Saturation-based symbolic reachability analysis
using conjunctive and disjunctive partitioning*

Gianfranco Ciardo and Andy Jinging Yu

Department of Computer Science and Engineering
University of California, Riverside
{ciardo,jqyu}@cs.ucr.edu

Abstract. We propose a new saturation-based symbolic state-space gen-
eration algorithm for finite discrete-state systems. Based on the struc-
ture of the high-level model specification, we first disjunctively parti-
tion the transition relation of the system, then conjunctively partition
each disjunct. Our new encoding recognizes identity transformations of
state variables and exploits event locality, enabling us to apply a recur-
sive fixed-point image computation strategy completely different from
the standard breadth-first approach employing a global fix-point image
computation. Compared to breadth-first symbolic methods, saturation
has already been empirically shown to be several orders more efficient in
terms of runtime and peak memory requirements for asynchronous con-
current systems. With the new partitioning, the saturation algorithm
can now be applied to completely general asynchronous systems, while
requiring similar or better run-times and peak memory than previous
saturation algorithms.

1 Introduction

Formal verification techniques have received much attention in the past decade.
In particular, BDD-based [4] symbolic model checking [10,17] has been success-
fully applied in industrial settings. However, even if BDDs can result in great
efficiency, symbolic techniques remain a memory and time-intensive task.

We focus on symbolic state-space generation, a fundamental capability in
symbolic model checking, and target asynchronous concurrent systems, including
asynchronous circuits, distributed software systems, and globally-asynchronous
locally-synchronous systems (GALSs), which are increasingly being used in com-
plex hardware and embedded systems, such as System-on-Chip designs.

The standard approach to state-space generation uses a breadth-first strat-
egy, where each iteration is an image computation. This corresponds to finding
a “global” fixed-point of the transition relation. The saturation algorithm we
introduced in [6] uses instead a completely different iteration strategy, which
has been shown to excel when applied to asynchronous concurrent systems.

Saturation recognizes and exploits the presence of event locality and recur-
sively applies multiple “local” fixed-point iterations, resulting in peak mem-
ory requirements, and consequently runtimes, often several orders of magnitude

* Work supported in part by the National Science Foundation under grants CNS-
0501747 and CNS-0501748.

smaller than for traditional approaches. As introduced, however, saturation re-
quires a Kronecker-consistent decomposition of the high-level model into com-
ponent models. While this is not a restriction for some formalisms (e.g., ordi-
nary Petri nets, even if extended with inhibitor and reset arcs), it does impose
constraints on the decomposition granularity in others (e.g., Petri nets with
arbitrary marking-dependent arc cardinalities or transition guards). For some
models, these constraints may prevent us from generating the state space be-
cause each component model is too large. A particularly important example is
the analysis of software.

In [20], Miner proposed a saturation algorithm applicable to models not satis-
fying Kronecker consistency, but its cost approaches that of an explicit generation
in models where an event affects many state variables. In this paper, after giving
an overview of state-space and transition relation encodings, we formalize pre-
vious saturation algorithms in a unifying framework (Sect. 2). Then, we present
a new transition relation encoding based on a disjunctive-conjunctive partition
and identity-reduced decision diagrams (Sect. 3). This allows us to define a new
saturation algorithm that does not require Kronecker consistency, like [20], nor
a priori knowledge of the state variable bounds, like [7], and is exponentially
more efficient in certain models (Sect. 4). We present preliminary memory and
runtime results for our approach and compare it to NuSMV [9] and SPIN [14]
(Sect. 5). Finally, we report related work and our conclusions (Sect. 6).

2 Preliminaries

We consider a discrete-state model represented by a Kripke structure M =

(S Sinit, R, L), where S is a finite set of states, Sinit C S is a set of initial
states, and R C & x § is a transition relation. We assume the (global) model
state to be a sequence of K local state variables, (zk, ...,x1), where, for K >1>1,
z; € {0,1,..,m—1} = &, for some n; € N. Thus, S = Sk X --- x 8 and we
write R(ik,-..,91, 0%, - 41), or R(i,i'), if the model can transition from the
current state 1 to a next state i’ in one step (unprimed symbols denote current
states, primed symbols denote next states). We let x;) denote the (sub)state

(z1,...sxg), for K > 1>k > 1. Given a function f on the domain 3, Supp(f)
denotes the set of variables in its support. Formally, ; € Supp(f) if there are
states 1,j € S, differing only in component [, such that f(i) # f(j)-

2.1 Symbolic encoding of state space and transition relation

State space generation consists of building the smallest set of states S C S
satisfying (1) S D Sini and (2) S D Img(S), where the image computation
function gives the set of successor states: Img(X) = {x' : Ix € X, (x,x') € R}.
The most common symbolic approach to store the state space uses [n;] boolean
variables to encode each state variable x;, thus it encodes a set of states Z
through its characteristic function fz, using a BDD with) < [n] levels.
Instead of BDDs, we prefer ordered multi-way decision diagrams (MDDs) [18]
to encode sets of states, where each variable z; is directly encoded in a single

level, using a node with n; outgoing edges. Not only this results in a simpler
discussion of our technique, but it also allows us to more clearly pinpoint an
important property we exploit, event locality.

Definition 1 An MDD over & is an acyclic edge-labeled multi-graph where:

— Each node p belongs to a level in {K,...,1,0}, denoted p.lvl.

— There is a single root node.

— Level 0 contains the only two terminal nodes, Zero and One.

— A node p at level [> 0 has n; outgoing edges, labeled from 0 to n; — 1. The
edge labeled by 4; points to node ¢, with p.lvl > ¢.lvl; we write p[i;] = g.

Finally, one of two reductions ensures canonicity. Both forbid duplicate nodes:
— Given nodes p and q at level [, if p[i;] = ¢[i;] for all 4, € S, then p = q.
Then, the fully-reduced version [4] forbids redundant nodes:
— No node p at level I can exist such that, p[i;] = ¢ for all i; € ;.
While the quasi-reduced version [19] forbids arcs from spanning multiple levels:

— The root is at level K.
— Given a node p at level I, p[i;].lvl =1 — 1 for all i; € ;. O

Definition 2 The set encoded by MDD node p at level k& w.r.t. level I > k is

B(l,p) = S x B(l—1,p) ifl>0Nl>k
PIE A\ Uy es iy x BU=1,p[i]) if1>0A1=k
with the convention that X x B(0, Zero) =) and X x B(0, One) = X. O

Most symbolic model checkers, e.g., NuSMV [9], generate the state space
with breadth-first iterations, each consisting of an image computation. At the
d®™™ iteration, Z contains all the states at distance exactly d, or at distance
up to d (either approach can be the most efficient, depending on the model).
When using MDDs, we encode Z(x) as a K-level MDD and R(x,x') as a 2K-
level MDD whose unprimed and primed variables are normally interleaved for
efficiency. Furthermore, the transition relation can be conjunctively partitioned
into a set of conjuncts, R(x,x') = A\, Ca(x,x'), or disjunctively partitioned into
a set of disjuncts, R(x,x') =\/, Da(x,x') [16], stored as a set of MDDs, instead
of a single monolithic MDD. Heuristically, such partitioned relations have been
shown effective for synchronous and asynchronous systems, respectively.

2.2 A general partitioning methodology for the transition relation
In general discrete-state systems, both asynchronous and synchronous behavior
can be present. Thus, given a model expressed in a high-level formalism, we first
exploit the asynchronous aspects, by first disjunctively partitioning the transi-
tion relation R into a set of disjuncts, where each disjunct D, corresponds to a
different event o in the set & of system events, i.e., R(x,x') =V g Dalx,Xx').
Then, each event can synchronously update several state variables. We as-
sume that, for each disjunct D, the high-level model description specifies both:

— A set of enabling conjuncts specifying when event « can occur, or fire. The
support of conjunct Enableqy,n, is a subset of {zk, ..., 21}

— A set of updating conjuncts describing how the state variables are updated
when « fires. The support of conjunct Upd,, ,, is asubset of {zk, T, ..., 71,21 }.

Thus, the partitioned transition relation can be represented as:

= \/ Da(x,x') = \/ (/\ Enable g m(x) A /\ Upda,n(x,x’)> .

a€cl a€clé

We assume a particularly important class of models, where each updating
conjunct only updates one primed variables, so that we can write:

x’)EVDa(x,x’)E\/ /\Enablea,m(x)/\ /\ Upd, (x,z) |. (1)

a€cl acE \ m K>I1>1

As a running example, we consider an event a corresponding to the following
pseudocode statement in a larger program:

if £5>2 and zg <1 then (z3,z6) + (24, (27 + x6) mod 6);

where the state variables are z7,...,z1 € [0..5] and the “()” pairs enclose v
(two, in our case) distinct variables to be simultaneously assigned, and the cor-
responding v expressions, which are evaluated before performing any assign-
ment. The disjunct D, has then two enabling conjuncts, Enable,1 = [z5 > 2]
and Enableq s = [x¢ < 1], and seven updating conjuncts, one for each variable
T, k € [7,...,1], Upd, 3 = [v5 = 4], Upd, ¢ = [z = (z7 + z6) mod 6], and
Upd,, \, = [z}, = x], for k € {7,5,4,2,1}.

2.3 Event locality

We now examine the ways an event a can be “independent” of a state variable
and show how the standard concept of support for a function is inadequate when
applied to the disjuncts of the transition relation. Recalling that D, is just a
function of the form S x 8 — B, we can consider the following cases:

— If ; & Supp(D,), the value of z; affects neither the enabling of event a nor
the value of any zj,, for K >k > 1, including k¥ = [, when « fires. In our
running example, this is the case for z3.

— If z; & Supp(D,), the value of zj is independent of that of zy, for K >k >
1, including k = [, when « fires. This corresponds to nondeterministically
setting x; to any value in &;. Of course, given the expression of Eq. 1, we
already know that z; affects neither the enabling of & nor the values of z,,
for k # 1.

When encoding D, with a fully-reduced 2K-level MDD, the above two cases are
reflected in the absence of node at level I, or I, respectively. Indeed, it is even
possible that both z; € Supp(D,) and x| & Supp(D,) hold, thus neither ! nor I’
would contain any node. However, these two cases are neither as important nor
as common as the following type of “independence”:

— If @ & Supp(A\,, Enablea,m ANz Upd, i) and Upd,, ;| = [z; = 2], the value
of z; affects neither the enabling of event « nor the value of any z},, for k # 1,
while the firing of o does not change the value of x;.

This common situation is not exploited by ordinary MDD reductions; rather, it
results in the presence of (possibly many) identity patterns: a node p at level [
such that, foreach i; € S, plii] = ¢;,, and g, [ji] = Zero for all j; € S;, except for
gi,[i1] = r, where node r # Zero does not depend on ; (the gray pattern in Fig.
1). It is instead exploited by Kronecker encodings of transition matrices [6, 8].

We define V4¢P to be the set containing any such (unprimed) variable, and
Vder = {gp,...,m1} \ VP and say that event locality is present in a system
when V4¢P ig a strict subset of {zk,...,71}. We further split V4P into VuPd =
{z; : Upd,,; # [v; = 1]}, the set of unprimed variables whose corresponding
primed variable can be updated by the firing of o, and V¥nehanged — dep \ Yupd
the set of unprimed variables that affect the enabling of a or the value of some
primed variable, but whose corresponding primed variable is not updated by the
firing of . For our running example, V2P = {zq, 23}, Virchanged = Ly p5 x4}
and Virder = {z, z,}. By definition, VP4 U Vunchanged | yindep — fgp x4}
and, based on these sets, we can partition the transition relation as:

R(x,x') = \/ /\Enablea,m(x) A /\ Upd,, 1 (x,z}) A /\ [z}, = k]

acl m Z'kEV(‘:pd z.k¢v;1)d

Definition 3 Let Top(a) and Bot(a) be the highest and lowest variable indices
in V4P Top(a) = max{k : z; €VI?}, Bot(a) = min{k : z; € VI°P}. O

We can then group the disjuncts D, according to the value of Top(a):

Rxx)= \/ Ruxx)= \/ V Dalxx)|. (2)

K>k>1 K>k>1 \ o:Top(a)=Fk

2.4 Kronecker encoding of the transition relation to exploit locality

The performance evaluation community working on Markov chains has long rec-
ognized that Kronecker techniques can be used to encode large (real) transition
matrices while naturally exploiting the presence of identity transformations for
state variables [25]. However, such an encoding requires a Kronecker consistent
model. In our setting, this means that the following two properties must hold:

— The support of each enabling conjunct contains only one unprimed variable.
Thus, Enableq,(x;) simply lists the set of values Sy C & for z; in which the
event may be enabled: Enable, i (x;) = [2; € Sq,]. Of course, when S, ; = 5,
the conjunct does not enforce any restriction on the enabling of event a.

— The support of the updating conjunct for z; contains only z;, in addition to
xp: Upd, (21, 77) = [2] € Nay(z1)], where Noy(x1) C S

Such a model is called Kronecker consistent because, letting Rq,i(xi, ;) =
[z1 € Sa,iAx] € Nu,(21)], and storing it as an ny; xn; boolean matrix Ry ;, we can
write R(x,X') =V ce Ak>i>1 Ra,i(®1,2]) and the matrix R corresponding to
the overall transition relation R can be expressed as R = 3 .c @ g>;>1 Rayts
where “3_” indicates boolean sum and “®” Kronecker product of matrices. Qur
notion of locality becomes apparent: for z; € VP R, (z,7)) = [z, = =),
thus R, is an identity matrix, which of course is not explicitly stored.

A model can be made Kronecker consistency in two ways. We can merge
state variables into new “larger” variables, so that each new variable can depend
only on the original state variables that were merged into it; in our running
example, we could merge variables z4 and z3 into a new variable, and variables
z7 and xg into another new variable. Or we can split a disjunct D, based on
a Shannon expansion, so that each new “smaller” disjunct satisfies Kronecker
consistency; in our example, we can split along variables z7 and x4 and write
Dy = Vi7E{O,...,B},i4e{0,...,5} Daa$7=i7,m4=i4’ where each Da,z7=i7,w4=i4 satisfies
Kronecker consistency. However, neither approach is satisfactory for models with
intricate dependencies; excessive merging results in few or even just a single state
variable, i.e., an explicit approach, while excessive splitting causes an exponential
growth in the number of events, i.e., the storage for the R, matrices.

2.5 Previously proposed variants of the saturation algorithm

The saturation algorithm exploits event locality through lightweight recursive
fixed point image computations where the disjunctive partitioning of the tran-
sition relation is organized according to the value of Top(«a), for each a € &:

R(x,x') = \/ \/ Do(x,x') = \/ Ri(X(,1),X(1,1)) A Xk 1) = X i41))-
K>I>1 a: Top(a)=l K>1>1

A node p at level [is saturated if the set of states it encodes cannot be en-
larged by applying events a such that Top(a) <1, i.e., B(l,p) 2 Img,(B(l,p)),
where Img; is the image computation restricted to Ry, for [> k > 1:

Img(X) = {x'(l’l) (3xgq) € X, 3k < l;Rk(x(k,l);Xl(k’l)) AKX p41) = le’k_,_l)}.

Thus, if, before saturating it, p encoded the set B(l,p) = Xy, at the end of
its saturation, p encodes the least fixed point B(l,p) = pX.(Xo U Img,(X)).
To encode this fixed point, p is modified in place, i.e., the pointers p[i;] are
changed, so that they point to nodes that encode increasingly larger sets, while
the pointers to p from nodes above it are unchanged.

Starting from the MDD encoding the initial state(s), the nodes of this MDD
are saturated in bottom-up order. In other words, whenever the application of
R; causes the creation of a node at a level k < [, this new node must be imme-
diately saturated, by applying Ry to it. Thus, during the bottom-up process of
saturating all nodes, only R; must be applied to a node p at level [, since all Ry,
for k < [, have been already applied to saturate its children.

In the original saturation algorithm for Kronecker-consistent models [6], we
store each D, as the set of matrices Rq, for Top(a) > | > Bot(a); of course,

for Top(a) > 1 > Bot(a), we might have z; € Vi"¥P in which case Rq, is the
identity and is not stored. For state-space generation of GALS, we showed how
the peak memory and runtime requirements of saturation can be several orders
of magnitude better than a traditional breadth-first iteration.

In [7], we extended the algorithm to models where the state variables have
unknown bounds, which must then be discovered “on-the-fly”. During the gen-
eration process, each matrix R, ; contains rows and columns corresponding to
the confirmed values for x;, i.e., values i; that appear as the [*" component in at
least one global state i known to be reachable, but also columns corresponding
to unconfirmed values for x, i.e., values j; such that R (i, ;) is a possible
transition in isolation from a confirmed state i;, but we don’t yet know whether
« is enabled in a global state i whose I** component is 4;. Thus, the algorithm
interleaves the building of rows of R, , obtained through an explicit (local)
state-space exploration of the model restricted to variable z;, with the (global)
symbolic exploration of the state space.

In [20], Miner showed how to deal with models that do not satisfy the
Kronecker-consistency requirement. The transition relation is encoded using K-
level matriz diagrams (MzDs), which we introduced in [8]. Essentially, these are
2K-level MDDs where the nodes of levels z; and x; are merged into “matrix”
nodes having n; x n; edges, but, unlike ordinary decision diagrams, the reduction
rule requires to remove a node p if it describes an identity, i.e., if p[i, ji] = Zero
for iy # j; and p[i;,i;] = ¢ for all §; € §;. Thus, MxDs combine the generality of
decision diagrams (they can represent any relation over §) with the advantages
of a Kronecker representation (they can reveal and exploit event locality).

A single MxD can encode R;, but [20] requires R;(x,x’) to be expressed as

Ra(x(1,1),X(1,1)) = \/ /\GTOUPa,g(X(m),X(u))/\ /\ [z}, = 2x] |,

a:Top(a)=l 9 2 €VIIT k<L

where Supp(Group,, ,) is a set of “unprimed-primed” variable pairs, and groups
have disjoint supports: g # h implies Supp(Group,, ,) A Supp(Group,,) = 0.
Thus, each “coarse-grain” Group, , corresponds to the intersection of all the
enabling and updating conjuncts that depend on its support, including the up-
dating conjuncts of the form [z}, = 2], for z), € Vinhensed 0 Supp(Group,, ,).

Then, [20] maintains an MxD for each Group, ,, and updates it every time
a new local state iy € Sy is confirmed, if x} € S’upp(Groupa’g). In turn, this
triggers the rebuilding of the MxD for R;, by performing the appropriate MxD
intersection and union operations. Just like in [7], these updates following the
confirmation of a local state require one step of explicit state space exploration
in a portion of the model. However, instead of considering a single variable zy,
we must now consider all the unprimed variables in Supp(Group,, g) whenever
the set of possible values for any of these variables is extended. For example, if
Supp(Group,, ,) = {x7, 27,25, 25, T2, 5} and i5 € Ss is confirmed, [20] explicitly
explores the possible transitions from each state in Sy x {i5} x Sa.

3 Fine-grain partitioning with MDD-based encodings

The cost of building the coarse-grain disjoint partitioned groups Group,, , of [20]
can be large, since each group Group,, , is built explicitly, at an exploration cost
O(I1., e supn(Group,,) |Sk|)- The disjoint partitioning requirement may result in
too coarse a conjunctive-partitioning for event a or even, in the worst case, in a
single group, as in the shift register example of Sect. 5.

We propose a fine-grain partitioned approach, using the more familiar 2K -
level MDDs to encode the transition relation. We express Rl(xa,l),x'(l,l)) as:

Ri(xe X)) =\ | D& (X(t,1)=x'(z,1>)/\ N Bi=al], ©)
a: Top(a)=l TV k<I

where the “partial” relation DZa7t (x(l,l),x’u 1)) is defined as:

Dfart (X(l,l):xl(l,l)) = /\Enablea,m (X(l,l)) A /\ Upd,, (X(l,l)ax;c) .
m

TLEVI?

We use a fully-reduced MDD for each enabling conjunct Enable,,,, and each
updating conjunct Upd,, ; of each event a with Top(a) = I, where z € yurd,
The variables of each such MDD are only those in the support of the encoded
conjunct; because of our new encoding technique, we do not store the updating
conjuncts of the form [z}, =], for z, & VP4, k <1, even if z, g Vinder.

The fully-reduced MDD encoding D" is then obtained as the intersection
(boolean conjunction) of the MDDs of all its Enableq,r and Upd, j, conjuncts,
thus Supp(DL?™) is the union of the supports of these conjuncts.

3.1 Fully-identity reduced 2K-level MDD encoding of the disjuncts

To efficiently build R; from Eq. 3 and exploit event locality in the MDD, we
introduce a new canonicity-preserving identity reduction rule. In our particular
application, we use a fully-identity reduced 2K -level MDD to encode each R;:

— Each unprimed level, [(for variable x;) K > 1 > 1, is fully-reduced, i.e.,
no node at level ! can be redundant, and is immediately followed by the
corresponding primed level I’ (for variable z}).

— Each level I is identity-reduced w.r.t. to level I: (1) if node p is at level [and
plii] reaches ¢ at level I, then ¢ is not a singular-i; node, i.e., it is not a node
with ¢[i;] # Zero and q[j;] = Zero for all j; € S\ {i;}; (2) a singular-i; node
at level I, for any 4; € S;, must be pointed by a node at level .

Fig. 1 shows three examples of MDDs that are either fully-fully (left) or
fully-identity (right) reduced for the unprimed and primed levels, respectively.
In the first example, the entire identity pattern clearly visible in the fully-fully
case is absent in the fully-identity case, because nodes gy and ¢; are eliminated
first (due to the identity-reduced rule for level I') and the remaining node p is
now redundant and eliminated (due to the fully-reduced rule for level [). In the
second example, singular-0 node qq is eliminated, but redundant node ¢ is added

slof1]2]3] | |s[o]1]2][3]{m’ m[s[o]1]2]3]| [s[o]1]2]3]
l rlo]1] | |p
r qo'

pr Lol1]2] | % pp rlo]1]2]|py rlof1]2

Fig. 1: Comparing fully-fully (FF) and fully-identity (FI) reductions for MDDs.

Build(R:)
1 foreach a s.t. Top(a) =1 do
2 DLt A, Enablea,m/\/\mkevgpd Upd,, ,: eintersection of fully-fully MDDs
3 D <+ Fullyldentity(DL*™); = echange fully-fully MDD into fully-identity MDD
4 Ri < Vo 1op(ay=t Do eunion of fully-identity MDDs

Fig. 2: Algorithm to build R; from the disjuncts and conjuncts.

while, in the third example, singular-1 node ¢; requires the introduction of node
p, which is not redundant in the fully-identity reduction case.

From the fully-fully reduced MDD for DL the fully-identity reduced 2K-
level MDD for D, is built using a recursive procedure. Then, the 2K-level fully-
identity reduced MDD encoding of R; is built using a recursive union for fully-
identity reduced MDD on the disjuncts D,, for which T'op(a) =1 (Fig. 2).

Our fully-identity reduced 2K-level MDDs, while strongly related to MxDs
used in [20] to encode disjuncts, can be even more compact. Only matrix nodes
corresponding to levels [€ VP can be eliminated in MxDs, while, in addition
to eliminating these entire identity patterns, our fully-identity reduced MDDs
also eliminate nodes at primed levels k € Vnchanged,

4 A new saturation algorithm for state-space generation

Based on the new encoding technique for partitioned transition relations, we
propose new saturation algorithms for models with known or unknown variable
bounds, respectively (Fig. 3 and 4). As in previous saturation algorithms, the
state space is encoded in a quasi-reduced K-level MDD, since R; must be applied
also to redundant nodes at level [; if fully-reduced MDDs were used, these nodes
would have to be re-inserted to saturate them during bottom-up saturation. For
simplicity, the pseudocode of Fig. 3 4 assumes that either both or neither levels
k and k' are skipped in the MDD of the disjuncts R;, for K > 1 > 1; our actual
implementation also manages the case when only one of them is skipped.

4.1 Saturation when state variables have known bounds

For models where state variables have known bounds, e.g., circuits and other
hardware models, each conjunct can be built separately a priori, considering
all the possible transitions when the conjunct is considered in isolation. Then,
the MDD encodings of the disjunctive partition R, ..., R1, can be built by the
Build(R;) procedure of Fig. 2, prior to state-space generation. The saturation
algorithm for the case when Rk, ..., R1 are built this way is shown in Fig. 3.

Saturate(MDD p)

1 1+ plvl;
2 repeat

3 B(l,p) — B(lap) u UizGSz;iQESz {Z;} x ImgSat (p[il]z Ri [“][z”)
4 until B(l,p) is not changed

ImgSat(MDD g, MDD2 f)

1 if g = Zero or f = Zero then return §;

2 k+qlvl; m<« flvl;, s+« anew MDD node s at level k;

3 if £ > m then

4 B(kz 3) = Uikesk {Zk} x ImgSat (q[ik]a f)'

5 else ok is equal to m
6 B(k,) = U, cs, 1 cs, (it} x ImgSat (glit], flis]it));

7 Saturate(s);

8

return B(k, s).

Fig. 3: A saturation algorithm for models with known variable bounds.

Saturate(p) recursively compute a fixed-point on node p at level [. It iter-
atively selects a child p[4;]; for each 45 € &, it calls ImgSat(p[ii], Ri[i1][¢]]) to
compute the (possibly new) reachable states in S;_1 X ... x Sp; finally, it adds
the states {i;} x ImgSat(p[ii], Rilis,1}]), a subset of S; x ... x Sy, to B(l, p).

The ImgSat(q, f) procedure takes a K-level MDD node ¢ at level k and a
2K-level MDD node f at level m as inputs, where m < k, since the K-level MDD
for the state space is quasi-reduced. If either node g or node f is Zero, the empty
set is returned, since no transitions are possible in this case. If node f is at a
level m below k, our fully-identity reduction implies the identity-transformation
of variable z. If node f is instead at level k, for each possible transition of
variable zj from iy to i}, a recursive call on the children nodes is made. These
(possibly) new states are encoded in a MDD node s at level k, which is Saturated
prior to returning it to the calling procedure.

The state-space generation starts with an MDD encoding for the initial
state(s), then follows with a bottom-up saturation of these initial MDD nodes,
until all of them are saturated. The final result is the encoding of the state space.

4.2 Saturation when state variables have unknown bounds

For systems with unknown variable bounds, the partitioned transition relations
cannot be built prior to state-space generation. We must instead interleave build-
ing partitioned transition relation i.e., calls to the Confirm procedure, with sym-
bolic state-space generation (Fig. 4).

We define the confirmed set Sf C S; for variable z; as the values of variable
x; that appear in a global state currently encoded by the MDD. §;\Sf contains
instead the unconfirmed states that appear only in the I’ level of the transition
relation; these are “locally” but not necessarily “globally” reachable. For any
node p at level I, p[i;] = Zero for any such unconfirmed local state 4;.

Saturate is then modified so that, at each iteration, any new values for z;
that are now known to be reachable (appears in a path leading to One in the
MDD encoding the state-space) are confirmed by calling Confirm(x;,14;), and R;

Saturate(MDD p)

1 1+ plvl;
2 repeat
Confirm(zi1,4;) for any state 4; € 8 \ 87 s.t. p[ir] # Zero;
4 Build(R:);
5 pick i € 8,4 € St s.t. Rulid][ig] # Zero;
6 B(l,p) « B(l,p) U {ir} x ImgSat (plir], Rulir][41])
7 until B(l,p) is not changed

Confirm(z, 1)

1 8« Sfufaks
2 foreach enabling conjunct Enableq,m, s:t. 1 € Supp(Enableq,n) do

w

3 foreach i, € {i1} X X, csupp(Enablen. m)\{z:}Sk dO

4 if ModelEnableq,m (isus) then Enablea,m < Enableq,m U {isus};

5 foreach updating conjunct Upd,, ., s.t. z; € Supp(Upd,, ,,) do

6 foreach i, € {Zl} X Xm)cE{mK,...,901}ﬁSupp(Upda’n)\{ml}Sz do

7 I, + ModelUpd,, ,, (isus); estates reachable from i,y in one step
8 Upd, , <+ Upd, , U{iss} x T;

9 Sn — S, UTL;

Fig. 4: A saturation algorithm for models with unknown variable bounds.

is rebuilt if needed, i.e., if any of its conjuncts has changed. The selection of
(i1,4;) in statement 5 of course avoids repeating a pair unless p[i;] or Ry[i][i}]
have changed; this check is omitted for clarity.

Procedure Confirm takes a new value ¢; for variable x; and updates each
conjunct with z; in its support. This requires to explicitly query the high-level
model for each (sub)state izyp that can be formed using the new value 4; and any
of the values in the confirmed set Si of any unprimed variable z;, in the support
of such a conjunct. Functions ModelEnable o, and ModelUpd,, ,, are analogous
to Enables,m and Upd,, ,,, but they are assumed to be “black-boxes” that can
be queried only explicitly; they return, respectively, whether « is enabled in 144,
and what is the set of possible values for z!, when « fires in i, in isolation,
i.e., considering only the restriction of the model to the particular conjunct.
Thus, our cost is still of the form O([],,, csupp(s) [Skl); as in [20], but f is now
Enableq,m or Upd,, ,, which can have a much smaller support than Group,, ,.

We stress that, while our presentation assumes that the support of each
updating conjunct contains a single primed variable, this is is not required by
our approach. Thus, a situation where an event a “nondeterministically either
increments both x5 and z; or decrements both x5 and x,” is captured with
an updating conjunct of the form Upd,, (4 5} having both z5 and z in its sup-
port. Indeed, our implementation heuristically merges enabling or updating con-
juncts for efficiency reasons: if Supp(Enablea,m) C Supp(Upd,,;), we can merge
the effect of Enableq,m in the definition of Upd, ;; if Supp(Upd, ;) \ {z} C
Supp(Upd,, 1) \ {=},}, we can merge the two updating conjuncts, into a conjunct
Upd, {1,k having the union of the supports. As long as no new unprimed vari-
able is added to the support of a conjunct, the enumeration cost of explicitly
building the conjunct is not affected, but the number of conjuncts is reduced.

5 Experimental results

We now show some experimental results for our new technique, run on a 3 Ghz
Pentium IV workstation with 1GB memory, on a set of models whose state-space
size can be controlled by a parameter N. We compare the new proposed satu-
ration algorithm for the unknown bound case (for ease of model specification)
with the saturation algorithm in [20], the symbolic model checker NuSMV [9],
and the explicit model checker SPIN [14], which targets asynchronous software
verification and applies partial-order reduction and other optimizations such as
minimized automaton storage for reachable states and hash compaction.

Table 1 reports the parameter N, the size |S| of the original and the reduced
(by partial-order reduction) state space, and the runtimes and peak memory re-
quirements for the four approaches, SPIN, SMV (NuSMV), QEST (the approach
in [20]), and NEW (our new encoding technique). Both QEST and NEW are
implemented in our tool SMART [5]. We studied the following models:

A Slotted-ring network protocol [24] where N processors can access the medium

only during the slot allocated to them.

— The classical Queen problem where the N queens must be placed on an N x N
chessboard, in sequential order from row 1 to N without attacking each other.

— A Fault-tolerant multiprocessor system described in [11]. While [11] requires 1200
seconds for N = 5, we require 0.07 seconds for N = 5 and we can generate the
state space for N = 100 in 485 seconds. [20] reports similar improvements, but
uses over twice as much memory.

— A Leader election protocol among N processes, a simplified version of [12], where
the broadcasting of the winner identity is omitted. Messages are sent asynchronously
via FIFO message queues.

— A Bubble-sort algorithm where an array of N numbers initialized to N, ..., 1 need
to be sorted into the result 1,..., V.

— A Swapper program [1] where a boolean array of size 2NN is initialized with 0’s in
the first half and 1’s in the second half, and the two halves are swapped through
neighbor-only exchanges. While the best tool considered in [1] requires 90 seconds
for N = 40, we require 0.03 seconds for N = 40 and can generate the state space
for N = 2,000 in 50 seconds.

— A Round-robin mutex protocol [13] where N processes require exclusive access to
a resource.

— A Bit-shifter where, at each step, a new random bit bg is generated, and bit by, is
set to bit bg_1, for N>k>1.

— An analogous Int-shifter, which shifts values in the range {1,..., N}.

Defining equivalent models (with the same number of states) was a challenge.
For Leader, from the SPIN distribution, we were able to define equivalent models
for NuSMV and SMART. For all other models, initially defined in SMART', we
defined equivalent NuSMV and SPIN models, except that, for SPIN, our Queen
model has approximately 1/3 more states, and we have no Fault-tolerant model.

From Table 1, we can observe that, compared with QEST, NEW has better
runtime and memory consumptions for essentially all models and parameter com-
binations. In the only two cases where QEST is (negligibly) faster than NEW,
Bubble-sort and Fault-tolerant, NEW’s memory consumption is much better.

Table 1: Experimental results.

N | Original [Reduced | CPU time (sec) [Peak memory (KB)
|S| |S| [SPIN] SMV[QEST[NEW| SPIN[SMV] QEST] NEW
Slotted-ring: K = N, [Si| = 15 for all k
6] 575,296] 575,296 8.2] 0.13] 0.03] 0.03] 401,130.5] 5,660.6 33.3 36.8
15[1.5 x 10'® — —|1285.1| 0.17] 0.15 —|21,564.2 262.7 155.8
200(8.4 x 10211 — — —|204.8(153.6 — —1362,175.8(176,934.1
Queen: K =N, |Si]=N+1 for all k
T1] 166,926] 228,004 0.7] 14.0] 3.9] 1.8] 21,308.4[17,018.4] 14,078.6] 5,302.2
12 856,189‘1.2 X 106‘ 3.8‘ 105.9‘ 19.5‘ 8.9‘ 103,307.3‘53,218.3‘ 63,828.6‘ 23,276.7
Fault-tolerant: K = 10N + 1, |Si| < 4 for all k except [S1] =N +1
5[2.4 x 1013 n/a] n/al 152.0] 0.14] 0.07 n/al18,576.8 171.4 120.2
100(1.0 x 10262 n/a|] n/a —|480.2(485.0 n/a —| 52,438.7| 23,406.1
Leader: K = 2N, [S;] <19 for all k
7[1.5 x 10° 70[0.013] 491.7] 1.6] 0.7 7,521.3[91,270.2 607.2 42.1
20(3.3 x 107 200 0.024 —| 93.4] 28.2 7,521.3 —| 7,281.3 86.6
30|1.8 x 102¢ 300| 0.047 —|568.9[145.6 9,618.4 —| 20,271.7 114.3

Bubble-sort: [S| = N!, K = N, [Si| = N for all k
11[4.0 x 10”7 [4.0 x 107[1,042.8] 125.3] 1.7] 1.7] 848,498.7[19,704.4] 7,217.6] 2,505.7

12]4.8 x 10® — —| 859.9| 5.3] 5.5 —|43,948.3| 21,680.7| 7,438.5
Swapper: |S| = N!'/((N/2)!)?, K = N, [Si| =2 for all k
20] 184,756] 184,756 0.9] 0.2] 0.01] 0.01] 37,006.3] 6,831.6 30.8 235

40(1.4 x 10** — —| 241.6| 0.06] 0.03 —|14,795.2 100.4 34.3
2,000(2.0 x 10800 — — —|742.3| 49.8 — —|187,266.0| 58,970.9
Round-robin: K = N + 1, |S| = 10 for all k except |[Sk| =N +1

16]2.3 x 10° [2.3 x 10°] 43.0] 0.34] 0.11] 0.07[1,046,004.7] 7,060.3 290.0 125.5

50(1.3 x 107 — —| 17| 21| 1.2 —161,239.0| 6,041.3| 1,299.2
200(7.2 x 1062 — — —|336.3| 77.0 — —|351,625.7| 47,833.1
Bit-shifter: |S| = 2V 72, K = N 4 3, |Sy| = 2 for all k except [Sn+3| = |[Sn42| = 3
16] 262,144 262,144 1.2 0.03] 12.7] 0.01] 306,798.6] 4,449.4] 8,326.6 44.2
256(4.6 x 1077 — —| 4477 —| 2.63 —116,723.4 —| 4,988.2
1,000(4.3 x 1030 —|64.52 — — —| 97,060.2

Int-shifter: |S| = 2N" 1 K = N + 3, |Sx| = N for all k except |Sn+3| = [Sn42| = 3
7[1.2x 107 [1.2x 107| 137.6] 0.05[281.4] 0.04] 680,857.6] 4,767.9[157,344.0 120.1
24|6.4 x 1034 — —| 29.2| —| 2.87 —114,827.8 —| 8,096.1
32|9.4 x 10*° — — —| —| 113 — — —| 24,2211

Especially for Bit-shifter and Int-shifter, NEW has enormously better perfor-
mance. This is because QEST requires conjuncts (groups) with non-intersecting
supports; for these two models, the resulting groups are very large and prevent
QEST from analyzing a 256-bit shifter or an 8-int shifter.

Compared with SMV, both QEST and NEW achieve much better runtime and
memory consumptions for all models except Bit-shifter and Int-shifter, where
QEST reports much worse results than SMV, while NEW still greatly outperforms
SMV in both time and memory.

Considering now SPIN, clearly, all symbolic approaches greatly outperform
SPIN unless its partial-order reduction techniques are applicable. One case where
this happen is Leader, for which only 10N states are explored in the reduced
state space, while the actual state space S grows exponentially. Nevertheless, for
Leader, NEW can generate the state space for N = 30, greatly outperforming
SMV and QEST in time and memory; indeed NEW’s peak number of MDD nodes
for S is 22N — 23, just one more than the final number. For all other models,
instead, SPIN fails to reduce any states, thus its explicit exploration is limited
to small parameter values.

6 Related work and conclusions

For traditional breadth-first state space generation, the efficiency of image com-
putation has been extensively studied. A conjunctive partition of the transi-
tion relation is the dominant approach for synchronous systems; the conjunctive
scheduling problem [21] consider efficient clustering of the conjuncts and ordering
of the clusters to minimize the size of the intermediate results during image com-
putation. Traditionally, coarse-grain conjunctive partitioning is used to build the
transition relation, and conjuncts are split only as necessary. A fine-grain con-
junctive partition is instead used in [15], where bit-level conjuncts are conjoined
into clusters. A disjunctive partition of the transition relation is instead natu-
rally applied to asynchronous systems, but also to synchronous systems based
on a Shannon’s expansion [23]. [22] proposes an approach combining conjunc-
tive partition with disjunctive recursive splitting; this differs from our approach
which performs a conjunction on the results of the disjunction by events.

The presence of identities in disjunctive partitions of asynchronous circuits
is suggested in [10], by limiting the image computation using disjuncts to the
dependent variables. For software models, [2] shows how to translate conjuncts
into disjuncts and vice versa. Their disjuncts modify only one state variable
and the program counter, while we allow disjuncts to concurrently modify any
number of state variables. Thus, [2] uses conjuncts not to “decompose” the
disjuncts but to perform a pre-model-checking reduction. Furthermore, the image
computation uses partial disjuncts, as in [10], but there is no merging of the
partial-disjuncts while still exploiting the identity transformations, as allowed
by our fully-identity reduced 2 K-MDDs.

Finally, regarding iteration orders other than breadth-first, only [20] uses
a saturation-based approach; [3] uses a guided search in symbolic CTL model
checking, in the hope to obtain a witness or counterexample without exploring
the entire state space; and [26] uses a mixed breadth-first/depth-first approach in
state-space generation based on the idea of chaining, a precursor to saturation.

To summarize our contribution, we introduced a new encoding for the tran-
sition relation of a discrete-state model, based on a new disjunctive-conjunctive
partition and a new fully-identity reduction rule for MDDs. With this encoding,
we perform symbolic state-space generation using the efficient saturation algo-
rithm without having to satisfy the Kronecker consistency requirement. This
new algorithm retains the efficiency of the original version, but has general ap-
plicability. In particular, it can be used to study models of software, for which
the consistency requirement hindered the use of previous versions of saturation.

Remarkably, for saturation, encoding the transition relation with (at most)
one MDD for each state variable turns out to be more efficient than the finer
encoding with one MDD for each event. This suggests that a disjunctive par-
tition improves efficiency as long as it enables the recognition of event
locality, but exploiting identity transformations is what truly matters.

References

1.

2.

10.
11.

12.

13.

14.
15.

16.

17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on
SAT-solvers. TACAS, LNCS 1785, pp.411-425, 2000.

S.Barner and I.Rabinovitz. Efficient symbolic model checking of software using
partial disjunctive partitioning. CHARME, LNCS 2860, pp.35-50, 2003.

. R.Bloem, K.Ravi, and F.Somenzi. Symbolic guided search for CTL model checking.

DAC, pp.29-34, 2000.

. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Trans. Comp., 35(8):677-691, 1986.

. G.Ciardo, R.L. Jones, A.S. Miner, and R.Siminiceanu. Logical and stochastic

modeling with SMART. Tools, LNCS 2794, pp.78-97, 2003.

. G.Ciardo, G.Luettgen, and R.Siminiceanu. Saturation: An efficient iteration strat-

egy for symbolic state space generation. TACAS, LNCS 2031, pp.328-342, 2001.

. G.Ciardo, R.Marmorstein, and R.Siminiceanu. Saturation unbound. TACAS,

LNCS 2619, pp.379-393, 2003.

. G.Ciardo and A.S. Miner. A data structure for the efficient Kronecker solution of

GSPNs. PNPM, pp.22-31, 1999.

. A.Cimatti, E.Clarke, F.Giunchiglia, and M.Roveri. NuSMV: A new symbolic model

verifier. CAV, LNCS 1633, pp.495-499, 1999.

E.M. Clarke, O.Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
S.Derisavi, P.Kemper, and W.H. Sanders. Symbolic state-space exploration and
numerical analysis of state-sharing composed models. NSMC, 167-189, 2003.
D.Dolev, M.Klawe, and M.Rodeh. An O(nlogn) unidirectional distributed algo-
rithm for extrema finding in a circle. J. of Algorithms, 3(3):245-260, 1982.
S.Graf, B.Steffen, and G.Liittgen. Compositional minimisation of finite state sys-
tems using interface specifications. Formal Asp. of Comp., 8(5):607-616, 1996.
G.J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

H.Jin, A.Kuehlmann, and F.Somenzi. Fine-grain conjunction scheduling for sym-
bolic reachability analysis. TACAS, LNCS 2280, pp.312-326, 2002.

J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with partitioned
transition relations. VLSI, 49-58, 1991. IFIP.

K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

T.Kam, T.Villa, R.Brayton, and A.Sangiovanni-Vincentelli. Multi-valued decision
diagrams: theory and applications. Multiple- Valued Logic, 4(1-2):9-62, 1998.
S.Kimura and E.M. Clarke. A parallel algorithm for constructing binary decision
diagrams. ICCD, pp.220-223, 1990.

A.S. Miner. Saturation for a general class of models. QEST, pp.282-291, 2004.
I.-H. Moon, G.D. Hachtel, and F.Somenzi. Border-block triangular form and con-
junction schedule in image computation. FMCAD, LNCS 1954, pp.73-90, 2000.
I-H. Moon, J.H. Kukula, K.Ravi, and F.Somenzi. To split or to conjoin: the
question in image computation. DAC, pp.23-28, 2000.

A Narayan, A.J. Isles, J.Jain, R.K. Brayton, and A.Sangiovanni-Vincentelli. Reach-
ability analysis using partitioned-ROBDDs. ICCAD, pp.388-393, 1997.

E.Pastor, O.Roig, J.Cortadella, and R.Badia. Petri net analysis using boolean
manipulation. ATPN, LNCS 815, pp.416-435, 1994.

B.Plateau. On the stochastic structure of parallelism and synchronisation models
for distributed algorithms. SIGMETRICS, pp.147-153, 1985.

M.Solé and E.Pastor. Traversal techniques for concurrent systems. FMCAD, LNCS
2517, pp.220-237, 2002.

