
 1

Behavior-RTL equivalence checking based on data
transfer analysis with virtual controllers and datapaths

Masahiro Fujita

VLSI Design and Education Center, The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan

fujita@ee.t.u-tokyo.ac.jp

Abstract. A behavior-RTL equivalence checking method based on bottom-up
reasoning is presented. Behavior and RTL descriptions are converted into
dependence graphs from which virtual controllers/datapaths are generated.
Actual equivalence checking is based on isomorphism analysis on dependence
graphs and also virtual controllers/datapaths. First equivalence classes on partial
computations are extracted by using Boolean reasoning on virtual
controllers/datapaths. Then these equivalence classes are used to prove the
equivalence of the entire descriptions in a bottom-up way.

1 The proposed verification method

In this paper, we propose a way to verify equivalence by establishing mappings
between behavior and RTL descriptions. We first extract “classes of equivalent partial
computations”. Using these accumulated correspondences, the equivalence checking
problem can be solved by establishing mappings on the entire design descriptions
followed by reasoning about them in a bottom-up fashion. This is a similar technique
to combinational equivalence checking methods based on internal equivalent points,
such as the one in [1]. We map given behavior and RTL descriptions into virtual
controllers and datapaths [2] and then reason about those design descriptions. The
virtual controllers and datapths can make it possible to separately reason about
“timing” and “data computations” and can establish correspondence among partial
computations in a bottom-up way. Our verification methods have four steps as
follows:
(Step 1) Generate system dependence graph (SDG), which represents dependencies

among statements in design descriptions, and virtual controllers/datapaths from
both behavior and RTL descriptions

(Step 2) Gather information on equivalence classes on partial computations on SDG.
In this step, if necessary equivalence classes are computed by analyzing virtual
controllers/datapaths as well as SDG. When analyzing virtual
controllers/datapaths, apply reachability computation on virtual controllers to
decide equivalence of partial computations.

(Step 3) Perform graph matching between the SDGs for behavior and RTL
descriptions by using equivalence classes computed in (Step 2).

(Step 4) If the result of (Step 3) gives matching on SDGs, we conclude that the
behavior and RTL descriptions are equivalent. Otherwise go back to (Step 2),

 2

and try to get more equivalence classes. If no more equivalence classes are
available, we generate a computation path which differentiates computations in
the two SDGs as a counter example.

Please note that the counter example generated in (Step 4) may not be a real computer
example, since in (Step 2) we may not be able to gather all equivalence classes. That
is, there are cases where our results are false-negative.
The system dependence graph that we are using in the proposed equivalence checking
method is generated by program slicers. Program slicing [3] is a technique by which
related portions of the programs are extracted based on user-specified criteria. In the
program slicing tools, internally control flow graphs and also so called system
dependence graphs (SDG) are generated. SDG represents all static dependencies
among statements in terms of control, data, and interference. In our method, we are
using control flow graphs and SDGs generated by program slicers when generating
virtual controllers and virtual datapaths. Our program slicer [4] is targeting SpecC
language [5] and also C/C++ descriptions, and so combined descriptions in those
languages can also be processed. The slicing program generates the corresponding
control flow graphs (CFGs) and system dependence graphs (SDGs) as a unified graph.
Then they are further processed to generate virtual controllers/datapaths.

Now we illustrate the above verification method with examples. An example behavior
description and a corresponding RTL one that is supposed to implement the behavior
description are shown in the boxes of Figure 1. They are computing divisions, and the
first input from the input port, In, is divided by the second input form the input port,
and the output, A, is the quotient and the output B is the remainder at the end of the
computation. The division is very straightforwardly computed by counting up how
many times the value of the divider can be extracted. The semantics of the
descriptions are obvious from the descriptions, and we do not explain them here
except for “waitfor(CL)” statement. It is the statement that determines the clock
boundary in RTL descriptions to fix the scheduling of the RTL descriptions. All
statements surrounded by neighboring two waitfor(CL) statements must be executed
within the same clock cycle. Since waitfor(CL) statements are the only difference,
these two descriptions should be recognized to be equivalent. However, the values of

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

Input In;
Output A, B;
Clock CL;
Variable X, Y
Waitfor(CL);
X = Get(In);
Waitfor(CL);
Y = Get(In);
Waitfor(CL);
A = 0;
B = X;
Waitfor(CL)
While(b>=y){
B = B – Y;
A = A + 1;
Waitfor(CL);

}

: waitfor(CL)

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

Figure 1. Behavior and RTL descriptions and their System Dependence Graph (SDG)

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

Input In;
Output A, B;
Clock CL;
Variable X, Y
Waitfor(CL);
X = Get(In);
Waitfor(CL);
Y = Get(In);
Waitfor(CL);
A = 0;
B = X;
Waitfor(CL)
While(b>=y){
B = B – Y;
A = A + 1;
Waitfor(CL);

}

: waitfor(CL)

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

Input In;
Output A, B;
Clock CL;
Variable X, Y
Waitfor(CL);
X = Get(In);
Waitfor(CL);
Y = Get(In);
Waitfor(CL);
A = 0;
B = X;
Waitfor(CL)
While(b>=y){
B = B – Y;
A = A + 1;
Waitfor(CL);

}

: waitfor(CL)

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

Figure 1. Behavior and RTL descriptions and their System Dependence Graph (SDG)

 3

output signals, A and B, may not be equal for every clock cycle, since behavior
description has no fixed scheduling in the terms of clock timing. So in this case we
assume that with an appropriate use of attribute statements [2] what should be
compared is defined as to check the values of the outputs at the end of computation
only. The SDGs for the two descriptions are also shown in Figure 1. The difference is
just the existence of several “waitfor(CL)” statements in RTL, and so the two SDGs
are easily recognized as “matching”, that is, they are isomorphic other than nodes for
“waitfor(CL)”. We basically use graph isomorphism check for identifying equivalence
of computations, and equivalence classes are used to make matching on sub-graphs..

For more complicated cases, first of all equivalence class are first computed as
explained in (Step 2) in the previous section. For example, the equivalence checking
on the two descriptions shown in Figure 2 is processed as follows. Here we are
comparing the two descriptions inside the boxes. The only difference between the two
is the order of executions of the two underlined statements. Since they are
independent with each other, these statements compute exactly the same. This can be

Divider

X

Y

A

B

A = 0;
B = X;
While(B >= Y){

B = B – Y;
A = A + 1;

}

Input In;
Output A, B;
X = Get(In);
Y = Get(In);
(A, B) = Divider(X, Y);

Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;
}

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin Control flow

Control dependence

Data dependence

Figure 3. Bottom-up reasoning by identifying sub-graphs for “division” circuit/computation

Divider

X

Y

A

B

A = 0;
B = X;
While(B >= Y){

B = B – Y;
A = A + 1;

}

Input In;
Output A, B;
X = Get(In);
Y = Get(In);
(A, B) = Divider(X, Y);

Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;
}

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin Control flow

Control dependence

Data dependence

Divider

X

Y

A

B

A = 0;
B = X;
While(B >= Y){

B = B – Y;
A = A + 1;

}

Divider

X

Y

A

B

A = 0;
B = X;
While(B >= Y){

B = B – Y;
A = A + 1;

}

Input In;
Output A, B;
X = Get(In);
Y = Get(In);
(A, B) = Divider(X, Y);

Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;
}

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin Control flow

Control dependence

Data dependenceX=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin Control flow

Control dependence

Data dependenceX=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin Control flow

Control dependence

Data dependence

Figure 3. Bottom-up reasoning by identifying sub-graphs for “division” circuit/computation

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

A=A+1

B=B-Y

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
A = A + 1;
B = B – Y;

}

Match !

Figure 2. Identification of equivalences of subgraphs in SDG in a bottom-up way

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

A=A+1

B=B-Y

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
A = A + 1;
B = B – Y;

}

Match !

Figure 2. Identification of equivalences of subgraphs in SDG in a bottom-up way

 4

easily checked by traversing the SDGs and make sure they are independent. Then we
can have an equivalence class for these statements and use it for the comparison of the
two SDGs generated from the descriptions as shown in Figure 2. After identifying the
equivalence class, the two SDGs are isomorphic and so the descriptions are equivalent.
Figure 3 shows a more complicated case. In this example, the portion of the original
description for division computation is replaced by a divider circuit as shown in the
left-top part of the figure. First of all, we try to prove with loop-invariants that the
while-loop part in the original description is computing division. With appropriate
loop invariants, we can decompose the verification problem for the while-loop into
the ones for non-loops. The decomposed verification can be processed as Boolean
reasoning problems with virtual controllers/datapaths. Once that is finished, the
equivalence for the entire SDGs can be again by checking their isomorphism.
Figure 4 shows another example between sequential and parallel descriptions. In such
cases, we first extract sequential behaviors from parallel ones by identifying
synchronization statements, such as “notify” and “wait” and using them to generate
sequential orders of executions. The extracted behaviors are then compared with the
original sequential ones in terms of graph isomorphism utilizing equivalence classes.

2 Experimental results

We have tried several SpecC descriptions, such as the SpecC examples shown in
SpecC manuals, e.g., elevator system, parity checker, and so on. Also, we have
verified two versions of internet PPP protocol descriptions. These examples are
ranging from one hundred to a couple of thousands lines of SpecC codes. Also, in the
case of designs generated by SoC Environment, a system level design/synthesis tool
developed by UC Irvine [5], the difference between two successive synthesis steps in
the tool is very limited, and the analysis on partial computation equivalence classes
becomes very simple but very useful. Several tens of thousands lines of SpecC
descriptions can be verified with the proposed methods for such cases, including
description on MPEG4 encoders.

References

[1] A. Kuehlmann and F. Krohm, “Equivalence Checking Using Cuts and Heaps”, in
Proceedings of the 34th ACM/IEEE Design Automation Conference 1997.

[2] M. Fujita, “On equivalence checking between behavioral and RTL descriptions”, HLDVT
2004, Nov. 2004. Also see http://www.cad.t.u-tokyo.ac.jp for more reference.

[3] M. Weiser, “Program slices: Formal, psychological, and practical investigations of an
automatic program abstraction”, PhD thesis, University of Michigan, 1979.

[4] K. Tanabe, S. Sasaki, M. Fujita, “Program slicing for system level designs in SpecC”,
IASTED Conference on Advances in Computer Science and Technology, Nov. 2004.

[5] SoC Environment, University of California, Irvine. http://www.cecs.uci.edu/~cad/sce.html.

Figure 4. Sequential and parallel description
comparison by first extracting
sequential behaviors from parallel ones

Func1() {
while (Cont) {
notify(Cont):
B = B – Y;
Cont = (B>=Y)

}
}

Func2() {
while (1) {
wait(Cont):
A = A + 1

}
}

Par/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

(a) Sequential version

Func1() {
while (Cont) {
notify(Cont):
B = B – Y;
Cont = (B>=Y)

}
}

Func2() {
while (1) {
wait(Cont):
A = A + 1

}
}

Par/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

(a) Sequential version

(b) Parallel version

Figure 4. Sequential and parallel description
comparison by first extracting
sequential behaviors from parallel ones

Func1() {
while (Cont) {
notify(Cont):
B = B – Y;
Cont = (B>=Y)

}
}

Func2() {
while (1) {
wait(Cont):
A = A + 1

}
}

Par/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

(a) Sequential version

Func1() {
while (Cont) {
notify(Cont):
B = B – Y;
Cont = (B>=Y)

}
}

Func2() {
while (1) {
wait(Cont):
A = A + 1

}
}

Par/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

(a) Sequential version

(b) Parallel version

