
Regular Vacuity

Doron Bustan2, Alon Flaisher1, Orna Grumberg1, Orna Kupferman3?, and
Moshe Y. Vardi2??

1 Technion Haifa
2 Rice University

3 Hebrew University

Abstract. The application of model-checking tools to complex systemsinvolves
a nontrivial step of modelling the system by a finite-state model and a translation
of the desired properties into a formal specification. Whilea positive answer of
the model checker guarantees that the model satisfies the specification, correct-
ness of the modelling is not checked. Vacuity detection is a successful approach
for finding modelling errors that cause the satisfaction of the specification to be
trivial. For example, the specification “every request is eventually followed by a
grant” is satisfied vacuously in models in which requests arenever sent. In gen-
eral, a specificationϕ is satisfied vacuously in a modelM if ϕ has a subformula
ψ that does not affect the satisfaction ofϕ in M , where “does not affect” means
we can replaceψ by a universally quantified proposition. Previous works focus
on temporal logics such as LTL, CTL, and CTL∗, and reduce vacuity detection to
standard model checking.
A major feature of recent industrial property-specification languages is their reg-
ular layer, which includes regular expressions and formulas constructed from reg-
ular expressions. Our goal in this work is to extend vacuity detection to such a
regular layer of linear-temporal logics. We focus here on RELTL, which is the
extension of LTL with a regular layer. We define when a regularexpression does
not affect the satisfaction of an RELTL formula by means of universally quan-
tified intervals. Thus, the transition to regular vacuity takes us from monadic
quantification to dyadic quantification. We argue for the generality of our defi-
nition and show that regular-vacuity detection is decidable, but involves an expo-
nential blow-up (in addition to the standard exponential blow-up for LTL model
checking). This suggests that, in practice, one may need to work with weaker
definitions of vacuity or restrict attention to specifications in which the usage of
regular events is constrained. We discuss such weaker definitions, and show that
their detection is not harder than standard model checking.We also show that,
under certain polarity constraints, even general regular-vacuity detection can be
reduced to standard model checking.

1 Introduction

Model-checkingtools are successfully used for checking whether systems have desired
properties [9]. The application of model-checking tools tocomplex systems involves
? Supported in part by BSF grant 9800096, and by a Minerva Program grant.

?? Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435,
IIS-9978135, EIA-0086264, and ANI-0216467, by BSF grant 9800096, by Texas ATP grant
003604-0058-2003, and by a grant from the Intel Corporation.

a nontrivial step of modelling the system by a finite-state mathematical model, and
translation of the desired properties into a formal specification. When the model does
not satisfy the specification, model-checking tools accompany a negative answer with a
counterexample, which may point to a real error in the system[8]. It is often the case,
however, that there is an error in the modelling of the systemand/or in the formal spec-
ification. Such errors may not be detected when the answer of the model-checking tool
is positive: while a positive answer does guarantee that themodel satisfies the speci-
fication, the answer to the real question, namely, whether the system has the desired
properties, may be different.

The realization of this unfortunate situation has led to thedevelopment of several
sanity checksfor formal verification. The goal of these checks is to detecterrors in the
modelling of the system and the properties. Sanity checks inindustrial tools are typi-
cally simple, often ad hoc, tests, such as checking for enabling conditions that are never
enabled [20]. A more systematic approach is based onvacuity detection. Intuitively, a
specification is satisfied vacuously in a model if it is satisfied in some non-interesting
way. For example, the LTL specificationθ = globally (req → eventually grant)
(“every request is eventually followed by a grant”) is satisfied vacuously in a model
with no requests. While vacuity checking cannot ensure thatwhenever a model satis-
fies a formula, the model is correct, it does capture inconsistencies between the model
and the verified property. Being automatic, vacuity checking avoids hidden false as-
sumptions made by the verifier, and thus it is more likely to capture modelling and
specification errors.

Several years of experience in practical formal verification have convinced the veri-
fication group in IBM Haifa Research Laboratory that vacuityis a serious problem [5].
To quote from [5]: “Our experience has shown that typically20% of specifications pass
vacuously during the first formal-verification runs of a new hardware design, and that
vacuous passes always point to a real problem in either the design or its specification
or environment.” The first formal treatment of vacuity is described in [5]. Consider a
modelM satisfying a specificationϕ. A subformulaψ of ϕ does not affect(the sat-
isfaction of)ϕ in M if M also satisfies all formulas obtained by modifyingψ. In the
example above, the subformulagrant does not affectθ in a model with no requests.
Now, M satisfiesϕ vacuously ifϕ has a subformula that does not affectϕ in M . A
general method for vacuity detection was presented in [19],who showed that when all
the occurrences ofψ in ϕ are of apure polarity (that is, they are either all under an
even number of negations (positive polarity), or all under an odd number of negations
(negative polarity)), thenψ does not affectϕ iff M satisfies the formula obtained from
ϕ by the single extreme modification ofψ (to true in caseψ has a negative polarity,
and tofalse otherwise). This observation reduces vacuity detection tomodel checking.
The usefulness of vacuity analysis is also demonstrated viaseveral case studies in [22].
For more recent work on vacuity checking, see [16, 15].

As shown in [19], the method described there can be used when subformulas ofϕ
are of amixed polarity. In practice, however, one often needs to cope with mixed polar-
ity. For example, the subformulaψ has a mixed polarity in formulas of the (commonly
seen) form globally (ψ → θ) ∧ eventually ψ. In fact, industrial-strength property-
specification languages such as Sugar [4], ForSpec [3], and the recent standards PSL 1.01

and SVA 3.1a [1] contain operators in which even a single occurrence ofψ may not have
a pure polarity (e.g.,ψ XOR θ orψ ↔ θ).

Once we allow subformulas of a mixed polarity, there is a needto re-examine the
definition of whenψ does not affectϕ in M . Indeed, it is only in the pure-polarity case
that the various modifications ofψ may be restricted to the single extreme modifica-
tion. Such a re-examination was done in [2], who considered vacuity detection for LTL
specifications. While the modifications toψ in [5] aresyntactic; i.e.,M has to satisfy
all formulasϕ[ψ ← ψ′], namely formulas obtained fromϕ by substitutingψ by an LTL
formulaψ′, Armoni et al. argued that a right definition is one in which the modifica-
tions toψ aresemantic; i.e.,M has to satisfy the formula(∀x)ϕ[ψ ← x], obtained by
substitutingψ by a universally quantified proposition4. Gurfinkel et al further extend
this definition to CTL∗ in [15] arguing that it is more robust than other definitions..
It is shown in [2] that, under such a semantic interpretation, vacuity detection of LTL
formulas can still be reduced to LTL model checking. A tool used at Intel for vacuity
detection is also described in [2].

As mentioned earlier, the work in [2] was motivated by the need to extend vacuity
detection to recent industrial property-specification languages, which are significantly
richer syntactically and semantically than LTL. A major feature of these languages,
which does not exist in LTL, is aregular layer, which includes regular expressions
and formulas constructed from regular expressions. The regular layer does not only add
to the expressive power of the specification language s.t. itcan express the wholeω-
regular spectrum, but it also seemed to be more intuitive to hardware engineers. For
some languages like SVA 3.1a, the only way to express temporal properties is using
regular expressions.

As an example of the use of the regular layer, consider the ForSpec formulae seq θ,
wheree is a regular expression andθ is a formula, asserts that somee sequence is fol-
lowed byθ, and the ForSpec formulae triggers θ, asserts that alle sequences are fol-
lowed byθ. Our goal in this paper is to extend vacuity detection to sucha regular layer
of linear-temporal logics. Rather than treat the full complexity of industrial languages,
we focus here on RELTL, which is the extension of LTL with a regular layer. Thus,
we need to define, and then check, the notion of ”does not affect,” not only for subfor-
mulas but also for regular expressions. We refer to the latter asregular vacuity. As an
example, consider the propertyϕ = globally ((req · (¬ack)∗ · ack) triggers grant),
which says that a grant is given exactly one cycle after the cycle in which a request is
acknowledged. Note that if(¬ack)∗ · ack does not affect the satisfaction ofϕ in M

(that is, replacing(¬ack)∗ · ack by any other sequence of events does not causeM to
violateϕ), we can learn that acknowledgments are actually ignored: grants are given,
and stay on forever, immediately after a request. Such a behavior is not referred to in
the specification, but can be detected by regular vacuity. Note that if the same regular
expression appears in the left-hand side of bothseq and triggers formulas or on both
sides of atriggers formula, then this expression has mixed polarity.

4 A modelM satisfies a formula(∀x)ϕ(x) if ϕ is satisfied in all computationsπ that differ from
a computation ofM only in the label of the propositionx. Note that different occurrences of a
state inπ may have differentx labels.

In order to understand our definition for regular vacuity, consider a formulaϕ over
a setAP of atomic propositions. LetΣ be the set of Boolean functions overAP , and
let e be a regular expression overΣ appearing inϕ. The regular expressione induces a
language – a set of finite words overΣ. For a wordw ∈ Σω, the regular expressione
induces a set of intervals [3]: these intervals define subwords ofw that are members in
the language ofe. By saying thate does not affectϕ in M , we want to capture the fact
that we could modifye, replace it with any other regular expression, and stillM satis-
fiesϕ. As has been the case with propositional vacuity, there is noknown algorithmic
approach to handle such syntactic modifications in the presence of regular expressions
of mixed polarity. Accordingly, as in [2], we follow a semantic approach to modifi-
cations ofe, where “does not affect” is captured by means of universal quantification.
Thus, in RELTL vacuity there are two types of elements we needto universally quantify
to check vacuity. First, as in LTL, in order to check whether an RELTL subformulaψ,
which is not a regular expression, affects the satisfactionof ϕ, we quantify universally
over a proposition that replacesψ. In addition, checking whether a regular expression
e that appears inϕ affects its satisfaction, we need to quantify universally over inter-
vals. Thus, while LTL vacuity involved onlymonadicquantification (over the sets of
points in which a subformula may hold), regular vacuity involvesdyadicquantification
(over intervals – sets of pairs of points, in which a regular expression may hold). In
Section 3, we discuss two weaker alternative definitions: a restriction of the universally
quantified intervals to intervals of the same duration ase, and an approximation of the
dyadic quantification over intervals by monadic quantification over the Boolean events
referred to in the regular expressions. As discussed there,the definition in terms of
dyadic quantification is the most general one.

The transition from monadic to dyadic quantification is verychallenging. Indeed,
while monadic second-order logics are often decidable [7, 23], this is not the case for
dyadic second-order logics. For example, while monadic second-order theory of one
successor is decidable [7], this is not the case for the dyadic theory [6]. The main result
of this work is that regular vacuity is decidable. We show that the automata-theoretic
approach to LTL [27] can be extended to handle dyadic universal quantification. Unlike
monadic universal quantification, which can be handled withno increase in computa-
tional complexity [2], the extension to dyadic quantification involves an exponential
blow-up (in addition to the standard exponential blow-up ofhandling LTL [25]), result-
ing in an EXPSPACE upper bound, which should be contrasted with a PSPACE upper
bound for RELTL model checking. Our NEXPTIME-hardness lower bound, while leav-
ing a small gap with respect to the upper bound, shows that an exponential overhead on
top of the complexity of RELTL model checking seems inevitable. The above results
suggest that, in practice, one may need to restrict attention to specifications in which
regular expressions are of pure polarity. We show that underthis assumption, the tech-
niques of [19] can be extended to regular vacuity, which can then be reduced to standard
model checking. In addition, for specifications of mixed polarity, the two weaker defi-
nitions we suggest for regular vacuity can also be checked inPSPACE – like standard
RELTL model checking.

2 RELTL

The linear temporal logic RELTL extends LTL with a regular layer. We consider LTL
in a positive normal form, where formulas are constructed from atomic propositions
and their negations by means of Boolean (∧ and∨) and temporal (next, until, and
its dualrelease) connectives. For details, see [21]. LetAP be a finite set of atomic
propositions, and letB denote the set of all Boolean functionsb : 2AP → {false, true}
(in practice, members ofB are expressed by Boolean expressions overAP). Consider
an infinite wordπ = π0, π1, . . . ∈ (2AP)ω . For integersj ≥ i ≥ 0, and a languageL ⊆
B∗, we say thatπi, . . . , πj−1 tightly satisfiesL, denotedπ, i, j|≡ L, if there is a word
b0 · b1 · · · bj−1−i ∈ L such that for all0 ≤ k < j − i, we have thatbk(πi+k) = true.
Note that wheni = j, the intervalπi, . . . , πj−1 is empty, in which caseπ, i, j|≡ L iff
ε ∈ L.

The logic RELTL contains two regular modalities:(e seq ϕ) and(e triggers ϕ),
wheree is a regular expression over the alphabetB, andϕ is an RELTL formula. In-
tuitively, (e seq ϕ) asserts that some interval satisfyinge is followed by a suffix sat-
isfying ϕ, whereas(e triggers ϕ) asserts that all intervals satisfyinge are followed by
a suffix satisfyingϕ. Note that theseq and triggers connectives are essentially the
“diamond” and “box” modalities of PDL [11]. Formally, letπ be an infinite word over
2AP then,5

– π, i |= (e seq ϕ) if for somej ≥ i, we haveπ, i, j|≡ L(e) andπ, j |= ϕ.
– π, i |= (e triggers ϕ) if for all j ≥ i such thatπ, i, j|≡ L(e), we haveπ, j |= ϕ.

In the automata-theoretic approach to model checking, we translate temporal logic for-
mulas to automata [27]. Anondeterministic generalized Büchi word automaton(NGBW,
for short) is a tupleA = 〈Σ,S, δ, S0,F〉, whereΣ is a finite alphabet,S is a finite set
of states,δ : S ×Σ → 2S is a transition function,S0 ⊆ S is a set of initial states, and
F ⊆ 2S is a set of sets of accepting states. A runρ of A is an infinite sequence of states
in S that starts in a state inS0 and obeysδ. Let inf(ρ) ⊆ S denote the set of states that
are visited infinitely often inρ. Since the run is infinite andS is finite, it must be that
inf(ρ) is not empty. An NGBWA accepts an infinite wordπ if it has an infinite run
ρ overπ such that for everyF ∈ F , we haveinf(ρ) ∩ F 6= ∅. The full definition of
NGBW is given in the full version. We now describe a translation of RELTL formulas
to NGBW. The translation can be viewed as a special case of thetranslation of ETL to
NGBW [27] (see also [17]), but we need it as a preparation for our handling of regular
vacuity.

Theorem 1. Given an RELTL formulaϕ overAP , we can construct an NGBWAϕ over
the alphabet2AP such thatL(Aϕ) = {π|π, 0 |= ϕ} and the size ofAϕ is exponential
in ϕ.

5 In industrial specification languages such as ForSpec and PSL the semantics is slightly dif-
ferent. There, it is required that the last letter of the interval satisfyingL(e) overlaps the first
letter of the suffix satisfyingψ. In the full version we describe a linear translation between
these two semantics.

Proof: The translation ofϕ goes via an intermediate formulaψ in the temporal logic
ALTL. The syntax of ALTL is identical to the one of RELTL, onlythat regular expres-
sions overB are replaced by nondeterministic finite word automata (NFW,for short)
over2AP . The adjustment of the semantics is as expected: letπ = π0, π1, . . . be an
infinite path over2AP . For integersi andj with 0 ≤ i ≤ j, and an NFWZ with al-
phabet2AP , we say thatπi, . . . , πj−1 tightly satisfiesL(Z), denotedπ, i, j, |≡ L(Z), if
πi, . . . , πj−1 ∈ L(Z). Then, the semantics of theseq and triggers modalities are as
in RELTL, with L(Z) replacingL(e).

A regular expressione over the alphabetB can be linearly translated to an equiv-
alent NFWZe with a single initial state [18]. To complete the translation to ALTL,
we need to adjust the constructed NFW to the alphabet2AP . Given the NFWZe =
〈B, Q,∆, q0,W 〉, let Z ′

e = 〈2AP , Q,∆′, q0,W 〉, where for everyq, q′ ∈ Q, anda ∈
2AP , we have thatq′ ∈ ∆′(q, a) iff there existsb ∈ B such thatq′ ∈ ∆(q, b) and
b(a) = true. It is easy to see that for allπ, i, andj, we have thatπ, i, j|≡ L(e) iff
π, i, j|≡ L(Z ′

e). Letψ be the ALTL formula obtained fromϕ by replacing every regular
expressione in ϕ by the NFWZ ′

e. It follows that for every infinite wordπ andi ≥ 0,
we have thatπ, i |= ϕ iff π, i |= ψ.

It is left to show that ALTL formulas can be translated to NGBW. Letψ be an ALTL
formula. For a stateq ∈ Q of an NFWZ, we useZq to denoteZ with initial stateq.
Using this notation, ALTL formulas of the form(Z ′

e seq ϕ) and(Z ′

e triggers ϕ) now
become(Z ′

e
q0 seq ϕ) and(Z ′

e
q0 triggers ϕ). The closure ofψ, denotedcl(ψ), is the

set{ξ|ξ is a subformula ofψ} ∪ {(Zq
′

seq ξ)|(Zq seq ξ) is a subformula ofψ andq′

is a state ofZq} ∪ {(Zq
′

triggers ξ)|(Zq triggers ξ) is a subformula ofψ andq′ is a
state ofZq}. Let seq(ψ) denote the set ofseq formulas incl(ψ). A subsetC ⊆ cl(ψ)
is consistentif the following hold: (1) ifp ∈ C, then¬p 6∈ C, (2) if ϕ1 ∧ ϕ2 ∈ C, then
ϕ1 ∈ C andϕ2 ∈ C, and (3) ifϕ1 ∨ ϕ2 ∈ C, thenϕ1 ∈ C orϕ2 ∈ C.

Givenψ, we define the NGBWAψ = 〈2AP , S, δ, S0,F〉, whereS ⊆ 2cl(ψ) ×
2seq(ψ) is the set of all pairs(Ls, Ps) such thatLs is consistent, andPs ⊆ Ls ∩ seq(ψ).
Intuitively, whenAψ reads the pointi of π and is in state(Ls, Ps), it guesses that the
suffix πi, πi+1, . . . of π satisfies all the formulas inLs. In addition, as explained below,
the setPs keeps track of the seq formulas inLs whose eventuality needs to be fulfilled.
Accordingly,S0 = {(Ls, ∅) ∈ S : ψ ∈ Ls}.

Before we describe the transition functionδ, let us explain how subformulas of the
form (Zq seq ψ) and (Zq triggers ψ) are handled. In both subformulas, something
should happen after an interval that tightly satisfiesZq is read. In order to “know”
when an intervalπi, πi+1, . . . πj−1 tightly satisfiesZq, the NGBWAψ simulates a run
of Zq on it. The seq operator requires a single interval that tightly satisfiesZq and
is followed by a suffix satisfyingψ. Accordingly,Aψ simulates a single run, which it
chooses nondeterministically. For thetriggers operator, the requirement is for every
interval that tightly satisfiesZq. Accordingly, hereAψ simulates all possible runs of
Zq. Formally,δ : (S × 2AP) → 2S is defined as follows:(Lt, Pt) ∈ δ((Ls, Ps), a) iff
the following conditions are satisfied:

– For allp ∈ AP , if p ∈ Ls thenp ∈ a, and if¬p ∈ Ls thenp 6∈ a.
– If (next ϕ1) ∈ Ls, thenϕ1 ∈ Lt.
– If (ϕ1 until ϕ2) ∈ Ls, then eitherϕ2 ∈ Ls, orϕ1 ∈ Ls and(ϕ1 until ϕ2) ∈ Lt.

– If (ϕ1 release ϕ2) ∈ Ls, thenϕ2 ∈ Ls and eitherϕ1 ∈ Ls, or (ϕ1 release ϕ2) ∈
Lt.
LetZ = 〈2AP , Q,∆, q0,W 〉 be an NFW.

– If (Zq seq ψ) ∈ Ls, then (a)q ∈ W andψ ∈ Ls, or (b) (Zq
′

seq ψ) ∈ Lt for
someq′ ∈ ∆(q, a).

– If (Zq triggers ψ) ∈ Ls, then (a) ifq ∈W , thenψ ∈ Ls, and (b)(Zq
′

triggers ψ) ∈
Lt for all q′ ∈ ∆(q, a).

– If Ps = ∅, thenPt = Lt∩seq(ϕ). Otherwise, for every(Zq seq ψ) ∈ Ps, we have
that (a)q ∈W andψ ∈ Ls, or (b)(Z(q′) seq ψ) ∈ Pt ∩Lt for someq′ ∈ ∆(q, a).

Finally, the generalized Büchi acceptance condition is used to impose the fulfillment
of until and seq eventualities. Thus,F = {Φ1, . . . , Φm, Φseq}, where for every
(ϕi until ψi) ∈ cl(ϕ), we have a setΦi = {(Ls, Ps) ∈ S|ψi ∈ Ls or (ϕi until ψi) 6∈
Ls}, and in addition we have the setΦseq = {(Ls, Ps) ∈ S|Ps = ∅}. As in [27], we
count on the fact that as long as a seq formula has not reached its eventuality, then some
of its derivations appear in the successor state. In addition, wheneverPs is empty, we
fill it with new seq formulas that need to be fulfilled. Therefore, the membership ofΦseq
in F guarantees that the eventualities of all seq formulas are fulfilled. The correctness
of the construction is proved in the full version.

The exponential translation of RELTL formulas to NGBW implies a PSPACE model-
checking procedure for it [27]. A matching lower bound is immediate from LTL being
a fragment of RELTL [25]. Hence the following theorem.

Theorem 2. The model-checking problem for RELTL is PSPACE-complete.

3 Regular Vacuity

As discussed in Section 1, we follow the semantic approach tovacuity [2]. According
to this approach, a subformulaψ of an RELTL formulaϕ does not affectϕ in a model
M if M satisfies(∀x)ϕ[ψ ← x], whereϕ[ψ ← x] is the result of replacing inϕ
all the occurrences of the subformulaψ with the variablex. Thus,ψ is replaced by a
universally quantifiedpropositional variable. Unlike a subformulaψ, which defines a
set of points in a pathπ (those that satisfyψ), a regular expressione defines a set of
intervals (that is, pairs of points) inπ (those that tightly satisfye). Accordingly, we
are going to define “does not affect” for regular expressionsby means of universally
quantifiedinterval variables. For that, we first define QRELTL, which is a technical
extension of RELTL; it extends RELTL by universal quantification over a single interval
variable.

Recall that the regular expressions of RELTL formulas are defined with respect
to the alphabetB of Boolean expressions overAP . Let y be the interval variable,
and letϕ be an RELTL formula whose regular expressions are defined with respect
to the alphabetB ∪ {y}. Then(∀y)ϕ and (∃y)ϕ are QRELTL formulas. For exam-
ple,(∀y) globally [(y seq ψ)∧(ab∗ triggers ¬ψ)] is a well-formed QRELTL formula,
whileψ ∨ [(∃y)(y seq ψ)] is not.

We now define QRELTL semantics. LetI = {(i, j)| i, j ∈ IN, j ≥ i} be a set of all
(natural) intervals. Aninterval setis a setβ ⊆ I. The interval variabley ranges over
interval sets and is associated withβ. Thus,(i, j) ∈ β means thaty is satisfied over
an interval of lengthj − i that starts ati. For a universally (existentially) quantified
formula, satisfaction is checked with respect to every (some) interval setβ. We first
define when a word̂π = πi . . . πj−1 over 2AP tightly satisfies, with respect toβ, a
languageL overB ∪ {y}. Intuitively, it means we can partition̂π to sub-intervals that
together correspond to a wordw in L. Note that since some of the letters inw may be
y, the sub-intervals may be of arbitrary (possibly0) length, corresponding to intervals
in β. Formally, we have the following.

Definition 1. Consider a languageL ⊆ (B∪{y})∗, an infinite pathπ over2AP , indices
i andj with i ≤ j, and an interval setβ ⊆ I. We say thatπi, . . . , πj−1 andβ tightly
satisfyL, denotedπ, i, j, β|≡ L iff there isw ∈ L such that eitherw = ε andi = j, or
w = w0, w1, . . . , wn and there is a sequence of integersi = l0 ≤ l1 ≤ · · · ≤ ln+1 = j

such that for every0 ≤ k ≤ n, the following conditions hold:

– If wk ∈ B, thenwk(πlk) = true andlk+1 = lk + 1.
– If wk = y, then(lk, lk+1) ∈ β.

For example, ifAP = {p}, β = {(3, 3), (3, 4)}, andπ = {{p}, ∅}ω, thenπ, 2, 4, β|≡
{p · y} sincep({p}) = true and (3, 4) ∈ β. Also, π, 2, 4, β|≡ {p · y · ¬p}, since
p({p}) = true, (3, 3) ∈ β, and¬p(∅) = true. Note that when the requiredw does
not containy, the definition is independent ofβ and coincides with tight satisfaction for
languages overB.

The semantics of the RELTL subformulas of a QRELTL formula isdefined induc-
tively as in RELTL, only with respect to an interval setβ. In particular, for theseq and
triggers modalities, we have

– π, i, β |= (e seq ϕ) iff for somej ≥ i, we haveπ, i, j, β|≡ L(e) andπ, j, β |= ϕ.
– π, i, β |= (e triggers ϕ) iff for all j ≥ i s.t.π, i, j, β|≡ L(e) we haveπ, j, β |= ϕ.

In addition, for QRELTL formulas, we have

– π, i |= (∀y)ϕ iff for every interval setβ ⊆ I, we haveπ, i, β |= ϕ.
– π, i |= (∃y)ϕ iff there exists an interval setβ ⊆ I, such thatπ, i, β |= ϕ.

An infinite wordπ over2AP satisfies a QRELTL formulaϕ, denotedπ |= ϕ, if π, 0 |=
ϕ. A modelM satisfiesϕ, denotedM |= ϕ, if all traces ofM satisfyϕ.

Definition 2. Consider a modelM . Letϕ be an RELTL formula that is satisfied inM
and lete be a regular expression appearing inϕ. We say thate does not affectϕ in M
iff M |= (∀y)ϕ[e← y]. Otherwise,e affectsϕ in M . Finally,ϕ is regularly vacuous in
M if there exists a regular expressione that does not affectϕ.

As an example for regular vacuity, consider the property

ϕ = globally ((req · true · true) triggers ack)

which states that anack is asserted exactly three cycles after areq. Whenϕ is satisfied
in a modelM , one might conclude that all requests are acknowledged, andwith accurate
timing. However, the property is also satisfied in a modelM that keepsack high at all
times. Regular vacuity ofϕ with respect to(req · true · true) will be detected by
showing that the QRELTL formula(∀y)ϕ[(req · true · true)← y] is also satisfied in
M . This can direct us to the erroneous behavior.

In the previous example we considered regular vacuity with respect to the entire
regular expression. Sometimes, a vacuous pass can only be detected by checking regular
vacuity with respect to a subexpression. Consider the property

ϕ = globally ((req · (¬ack)∗ · ack) triggers grant)

which states that when anack is asserted sometime afterreq, thengrant is asserted
one cycle later. Regular vacuity on the subexpression((¬ack)∗ · ack) can detect that
ack is actually ignored, and thatgrant is asserted immediately afterreq and remains
high. On the other hand, regular vacuity would not be detected on the regular expression
e = (req · (¬ack)∗ · ack), as it does affectϕ. This is becauseϕ does not hold ife is
replaced by an interval(0, j), in whichreq does not hold in modelM .

We now describe two alternative definitions for “does not affect” and hence also for
regular vacuity. We argue that the definitions are weaker, inthe sense that a formula
that is satisfied vacuously with respect to Definition 2, is satisfied vacuously also with
respect to the alternative definitions, but not vice versa (i.e., it may declare vacuity when
the general definition does not.) On the other hand, as we discuss in Section 5, vacuous
satisfaction with respect to the alternative definitions iscomputationally easier to detect.

Regular vacuity modulo durationConsider a regular expressione overB. We say that
e is of durationd, for d ≥ 0, if all the words inL(e) are of lengthd. For example,
a · b · c is of duration3. We say thate is of a fixed durationif it is of durationd for
somed ≥ 0. Let e = a · b · c and letϕ = e triggers ψ. The propertyϕ states that if
the computation starts with the Boolean eventsa, b, andc, thenψ should hold at time
3. Suppose now that in a modelM , the formulaψ does not hold at times 0,1, and 2,
and holds at later times. In this case,ϕ holds due to the duration ofe, regardless of
the Boolean events ine. According to Definition 2,e affectsϕ (e.g., ifβ = {(0, 1)}).
On the other hand,e does not affectϕ if we restrict the interval variabley to intervals
of length 3. Thus,e does not affect the truth ofϕ in M modulo its duration iffϕ is
still true whene is replaced by an arbitrary interval of thesameduration (providede
is of a fixed duration). Formally, for a durationd, let Id = {(i, i + d) : i ∈ IN} be
the set of all natural intervals of durationd. The logicduration-QRELTLis a variant of
QRELTL in which the quantification ofy is parametrized by a durationd, andy ranges
over intervals of durationd. Thus,π, i |= (∀dy)ϕ iff for every interval setβ ⊆ Id, we
haveπ, i, β |= ϕ, and dually for(∃dy)ϕ.

Definition 3. Consider a modelM . Letϕ be an RELTL formula that is satisfied inM
and lete be a regular expression of durationd appearing inϕ. We say thate does not
affectϕ inM modulo durationiff M |= (∀dy)ϕ[e← y]. Finally,ϕ is regularly vacuous
inM modulo duration if there exists a regular expressione of a fixed duration that does
not affectϕ modulo duration.

We note that instead of requiringe to have a fixed duration, one can restrict attention
to regular expressions of a finite set of durations (in which casee is replaced by intervals
of the possible durations); in particular, regular expressions of a bounded duration (in
which casee is replaced by intervals shorter than the bound). As we show in Section 5,
vacuity detection for all those alternative definitions is similar.

Regular vacuity modulo expression structureConsider again the formulaϕ = e triggers ψ,
for e = a · b · c. The formulaϕ is equivalent to the LTL formulaϕ′ = a → X(b →
X(c→ Xψ)). If we check the vacuity of the satisfaction ofϕ′ in a systemM , we check,
for each of the subformulasa, b, andc whether they affect the satisfaction ofϕ′. For
that, [2] uses universal monadic quantification. In regularvacuity modulo expression
structure we do something similar – instead of replacing thewhole regular expression
with a universally quantified dyadic variable, we replace each of the Boolean functions
in B that appear in the expression by a universally quantified monadic variable (or,
equivalently, by a dyadic variable ranging over intervals of duration 1). Thus, in our
example,ϕ passes vacuously in the systemM described above, as neithera, b, nor c
affect its satisfaction. Formally, we have the following6.

Definition 4. Consider a modelM . Let ϕ be an RELTL formula that is satisfied in
M and let e be a regular expression appearing inϕ. We say thate does not affect
ϕ in M modulo expression structureiff for all b ∈ B that appear ine, we have that
M |= (∀1y)ϕ[b← y]. Finally,ϕ is regularly vacuous inM modulo expression structure
if there exists a regular expressione that does not affectϕmodulo expression structure.

4 Algorithmic Aspects of Vacuity Detection

In this section we study the complexity of the regular-vacuity problem. As discussed in
Section 3, vacuity detection can be reduced to model checking of a QRELTL formula
of the form(∀y)ϕ. We describe an automata-based EXPSPACE solution to the latter
problem, and conclude that regular vacuity is in EXPSPACE. Recall that we saw in
Section 2 that RELTL model checking is in PSPACE. As shown in [2], vacuity detection
for LTL is not harder than LTL model checking, and can be solved in PSPACE. In the
full version we show that regular vacuity is NEXPTIME-hard.Thus, while the precise
complexity of regular vacuity is open, the lower bound indicates that an exponential
overhead on top of the complexity of RELTL model checking seems inevitable.

We describe a model-checking algorithm for QRELTL formulasof the form(∀y)ϕ.
Recall that in the automata-theoretic approach to LTL modelchecking, one constructs,
given an LTL formulaϕ, an automatonA¬ϕ that accepts exactly all paths that do not
satisfyϕ. Model checking is then reduced to the emptiness of the product ofA¬ϕ with
the modelM [27]. For a QRELTL formula(∀y)ϕ, we need to construct an automaton
A(∃y)¬ϕ, which accepts all paths that do not satisfy(∀y)ϕ. Since we considered RELTL
formulas in a positive normal form, the construction of¬ϕ has to propagate the negation

6 Note that Definition 4 follows the semantic approach of [2]. Asyntactic approach, as the one
taken in [5, 19], would result in a different definition, where Boolean functions are replaced by
different Boolean functions.

inward toϕ’s atomic propositions, using De-Morgan laws and dualities. In particular,
¬(e seq ϕ) = (e triggers ¬ϕ) and¬(e triggers ϕ) = (e seq ¬ϕ). It is easy to see
that the length of¬ϕ in positive normal form is linear in the length ofϕ.

Theorem 3. Given an existential QRELTL formula(∃y)ϕ overAP , we can construct
an NGBWAϕ over the alphabet2AP such thatL(Aϕ) = {π|π, 0 |= (∃y)ϕ}, and the
size ofAϕ is doubly exponential inϕ.

Proof: The translation of(∃y)ϕ goes via an intermediate formula(∃y)ψ in the tem-
poral logic QALTL. The syntax of QALTL is identical to the oneof QRELTL, only that
regular expressions overB ∪ {y} are replaced by NFW over2AP ∪ {y}. The closure of
QALTL formulas is defined similarly to the closure of ALTL formulas. The adjustment
of the semantics is similar to the adjustment of RELTL to ALTLdescribed in Section 2.
In particular, the adjustment of Definition 1 to languages over the alphabet2AP ∪ {y}
replaces the condition “ifwk ∈ B thenwk(πlk) = true andlk+1 = lk + 1” there by
the condition “ifwk ∈ 2AP , thenwk = πlk andlk+1 = lk + 1” here.

Given a QRELTL formula(∃y)ϕ, its equivalent QALTL formula(∃y)ψ is obtained
by replacing every regular expressione in (∃y)ϕ by Z ′

e, whereZ ′

e is as defined in
Section 2. Note that the alphabet ofZ ′

e is 2AP ∪ {y}. It is easy to see that for allπ, i, j,
andβ, we have thatπ, i, j, β|≡ L(e) iff π, i, j, β|≡ L(Z ′

e). Thus, for every wordπ and
i ≥ 0, we have thatπ, i |= (∃y)ϕ iff π, i |= (∃y)ψ.

The construction of the NGBWAϕ from (∃y)ψ is based on the construction pre-
sented in Section 2. As there, whenAϕ readsπi and is in state(Ls, Ps), it guesses that
the suffixπi, πi+1 . . . satisfies all the subformulas inLs. Since, however, hereAϕ needs
to simulate NFWs with transitions labelled by the interval variabley, the construction
here is more complicated. While a transition labelled by a letter in 2AP corresponds
to reading the current letterπi, a transitions labelled byy corresponds to reading an
intervalπi, . . . , πj−1 in β. Recall that the semantics of QALTL is such that(∃y)ψ is
satisfied inπ if there is an interval setβ ⊆ I for which π, β satisfiesψ. Note that
triggers formulas are trivially satisfied for an emptyβ, whereas seq formulas requireβ
to contain some intervals. Assume thatAϕ is in point i of π, it simulates a transition
labelledy in an NFW that corresponds to a seq formula inLs, and it guesses thatβ
contains some interval(i, j). Then,Aϕ has to make sure that all the NFWs that corre-
spond to triggers formulas inLs and that have a transition labelledy, would complete
this transition when pointj is reached. For that,Ls has to be associated with a set of
triggers formulas.

Formally, for a setLs ⊆ cl(ψ), we definewait(Ls) = {(Zq
′

triggers ξ)|(Zq triggers ξ) ∈
Ls andq′ ∈ ∆(q, y)}. Intuitively,wait(Ls) is the set of triggers formulas that are wait-
ing for an interval inβ to end. Once the interval ends, as would be enforced by a
seq formula, the members ofwait(Ls) should hold. Letseq(ψ) and trig(ψ) be the
sets of seq and triggers formulas incl(ψ), respectively. Anobligation for ψ is a pair
o ∈ seq(ψ) × 2trig(ψ). Let obl (ψ) be the set of all the obligations forψ. Now, to for-
malize the intuition above, assume thatAϕ is in point i and it simulates a transition
labelledy in the NFWZ for some(Zq seq ξ) ∈ Ls. Then,Aϕ creates the obligation
o = ((Zq seq ξ),wait(Ls)) and propagates it until the end of the interval.

The NGBWAϕ = 〈2AP , S, δ, S0,F〉, where the set of statesS is the set of all
pairs(Ls, Ps) such thatLs is a consistent set of formulas and obligations, andPs ⊆

Ls ∩ (seq(ψ)∪obl (ψ)). Note that the size ofAϕ is doubly exponential inϕ. The set of
initial states isS0 = {(Ls, Ps)|ψ ∈ Ls, Ps = ∅}. The acceptance condition is used to
impose the fulfillment ofuntil and seq eventualities, and is similar to the construction
in Section 2; thusF = {Φ1, . . . , Φm, Φseq}, whereΦi = {s ∈ S|(ϕi until ξi), ξi ∈ Ls
or (ϕi until ξi) 6∈ Ls}, andΦseq = {s ∈ S|Ps = ∅}. We define the transition relationδ
as the set of all triples((Ls, Ps), a, (Lt, Pt)) that satisfy the following conditions:

1. For allp ∈ AP , if p ∈ Ls thenp ∈ a.
2. For allp ∈ AP , if ¬p ∈ Ls thenp 6∈ a.
3. If (next ϕ1) ∈ Ls, thenϕ1 ∈ Lt.
4. If (ϕ1 until ϕ2) ∈ Ls, then eitherϕ2 ∈ Ls, orϕ1 ∈ Ls and(ϕ1 until ϕ2) ∈ Lt.
5. If (ϕ1 release ϕ2) ∈ Ls, thenϕ2 ∈ Ls and eitherϕ1 ∈ Ls, or (ϕ1 release ϕ2) ∈
Lt.

6. If (Zq seq ξ) ∈ Ls, then at least one of the following holds:
(a) q ∈ W andξ ∈ Ls.
(b) (Zq

′

seq ξ) ∈ Lt for someq′ ∈ ∆(q, a).
(c) ∆(q, y) 6= ∅ ando = ((Zq seq ξ),wait(Ls)) ∈ Ls. In this case we say that

there is ay-transition from(Zq seq ξ) to o in Ls.
If conditionsa or b hold, we say that(Zq seq ξ) isstronginLs w.r.t.((Ls, Ps), a, (Lt, Pt)).

7. If (Zq triggers ξ) ∈ Ls, then the following holds:
(a) If q ∈ W , thenξ ∈ Ls.
(b) (Zq

′

triggers ξ) ∈ Lt for all q′ ∈ ∆(q, a).
8. For every(Zq seq ξ) ∈ Ps, at least one of the following holds:

(a) q ∈ W andξ ∈ Ls.
(b) (Zq

′

seq ξ) ∈ Pt ∩ Lt for someq′ ∈ ∆(q, a).
(c) ∆(q, y) 6= ∅ ando = ((Zq seq ξ),wait(Ls)) ∈ Ps. In this case we say that

there is ay-transition from(Zq seq ξ) to o in Ps.
If conditionsa or b hold, we say that(Zq seq ξ) is strong inPs w.r.t.((Ls, Ps), a, (Lt, Pt)).

9. If o = ((Zq seq ξ), Υ) ∈ Ls then at least one of the following holds:
(a) For someq′ ∈ ∆(q, y), we have that(Zq

′

seq ξ) ∈ Ls andΥ ⊆ Ls. In this
case we say that there is ay-transition fromo to (Zq

′

seq ξ) in Ls.
(b) o ∈ Lt.
If conditionb holds, we say thato is strong inLs w.r.t. ((Ls, Ps), a, (Lt, Pt)).

10. If o = ((Zq seq ξ), Υ) ∈ Ps then at least one of the following holds:
(a) For someq′ ∈ ∆(q, y), we have that(Zq

′

seq ξ) ∈ Ps andΥ ⊆ Ls. In this
case we say that there is ay-transition fromo to (Zq

′

seq ξ) in Ps.
(b) o ∈ Pt.
If conditionb holds, we say thato is strong inPs w.r.t. ((Ls, Ps), a, (Lt, Pt)).

11. If Ps = ∅, thenPt = Lt ∩ (seq(ϕ) ∪ obl(ϕ)).
12. If wait(Ls) ⊆ Ls, then for every element inLs ∩ (seq(ϕ) ∪ obl (ϕ)) there exists a

path (possibly of length0) of y transitions to a strong element w.r.t.((Ls, Ps), a, (Lt, Pt)).
Note that they-transitions are local inLs and defined in rules6, 8, 9, 10.

13. If wait(Ls) ⊆ Ls, then for every element inPs ∩ (seq(ϕ) ∪ obl(ϕ)) there exists a
path (possibly of length0) of y transitions to a strong element w.r.t.((Ls, Ps), a, (Lt, Pt)).

We now explain the role of conditions12 and13 of δ. As explained above, for every
formula(Zq seq ξ) that should hold at pointi, the NGBWAϕ simulates a run ofZq

that should eventually accept an interval ofπ. SinceZq has transitions labelled byy, it
is possible forZq to loop forever in(Li, Pi) (when(i, i) ∈ β). Conditions12 and13
force the run ofZq to eventually reach an accepting state, and prevent such an infinite
loop. The correctness of the construction is proved in the full version.

In the automata-theoretic approach to linear model checking, we translate a for-
mulaψ to an automaton that accepts exactly all the computations that satisfyψ. While
traditional translations use nondeterministic automata (cf., [13]), recent translations go
through alternating automata (cf., [12, 26]). Then, the state space of the automaton con-
sists of subformulas ofψ, the construction is considerably simpler, and the intermediate
automata are exponentially more succinct. In particular, the translation of RELTL for-
mulas to NGBW described in Theorem 1 can be replaced by a simpler translation, to
alternating automata. For vacuity detection, however, we have to use nondeterministic
automata. To see why, note that reasoning about the QRELTL formula(∃y)ϕ involves a
guess as to where intervals associated withy end. Therefore, a translation of the formula
to an alternating automaton results in an automaton in whichthe different copies need to
coordinate in order to synchronize at the position wheny ends. Such a synchronization
is impossible for alternating automata.

Given a modelM and the NGBWAϕ for (∃y)ϕ, the emptiness of their intersection
can be tested in time polynomial or in space polylogarithmicin the sizes ofM andAϕ
(note thatM andAϕ can be generated on the fly) [27]. A path in the intersection ofM

andAϕ is a witness thate affectsϕ. It follows that the problem of deciding whether a
regular expressione affectsϕ in M can be solved in EXPSPACE. Since the number of
regular expressions appearing inϕ is linear in the length ofϕ, we can conclude with the
following upper bound to the regular-vacuity problem. As detailed in the full version,
the lower bound follows from a reduction of the exponential bounded-tiling problem to
regular vacuity.

Theorem 4. The regular-vacuity problem for RELTL can be solved in EXPSPACE and
is NEXPTIME-hard.

In Section 5, we analyze the complexity of regular vacuity more carefully and show
that the computational bottle-neck is the length of regularexpressions appearing in
triggers formulas inϕ. We also describe a fragment of RELTL for which regular vacuity
can be solved in PSPACE.

5 Regular Vacuity in Practice

The results in Section 4 suggest that, in practice, because of the computational com-
plexity of general vacuity checking, one may need to work with weaker definitions of
vacuity or restrict attention to specifications in which theusage of regular expressions
is constrained. In this section we show that under certain polarity constraints, regu-
lar vacuity can be reduced to standard model checking. In addition we show that even
without polarity constraints, detection of the weaker definitions of vacuity, presented in
Section 3, is also not harder than standard model checking.

Specifications of pure polarityExamining industrial examples shows that in many cases
the number of trigger formulas that share a regular expression with a seq formula is quite
small. One of the few examples that use both describes a clocktick pattern and is ex-
pressed by the formulatick pattern = (e seq true)∧ globally (e triggers (e seq true)),
wheree defines the clock ratio, e.g.e = clock low·clock low·clock high·clock high.

As shown in the previous section, the general case of regularvacuity adds an expo-
nential blow-up on top of the complexity of RELTL model checking. A careful analysis
of the state space ofAϕ shows that with every setLs of formulas, we associate obli-
gations that are relevant toLs. Thus, ifLs contains no seq formula with an NFW that
reads a transition labelledy, then its obligation is empty. Otherwise,wait(Ls) contains
only trigger formulas that appear inLs and whose NFWs read a transition labelledy.
In particular, in the special case where seq and trigger subformulas do not share regu-
lar expressions, we have|obl(ϕ)| = 0. For this type of specifications, where all regular
expressions have apure polarity, regular vacuity is much easier. Rather than analyz-
ing the structure ofAϕ in this special case, we describe here a direct algorithm forits
regular-vacuity problem.

We first definepure polarityfor regular expression. As formulas in RELTL are in
positive normal form, polarity of a regular expressione is not defined by number of
negations, but rather by the operator applied toe. Formally, an occurrence of a regular
expressione is of positive polarityin ϕ if it is on the left hand side of aseq modality,
and ofnegative polarityif it is on the left hand side of atriggers modality. The polarity
of a regular expression is defined by the polarity of its occurrences as follows. A regular
expressione is of positive polarityif all occurrences ofe in ϕ are of positive polarity,
of negative polarityif all occurrences ofe in ϕ are of negative polarity, ofpure polarity
if it is either of positive or negative polarity, and ofmixed polarityif some occurrences
of e in ϕ are of positive polarity and some are of negative polarity.

Definition 5. Given a formulaϕ and a regular expression of pure polaritye, we denote
byϕ[e← ⊥] the formula obtained fromϕ by replacinge by true

∗, if e is of negative
polarity, and byfalse if e is of positive polarity.

We now show that fore with pure polarity inϕ, checking whethere effectsϕ, can be
reduced to RELTL model checking:

Theorem 5. Consider a modelM , RELTL formulaϕ, and regular expressione of pure
polarity. Then,M |= (∀y)ϕ[e← y] iff M |= ϕ[e← ⊥].

Since the model-checking problem for RELTL can be solved in PSPACE, it follows that
the regular-vacuity problem for the fragment of RELTL in which all regular expressions
are of pure polarity is PSPACE-complete.

Weaker definitions of regular vacuityIn Section 3, we suggested two alternative def-
initions for regular vacuity. We now show that vacuity detection according to these
definitions is in PSPACE – not harder than RELTL model checking.

We first show that the dyadic quantification in duration-QRELTL can be reduced
to a monadic one. Intuitively, since the quantification in duration-QRELTL ranges over
intervals of a fixed and known duration, it can be replaced by aquantification over the
points where intervals start. Formally, we have the following:

Lemma 1. Consider a systemM , an RELTL formulaϕ, a regular expressione appear-
ing in ϕ, andd > 0. Then,M |= (∀dy)ϕ[e ← y] iff M |= (∀x)ϕ[e ← (x · true

d−1)],
wherex is a monadic variable.

Universal quantification of monadic variables does not makemodel checking harder:
checking whetherM |= (∀x)ϕ can be reduced to checking whether there is a computa-
tion ofM that satisfies(∃x)¬ϕ. Thus, as detailed in [2], when we construct the intersec-
tion ofM with the NGBW for¬ϕ, the values forx can be guessed, and the algorithm
coincides with the one for RELTL model checking. Since detection of vacuity modulo
duration and modulo expression structure are both reduced to duration-QRELTL model
checking, Theorem 2 implies the following.

Theorem 6. The problem of detecting regular vacuity modulo duration ormodulo ex-
pression structure is PSPACE-complete.

We note that when the formula is of a pure polarity, no quantification is needed, and
emay be replaced, in the case of vacuity modulo duration, byfalse or true

d according
its polarity. Likewise, in the case of vacuity modulo expression structure, the Boolean
formulas ine may be replaced byfalse or true.

6 Concluding Remarks

We extended in this work vacuity detection to a regular layerof linear-temporal log-
ics. We focused here on RELTL, which is the extension of LTL with a regular layer.
We defined the notion of “does not affect,” for regular expressions in terms of univer-
sal dyadic quantification. We showed that regular vacuity isdecidable, but involves an
exponential blow-up (in addition to the standard exponential blow-up for LTL model
checking). We showed that under certain polarity constraints on regular expressions,
regular vacuity can be reduced to standard model checking. Our decidability result for
dyadic second-order quantification is of independent interest. It suggests that the bound-
ary between decidability and undecidability can be chartedat a finer detail than the cur-
rent monadic/dyadic boundary. A related phenomenon was observed in the context of
descriptive complexity theory, see [10, 14].

We suggested two alternative definitions for regular vacuity and showed that with
respect to these definitions, even for formulas that do not satisfy the polarity constraints,
vacuity detection can be reduced to standard model checking, which makes them of
practical interest. The two definitions are weaker than our general definition, in the
sense that a vacuous pass according to them may not be considered vacuous accord-
ing to the general definition. It may seem that working with a more sensitive defini-
tion would be an advantage, but experience with vacuity detection in industrial settings
shows that flooding users with too many reports of vacuous passes may be counterpro-
ductive. Thus, it is difficult to make at this point definitivestatements about the overall
usability of the weaker definitions, as more industrial experience with them is needed.

References

1. Accellera - www.accellera.org.

2. R. Armon, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A.Tiemeyer, and M. Vardi. En-
hanced vacuity detection for linear temporal logic. InProc 15th CAV, LNCS 2725, 2003.

3. R. Armoni et al. The ForSpec temporal logic: A new temporalproperty-specification logic.
In 8th TACAS, LNCS 2280, pages 296–211, 2002

4. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze,and Y. Rodeh. The temporal
logic sugar. InProc. 13th CAV, LNCS 2102, pages 363–367, 2001.

5. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas.FMSD18(2):141–162, 2001.

6. E. Börger, E. Grädel, and Y. Gurevich.The Classical Decision Problem. 1996.
7. J. Büchi. On a decision method in restricted second orderarithmetic. InProc. Internat.

Congr. Logic, Method. and Philos. Sci. 1960, pages 1–12, Stanford, 1962.
8. E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficientgeneration of counterexamples

and witnesses in symbolic model checking. InProc. 32nd DAC, pages 427–432, 1995.
9. E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.

10. T. Eiter, G. Gottlob, and T. Schwentick. Second-order logic over strings: Regular and non-
regular fragments.Developments in Language Theory, pages 37–56, 2001.

11. M. Fischer and R. Ladner. Propositional dynamic logic ofregular programs.JCSS, 18:194–
211, 1979.

12. P. Gastin and D. Oddoux. Fast LTL to büchi automata translation. InProc. 13th CAV, LNCS
2102, pages 53–65, 2001.

13. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of lin-
ear temporal logic. InProtocol Specification, Testing, and Verification, pages 3–18. Chapman
& Hall, August 1995.

14. G. Gottlob, P. G. Kolaitis, and T. Schwentick. Existential second-order logic over graphs:
Charting the tractability frontier.JACM, 51(2):312–362, 2000.

15. A. Gurfinkel and M. Chechik. Extending extended vacuity.In 5th FMCAD, LNCS 2212,
pages 306–321, 2004.

16. A. Gurfinkel and M. Chechik. How vacuous is vacuous. InProc. 10th TACAS, LNCS 2988,
pages 451–466, 2004.

17. J. Henriksen and P. Thiagarajan. Dynamic linear time temporal logic. Annals of Pure and
Applied Logic, 96(1–3):187–207, 1999.

18. J. Hopcroft and J. Ullman.Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

19. O. Kupferman and M. Vardi. Vacuity detection in temporalmodel checking.STTT, 4(2):224–
233, February 2003.

20. R. Kurshan.FormalCheck User’s Manual. Cadence Design, Inc., 1998.
21. Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specifi-

cation. Springer-Verlag, Berlin, January 1992.
22. M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. InProc. 14th CAV, LNCS

2404, pages 485–499, 2002.
23. M. Rabin. Decidability of second order theories and automata on infinite trees.Transaction

of the AMS, 141:1–35, 1969.
24. M. Savelsberg and P. van emde Boas. Bounded tiling, an alternative to satisfiability. In2nd

Frege conference, pages 354–363. Akademya Verlag, 1984.
25. A. Sistla and E. Clarke. The complexity of propositionallinear temporal logic.Journal

ACM, 32:733–749, 1985.
26. M. Vardi. Nontraditional applications of automata theory. In Proc. STACS, LNCS 789, pages

575–597, 1994.
27. M. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computa-

tion, 115(1):1–37, November 1994.

