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Abstract. A behavior-RTL equivalence checking method based on bottom-up 
reasoning is presented. Behavior and RTL descriptions are converted into 
dependence graphs from which virtual controllers/datapaths are generated. 
Actual equivalence checking is based on isomorphism analysis on dependence 
graphs and also virtual controllers/datapaths. First equivalence classes on partial 
computations are extracted by using Boolean reasoning on virtual 
controllers/datapaths. Then these equivalence classes are used to prove the 
equivalence of the entire descriptions in a bottom-up way.  

1 The proposed verification method 

In this paper, we propose a way to verify equivalence by establishing mappings 
between behavior and RTL descriptions. We first extract “classes of equivalent partial 
computations”. Using these accumulated correspondences, the equivalence checking 
problem can be solved by establishing mappings on the entire design descriptions 
followed by reasoning about them in a bottom-up fashion. This is a similar technique 
to combinational equivalence checking methods based on internal equivalent points, 
such as the one in [1]. We map given behavior and RTL descriptions into virtual 
controllers and datapaths [2] and then reason about those design descriptions. The 
virtual controllers and datapths can make it possible to separately reason about 
“timing” and “data computations” and can establish correspondence among partial 
computations in a bottom-up way. Our verification methods have four steps as 
follows: 
(Step 1) Generate system dependence graph (SDG), which represents dependencies 

among statements in design descriptions, and virtual controllers/datapaths from 
both behavior and RTL descriptions 

(Step 2) Gather information on equivalence classes on partial computations on SDG. 
In this step, if necessary equivalence classes are computed by analyzing virtual 
controllers/datapaths as well as SDG. When analyzing virtual 
controllers/datapaths, apply reachability computation on virtual controllers to 
decide equivalence of partial computations. 

(Step 3) Perform graph matching between the SDGs for behavior and RTL 
descriptions by using equivalence classes computed in (Step 2).  

(Step 4) If the result of (Step 3) gives matching on SDGs, we conclude that the 
behavior and RTL descriptions are equivalent. Otherwise go back to (Step 2), 
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and try to get more equivalence classes. If no more equivalence classes are 
available, we generate a computation path which differentiates computations in 
the two SDGs as a counter example. 

Please note that the counter example generated in (Step 4) may not be a real computer 
example, since in (Step 2) we may not be able to gather all equivalence classes. That 
is, there are cases where our results are false-negative. 
The system dependence graph that we are using in the proposed equivalence checking 
method is generated by program slicers. Program slicing [3] is a technique by which 
related portions of the programs are extracted based on user-specified criteria. In the 
program slicing tools, internally control flow graphs and also so called system 
dependence graphs (SDG) are generated. SDG represents all static dependencies 
among statements in terms of control, data, and interference. In our method, we are 
using control flow graphs and SDGs generated by program slicers when generating 
virtual controllers and virtual datapaths. Our program slicer [4] is targeting SpecC 
language [5] and also C/C++ descriptions, and so combined descriptions in those 
languages can also be processed. The slicing program generates the corresponding 
control flow graphs (CFGs) and system dependence graphs (SDGs) as a unified graph. 
Then they are further processed to generate virtual controllers/datapaths.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now we illustrate the above verification method with examples. An example behavior 
description and a corresponding RTL one that is supposed to implement the behavior 
description are shown in the boxes of Figure 1. They are computing divisions, and the 
first input from the input port, In, is divided by the second input form the input port, 
and the output, A, is the quotient and the output B is the remainder at the end of the 
computation. The division is very straightforwardly computed by counting up how 
many times the value of the divider can be extracted. The semantics of the 
descriptions are obvious from the descriptions, and we do not explain them here 
except for “waitfor(CL)” statement. It is the statement that determines the clock 
boundary in RTL descriptions to fix the scheduling of the RTL descriptions. All 
statements surrounded by neighboring two waitfor(CL) statements must be executed 
within the same clock cycle. Since waitfor(CL) statements are the only difference,  
these two descriptions should be recognized to be equivalent. However, the values of 
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Figure 1. Behavior and RTL descriptions and their System Dependence Graph (SDG)
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output signals, A and B, may not be equal for every clock cycle, since behavior 
description has no fixed scheduling in the terms of clock timing. So in this case we 
assume that with an appropriate use of attribute statements [2] what should be 
compared is defined as to check the values of the outputs at the end of computation 
only. The SDGs for the two descriptions are also shown in Figure 1. The difference is 
just the existence of several “waitfor(CL)” statements in RTL, and so the two SDGs 
are easily recognized as “matching”, that is, they are isomorphic other than nodes for 
“waitfor(CL)”. We basically use graph isomorphism check for identifying equivalence 
of computations, and equivalence classes are used to make matching on sub-graphs.. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For more complicated cases, first of all equivalence class are first computed as 
explained in (Step 2) in the previous section. For example, the equivalence checking 
on the two descriptions shown in Figure 2 is processed as follows. Here we are 
comparing the two descriptions inside the boxes. The only difference between the two 
is the order of executions of the two underlined statements. Since they are 
independent with each other, these statements compute exactly the same. This can be 
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Figure 3. Bottom-up reasoning by identifying sub-graphs for “division” circuit/computation
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Figure 2. Identification of equivalences of subgraphs in SDG in a bottom-up way
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easily checked by traversing the SDGs and make sure they are independent. Then we 
can have an equivalence class for these statements and use it for the comparison of the 
two SDGs generated from the descriptions as shown in Figure 2. After identifying the 
equivalence class, the two SDGs are isomorphic and so the descriptions are equivalent. 
Figure 3 shows a more complicated case. In this example, the portion of the original 
description for division computation is replaced by a divider circuit as shown in the 
left-top part of the figure. First of all, we try to prove with loop-invariants that the 
while-loop part in the original description is computing division. With appropriate 
loop invariants, we can decompose the verification problem for the while-loop into 
the ones for non-loops. The decomposed verification can be processed as Boolean 
reasoning problems with virtual controllers/datapaths. Once that is finished, the 
equivalence for the entire SDGs can be again by checking their isomorphism. 
Figure 4 shows another example between sequential and parallel descriptions. In such 
cases, we first extract sequential behaviors from parallel ones by identifying 
synchronization statements, such as “notify” and “wait” and using them to generate 
sequential orders of executions. The extracted behaviors are then compared with the 
original sequential ones in terms of graph isomorphism utilizing equivalence classes. 
 
 
 
 
 

2 Experimental results 

We have tried several SpecC descriptions, such as the SpecC examples shown in 
SpecC manuals, e.g., elevator system, parity checker, and so on. Also, we have 
verified two versions of internet PPP protocol descriptions. These examples are 
ranging from one hundred to a couple of thousands lines of SpecC codes. Also, in the 
case of designs generated by SoC Environment, a system level design/synthesis tool 
developed by UC Irvine [5], the difference between two successive synthesis steps in 
the tool is very limited, and the analysis on partial computation equivalence classes 
becomes very simple but very useful. Several tens of thousands lines of SpecC 
descriptions can be verified with the proposed methods for such cases, including 
description on MPEG4 encoders.  
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