula’ = a — X (b —
X (¢ — X1)). Ifwe check the vacuity of the satisfactiongfin a systemV/, we check,
for each of the subformulasg b, andc whether they affect the satisfaction @f. For
that, [2] uses universal monadic quantification. In regukcuity modulo expression
structure we do something similar — instead of replacingathele regular expression
with a universally quantified dyadic variable, we replaceheaf the Boolean functions
in B that appear in the expression by a universally quantifiedadignvariable (or,
equivalently, by a dyadic variable ranging over intervdigloration 1). Thus, in our
example,p passes vacuously in the systér described above, as neitherd, norc
affect its satisfaction. Formally, we have the following

Definition 4. Consider a modelM . Let ¢ be an RELTL formula that is satisfied in
M and lete be a regular expression appearing in We say that does not affect
¢ in M modulo expression structuii for all b € B that appear ine, we have that
M [ (V1y)p[b < y]. Finally, ¢ is regularly vacuous il modulo expression structure
if there exists a regular expressierthat does not affegt modulo expression structure.

4  Algorithmic Aspects of Vacuity Detection

In this section we study the complexity of the regular-vacproblem. As discussed in
Section 3, vacuity detection can be reduced to model chgakim QRELTL formula
of the form (Vy)p. We describe an automata-based EXPSPACE solution to tlee lat
problem, and conclude that regular vacuity is in EXPSPACE&cdl that we saw in
Section 2 that RELTL model checking is in PSPACE. As show2]njacuity detection
for LTL is not harder than LTL model checking, and can be soliwvePSPACE. In the
full version we show that regular vacuity is NEXPTIME-hafdhus, while the precise
complexity of regular vacuity is open, the lower bound iradés that an exponential
overhead on top of the complexity of RELTL model checkingsg@evitable.

We describe a model-checking algorithm for QRELTL formudathe form(vy)e.
Recall that in the automata-theoretic approach to LTL motetking, one constructs,
given an LTL formulay, an automatom-, that accepts exactly all paths that do not
satisfyp. Model checking is then reduced to the emptiness of the mtamfud -, with
the modelM [27]. For a QRELTL formulaVy)¢, we need to construct an automaton
A(3y)-,» Which accepts all paths that do not satiéfy) . Since we considered RELTL
formulas in a positive normal form, the construction-of has to propagate the negation

5 Note that Definition 4 follows the semantic approach of [2]syktactic approach, as the one
taken in [5, 19], would result in a different definition, weeBoolean functions are replaced by
different Boolean functions.



inward toy’s atomic propositions, using De-Morgan laws and dualitiegarticular,
—(eseqy) = (etriggers —y) and—(e triggers ¢) = (e seq ). It is easy to see
that the length of-p in positive normal form is linear in the length of

Theorem 3. Given an existential QRELTL formula@y) over AP, we can construct
an NGBWA,, over the alphabe2“” such thatL(A,) = {7|r,0 | (Jy)¢}, and the
size ofA,, is doubly exponential igp.

Proof: The translation of3y)y goes via an intermediate formu(dy )« in the tem-
poral logic QALTL. The syntax of QALTL is identical to the oo QRELTL, only that
regular expressions ov&U {y} are replaced by NFW over'” U {y}. The closure of
QALTL formulas is defined similarly to the closure of ALTL faulas. The adjustment
of the semantics is similar to the adjustment of RELTL to Alddscribed in Section 2.
In particular, the adjustment of Definition 1 to languagesrdbe alphabe2“” U {y}
replaces the condition “if;, € B thenwy(m;, ) = true andi;; = I + 1" there by
the condition “ifwy, € 247, thenwy, = my,, andlyy1 =l + 1" here.

Given a QRELTL formulg3y )¢, its equivalent QALTL formuld3y)v is obtained
by replacing every regular expressierin (3y)y by Z!, whereZ! is as defined in
Section 2. Note that the alphabetdf is 247 U {y}. Itis easy to see that for afl, 4, j,
andg, we have thatr, i, j, B L(e) iff 7,4, j, BE L(Z.). Thus, for every wordr and
i > 0, we have thatr,i = (3y)p iff 7,0 = (Jy)9.

The construction of the NGBW,, from (3y)v is based on the construction pre-
sented in Section 2. As there, whdp readsr; and is in stat€L,, P;), it guesses that
the suffixm;, 7,41 . . . satisfies all the subformulas iy Since, however, heré, needs
to simulate NFWSs with transitions labelled by the intervatigbley, the construction
here is more complicated. While a transition labelled bytteten 247 corresponds
to reading the current letter;, a transitions labelled by corresponds to reading an
intervalm;, ..., m;_1 in 5. Recall that the semantics of QALTL is such tiay)y is
satisfied inr if there is an interval se8 C I for which 7, 8 satisfiesy. Note that
triggers formulas are trivially satisfied for an empgtywhereas seq formulas requjse
to contain some intervals. Assume thdyf is in points of 7, it Simulates a transition
labelledy in an NFW that corresponds to a seq formulalin and it guesses that
contains some intervai, j). Then, A, has to make sure that all the NFWs that corre-
spond to triggers formulas ih, and that have a transition labellgdwould complete
this transition when point is reached. For thaf,; has to be associated with a set of
triggers formulas.

Formally, forasef, C cl(¢), we definewait(L,) = {(Z? triggers £)|(Z¢ triggers ¢) €
Lsandq’ € A(q,y)}. Intuitively, wait (L) is the set of triggers formulas that are wait-
ing for an interval ing to end. Once the interval ends, as would be enforced by a
seq formula, the members afait(L;) should hold. Letseq(y)) andtrig(v) be the
sets of seq and triggers formulasdh{v), respectively. Arobligationfor ¢ is a pair
o0 € seq(1p) x 2!79(¥) | Let obl(1)) be the set of all the obligations fgr. Now, to for-
malize the intuition above, assume th&} is in point: and it simulates a transition
labelledy in the NFW Z for some(Z9 seq ¢) € L. Then, A, creates the obligation
o= ((Z7seq &), wait(Ls)) and propagates it until the end of the interval.

The NGBW A, = (247,54, Sy, F), where the set of state$ is the set of all
pairs (L, Ps) such thatl, is a consistent set of formulas and obligations, &dC



LN (seq(y) U obl(v)). Note that the size all, is doubly exponential igp. The set of
initial states isSy = {(Ls, Ps)|¢ € Ls, P; = (}. The acceptance condition is used to
impose the fulfillment ofuntil and seq eventualities, and is similar to the construction
in Section 2; thusF = {®1, ..., Py, Pseq . Whered, = {s € S|(p; until §;), & € Ly

or (p; untilg;) € Ls}, and®s., = {s € S|Ps = 0}. We define the transition relatien
as the set of all triple§(Ls, Ps), a, (L, P;)) that satisfy the following conditions:

ahrwONE

o

10.

11.
12.

13.

Forallp € AP, if p € Lsthenp € a.

Forallp € AP, if —p € L, thenp ¢ a.

If (next p1) € Lg, thenp; € L.

If (1 until o) € Ly, then eitherpy € L, orp; € L, and(p; until p3) € L;.

If (p1 release ¢3) € Ly, thenps € L and eitherp; € Ly, or (o1 release ¢;) €

Lt.

If (Z1seq¢) € L, then at least one of the following holds:

(@) g€ Wand¢ € L.

(b) (29 seq¢) e L, for someq’ € A(q, a).

(c) A(q,y) # 0 ando = ((Z7seq &), wait(Ls)) € Ls. In this case we say that
there is ay-transition from(Z% seq &) to o in L.

If conditionsa orb hold, we say thatZ? seq &) isstrongin L w.r.t. ((Ls, Ps),a, (L, P})).

. If (Z4 triggers &) € L, then the following holds:

(@) Ifg € W,then¢ € L.
(b) (24 triggers ¢) € L, forall ¢’ € A(q, a).

. Forevery(Z9seq ¢) € Ps, at least one of the following holds:

(@) g€ Wand¢ € L.

(b) (29 seq¢) € P.N L, for someq’ € A(q,a).

(c) A(q,y) # 0 ando = ((Z7seq &), wait(Ls)) € Ps. In this case we say that
there is ay-transition from(Z? seq &) to o in Ps.

If conditionsa orb hold, we say thatZ? seq &) is strong inP; w.r.t. ((Ls, Ps), a, (L, P;)).

. Ifo=((Z7seq¢),T) € L, then at least one of the following holds:

(a) For some/ € A(q,y), we have tha(Zq' seqé) € Ls andT C L. In this
case we say that there igjdransition fromo to (Z‘?' seq &) in L.

(b) o € L.

If condition b holds, we say thad is strong inL, w.r.t. ((Ls, Ps), a, (L, P)).

Ifo=((Z7seq¢),Y) € P, then at least one of the following holds:

(a) For some; € A(q,y), we have thatZ? seq¢) € P, andY C L,. In this
case we say that there igjaransition fromo to (Zq/ seq &) in Ps.

(b) 0 € P.

If condition b holds, we say that is strong inPs w.r.t. ((Ls, Ps), a, (L, Pt)).

If P, = 0, thenP, = L; N (seq(p) U obl(p)).

If wait(Ls) C Ls, then for every element b, N (seq(y) U 0bl(p)) there exists a

path (possibly of length) of y transitions to a strong elementw.({L, Ps), a, (L, P;)).

Note that they-transitions are local i, and defined in rules, 8, 9, 10.

If wait(Ls) C Lg, then for every element if; N (seq(¢) U 0bl(p)) there exists a

path (possibly of length) of y transitions to a strong elementw.({L, Ps), a, (L¢, P;)).



We now explain the role of condition® and13 of 4. As explained above, for every
formula(Z9 seq &) that should hold at point, the NGBW A, simulates a run of?
that should eventually accept an intervalofSinceZ? has transitions labelled by it
is possible forZ1 to loop forever in(L;, P;) (when(i,i) € ). Conditions12 and13
force the run ofZ? to eventually reach an accepting state, and prevent sudffiaia
loop. The correctness of the construction is proved in tHe/éusion. ]

In the automata-theoretic approach to linear model cheghire translate a for-
mulat to an automaton that accepts exactly all the computati@aisttisfy). While
traditional translations use nondeterministic autometta [(L3]), recent translations go
through alternating automata (cf., [12, 26]). Then, théestspace of the automaton con-
sists of subformulas af, the construction is considerably simpler, and the inteliate
automata are exponentially more succinct. In particulhar ttanslation of RELTL for-
mulas to NGBW described in Theorem 1 can be replaced by a sirtmainslation, to
alternating automata. For vacuity detection, however, ageho use nondeterministic
automata. To see why, note that reasoning about the QRELhhla (Jy )¢ involves a
guess as to where intervals associated withd. Therefore, a translation of the formula
to an alternating automaton results in an automaton in wthieklifferent copies need to
coordinate in order to synchronize at the position whe&mds. Such a synchronization
is impossible for alternating automata.

Given a modelM and the NGBWA,, for (Jy)¢, the emptiness of their intersection
can be tested in time polynomial or in space polylogarithmibe sizes of\/ and A,
(note thatM and A, can be generated on the fly) [27]. A path in the intersectioi/of
and A, is a witness that affectsy. It follows that the problem of deciding whether a
regular expressioa affectsy in M can be solved in EXPSPACE. Since the number of
regular expressions appearinggtis linear in the length op, we can conclude with the
following upper bound to the regular-vacuity problem. Asaded in the full version,
the lower bound follows from a reduction of the exponent@libded-tiling problem to
regular vacuity.

Theorem 4. The regular-vacuity problem for RELTL can be solved in EX&SPand
is NEXPTIME-hard.

In Section 5, we analyze the complexity of regular vacuityemarefully and show
that the computational bottle-neck is the length of regebgoressions appearing in
triggers formulas ip. We also describe a fragment of RELTL for which regular vacui
can be solved in PSPACE.

5 Regular Vacuity in Practice

The results in Section 4 suggest that, in practice, becauge @omputational com-
plexity of general vacuity checking, one may need to worlkhwitaker definitions of
vacuity or restrict attention to specifications in which treage of regular expressions
is constrained. In this section we show that under certalarjpp constraints, regu-
lar vacuity can be reduced to standard model checking. Itiaddve show that even
without polarity constraints, detection of the weaker d&éins of vacuity, presented in
Section 3, is also not harder than standard model checking.



Specifications of pure polaritiExamining industrial examples shows that in many cases
the number of trigger formulas that share a regular expassith a seq formulais quite
small. One of the few examples that use both describes a tildckattern and is ex-
pressed by the formutack_pattern = (e seq true)A globally (e triggers (e seq true)),
wheree defines the clock ratio, e.g.= clock_low-clock _low-clock_high-clock_high.

As shown in the previous section, the general case of regataiity adds an expo-
nential blow-up on top of the complexity of RELTL model cheuk A careful analysis
of the state space of, shows that with every selt, of formulas, we associate obli-
gations that are relevant to,. Thus, if L, contains no seq formula with an NFW that
reads a transition labelled then its obligation is empty. Otherwiseqit (L) contains
only trigger formulas that appear i, and whose NFWs read a transition labelled
In particular, in the special case where seq and triggersuhflas do not share regu-
lar expressions, we hauel(¢)| = 0. For this type of specifications, where all regular
expressions have pure polarity, regular vacuity is much easier. Rather than analyz-
ing the structure ofd,, in this special case, we describe here a direct algorithritor
regular-vacuity problem.

We first definepure polarityfor regular expression. As formulas in RELTL are in
positive normal form, polarity of a regular expressiois not defined by number of
negations, but rather by the operator applied.tBormally, an occurrence of a regular
expressiom is of positive polarityin ¢ if it is on the left hand side of seq modality,
and ofnegative polarityf it is on the left hand side of driggers modality. The polarity
of aregular expression is defined by the polarity of its omzuees as follows. A regular
expressiore is of positive polarityif all occurrences ot in ¢ are of positive polarity,
of negative polarityif all occurrences oé in ¢ are of negative polarity, gfure polarity
if it is either of positive or negative polarity, and ofixed polarityif some occurrences
of e in o are of positive polarity and some are of negative polarity.

Definition 5. Given a formulay and a regular expression of pure polaritywe denote
by p[e «+ L] the formula obtained fronp by replacinge by true*, if e is of negative
polarity, and byfalse if e is of positive polarity.

We now show that foe with pure polarity inp, checking whethee effectsy, can be
reduced to RELTL model checking:

Theorem 5. Consider a moded, RELTL formulap, and regular expressionof pure
polarity. Then,M = (Yy)ple — y] iff M |= ple — L].

Since the model-checking problem for RELTL can be solved3RACE, it follows that
the regular-vacuity problem for the fragment of RELTL in whiall regular expressions
are of pure polarity is PSPACE-complete.

Weaker definitions of regular vacuitin Section 3, we suggested two alternative def-
initions for regular vacuity. We now show that vacuity deimc according to these
definitions is in PSPACE — not harder than RELTL model chegkin

We first show that the dyadic quantification in duration-QRElcan be reduced
to a monadic one. Intuitively, since the quantification imation-QRELTL ranges over
intervals of a fixed and known duration, it can be replaced Quantification over the
points where intervals start. Formally, we have the follogvi



Lemma 1. Consider a syster/, an RELTL formulgp, a regular expression appear-
ingin g, andd > 0. Then,M = (Vay)ple «— y] iff M = (Vz)ple «— (x - true?=1)],
wherex is a monadic variable.

Universal quantification of monadic variables does not nm&del checking harder:
checking whetheM E (Vz)y can be reduced to checking whether there is a computa-
tion of M that satisfie$3x)—p. Thus, as detailed in [2], when we construct the intersec-
tion of M with the NGBW for—, the values forc can be guessed, and the algorithm
coincides with the one for RELTL model checking. Since diébecof vacuity modulo
duration and modulo expression structure are both redwodgiration-QRELTL model
checking, Theorem 2 implies the following.

Theorem 6. The problem of detecting regular vacuity modulo duratiommdulo ex-
pression structure is PSPACE-complete.

We note that when the formula is of a pure polarity, no quandifon is needed, and
e may be replaced, in the case of vacuity modulo duratiofiabye or true? according
its polarity. Likewise, in the case of vacuity modulo exmies structure, the Boolean
formulas ine may be replaced bfalse or true.

6 Concluding Remarks

We extended in this work vacuity detection to a regular layfdinear-temporal log-
ics. We focused here on RELTL, which is the extension of LTithva regular layer.
We defined the notion of “does not affect,” for regular express in terms of univer-
sal dyadic quantification. We showed that regular vacuitjeisidable, but involves an
exponential blow-up (in addition to the standard exporaitiow-up for LTL model
checking). We showed that under certain polarity constisadm regular expressions,
regular vacuity can be reduced to standard model checkingd€xidability result for
dyadic second-order quantification is of independent@stett suggests that the bound-
ary between decidability and undecidability can be chaatedfiner detail than the cur-
rent monadic/dyadic boundary. A related phenomenon wasrebd in the context of
descriptive complexity theory, see [10, 14].

We suggested two alternative definitions for regular vacaiitd showed that with
respect to these definitions, even for formulas that do risfgahe polarity constraints,
vacuity detection can be reduced to standard model checkinigh makes them of
practical interest. The two definitions are weaker than amegal definition, in the
sense that a vacuous pass according to them may not be aeusidgeuous accord-
ing to the general definition. It may seem that working with arensensitive defini-
tion would be an advantage, but experience with vacuityaiete in industrial settings
shows that flooding users with too many reports of vacuousqsasay be counterpro-
ductive. Thus, it is difficult to make at this point definitigtatements about the overall
usability of the weaker definitions, as more industrial eigee with them is needed.
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