
Acceleration of SAT-based Iterative Property
Checking

Daniel Große and Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{grosse,drechsle}@informatik.uni-bremen.de

Abstract. Formal property checking is used to check whether a circuit
satisfies a temporal property or not. An important goal during the devel-
opment of properties is the formulation of general proofs. Since assump-
tions of properties define the situations under which the commitments
are checked, in order to obtain general proofs assumptions should be
made as general as possible. In practice this is accomplished iteratively
by generalizing the assumptions step by step. Thus, the verification en-
gineer may start with strong assumptions and weakens them gradually.
In this paper we propose a new approach to speed up SAT-based iter-
ative property checking. This process can be exploited by reusing con-
flict clauses in the corresponding SAT instances of consecutive prop-
erty checking problems. By this the search space is pruned, since re-
computations of identical conflicts are avoided.

1 Introduction

Nowadays, for successful circuit designs Property Checking (PC) is very impor-
tant. Typically such a property consists of two parts: an assume part which
should imply the proof part. In the last years tools based on Satisfiability (SAT)
performed better than classical BDD-based approaches since SAT procedures do
not suffer from the potential “size explosion” of BDDs. In SAT-based PC the
initial SAT instance is generated from the circuit description together with the
property to be proven. Usually, the largest part will result from the unrolled
circuit description. In comparison, the parts for the commitments, assumptions,
and the extra logic are much smaller. From a practical perspective, during PC as
long as no design bug is found the circuit design remains unchanged, but the ver-
ification engineer modifies and adds new properties. Thus, the PC tool is used
interactively. For the verification engineer on the one hand, proving becomes
more easy if the assumptions of a property are very strong, i.e. the property is
very restrictive and argues only over a small part of the design space. On the
other hand, such proofs are not very general. Hence in practice, the formulation
of a property is an iterative process. E.g., the engineer starts writing a prop-
erty with strong assumptions. Then, the engineer stepwise weakens some of the
assumptions to obtain a more general proof.

The basic idea is to exploit the iterative process of PC. As can be seen only
a very small part of the verification problem changes in consecutive PC runs
if the assumptions are weakened. Re-computations can be avoided if learned
information is reused for consecutive SAT problems. Bounded Model Checking
(BMC) as introduced in [1] reduces the verification problem to a SAT problem
and then searches for counter-examples in executions whose length is bounded
by k time steps. For BMC, it has been suggested to reuse constraints on the
search space deduced in instance k for solving the consecutive instance k + 1
faster [4]. However, in [4] this concept is only used during the proof of a single
or more fixed properties.

In this paper we use BMC as described in [5], thus, a property only argues
over a finite time interval and during the proof there is no restriction to reach-
able states. In contrast to [4], here two SAT instances for slightly different PC



Design

Frontend

Property

DB
BMC Problem

SAT Solver:
Satisfiable? yesno

Property holds Counter-example

A

X

Y

B

Fig. 1. Property Checking Flow

problems are considered and information from the two properties with respect
to the underlying circuit is utilized. This enables to reuse learned conflict clauses
in the SAT instance of the consecutive PC problem.

2 Acceleration of Iterative Property Checking

In this section the approach for reusing conflict clauses during iterative PC is
presented. Before the details are given, the work flow is illustrated in Figure 1.

At first the design and the property are compiled into an internal repre-
sentation. In this step information to allow for a syntactic comparison between
properties is stored in the data base (A). Then the internal representation is
converted into a BMC problem expressed as a CNF formula. While solving this
SAT instance the references to the clauses that lead to a new conflict clause
are stored in a data structure. After termination of the SAT solver this conflict
clause information can be related to the single assumptions and commitments
of the checked property. Finally this information is minimized and added to the
data base (B). Now assume that PC is repeated but the property has been weak-
ened. Then, this is detected (X) and before the BMC problem is given to the
SAT solver conflict clauses are read from the data base, analyzed and reused
(Y), if possible.

Let M be the set of clauses resulting from the translation of the design
D, let P be the set of clauses resulting from the property p. Then P can be
partitioned into P = A ∪C ∪ R, where A are the clauses from the assumptions,
C from the commitments and R the clauses to “glue” the assumptions and the
commitments of the property together. Now consider two consecutive runs of the
property checker for the unchanged design D and for two properties pF (first) and
pS(second). Assume that the property pS has been derived from the property
pF by weakening some of the assumptions. Let P F = AF

∪ CF
∪ RF be the

resulting clauses of the property of the first run and P S = AS
∪ CS

∪ RS the
clauses for the second run, respectively. Further assume that the variables in P S

are renamed with a variable mapping function which maps a variable from the
second set of variables VS to the according variables of the variable set VF from
the first run. Then the following holds:

1. CS = CF , since the commitments of properties pS and pF are equal.
2. RS = RF since the variables to combine the assumptions and commitments

can be identified.
3. AS

⊂ AF because the assumptions of pS are weaker than the assumptions
of pF .



Table 1. Overhead for arbiter

Cells Property Clauses Literals Result Time (sec)
std reuse

100 mutualexclusion 240,776 541,742 holds 9.15 9.57
100 lowestWins 50 161,399 363,193 holds 14.15 14.49
200 mutualexclusion 961,576 2,163,542 holds 176.65 177.78
200 lowestWins 50 642,799 1,446,393 holds 588.30 590.45

Table 2. Acceleration for arbiter

Cells Property Clauses Literals Result Time (sec) Reused Speed-up
std reuse Cl. (%)

100 mutualexclusion 161,076 362,442 holds 13.26 13.01 20.23 1.0
100 lowestWins 50 161,247 362,839 holds 8.71 4.54 100.00 1.9
200 mutualexclusion 642,176 1,444,942 holds 1078.80 343.77 6.23 3.1
200 lowestWins 50 642,347 1,445,339 holds 656.35 22.70 100.00 28.9

Since the clauses M of the design do not change only the clauses resulting
from the two properties pF and pS have to be compared. Under the assumptions
and conclusions from above the following holds:

P F
− P S = (AF

∪ CF
∪ RF ) − (AS

∪ CS
∪ RS) = AF

− AS

With this result it can be concluded that all conflict clauses can be reused which
are not a result of an implication caused by a clause of AF

−AS . In other words
we have to identify the conflict clauses which have been deduced exclusively from
the intersection of the two consecutive PC problems. This intersection is given
by (M ∪P F )∩ (M ∪P S) = M ∪AS

∪CF
∪RF . Thus, for each conflict clause of

the first run the sequence of clauses which produced that conflict clause have to
be determined, since with this information we can exactly identify the source of
the conflict in terms of the two properties pF and pS . This becomes possible, if
we further know which clauses have been produced by the design, the individual
expressions in the assume part and the individual expressions of the proof part
of both properties. Finally for a conflict clause cl the minimal source information
is stored which allows to check if cl was produced by a clause of the design or by
an assume expression or a proof expression. Altogether it can be decided which
conflict clauses of the first run can be reused to speed up the current proof.

3 Experimental Results

To allow for access of necessary information during PC we have implemented
a SAT-based property checker on top of zChaff [3]. All experiments have been
carried out in the same system environment on an Athlon XP 2800 with 1 GByte
main memory. The following experiments always consist of two steps. First, for
a circuit a property with “overly” strong assumptions is proved. This is done
with and without our approach to measure the time overhead. Next, we prove
the same property but in a more general version, i.e. some of the assumptions
of the property have been weakened. In this case we measure the speed-up that
can be achieved by reusing conflict clauses.

In a first series of experiments we considered a scalable bus arbiter that
has been studied frequently in formal hardware verification (see e.g. [2]). The
considered properties for the arbiter circuit are mutual exclusion of the outputs
of the arbiter and lowestWins. The second property states that if exactly one
token is set and no cell is waiting and exactly the request i is high then the
corresponding acknowledgement i will be set in the same clock cycle. In Table



Table 3. Overhead for FIFO

Size Property Clauses Literals Result Time (sec)
std reuse

64 nochange 68,077 156,723 holds 14.82 14.92
128 nochange 156,595 361,173 holds 101.83 102.03

Table 4. Acceleration for FIFO

Size Property Clauses Literals Result Time (sec) Reused Speed-up
std reuse Cl. (%)

64 nochange 68,072 156,712 holds 14.80 2.16 100.00 6.9
128 nochange 156,590 361,162 holds 101.72 6.42 100.00 15.8

1 the overhead for our approach is given for different arbiter instances (column
Cells). In the second column the name of the considered property is shown. The
next two columns provide information on the corresponding SAT instance. In
column Result it is shown whether the property holds or not. Next, the run time
needed without and with our approach is given in column std and column reuse,
respectively. The difference between the two given run times is the time needed
to store learned information into the data base. As can be seen the overhead is
negligible, i.e. less than 1% of the run time for the larger examples.

The achieved improvement of the proposed approach for the arbiter is shown
in Table 2. E.g. in the weakened variant of the property mutualexclusion the
assumption that no arbiter cell is waiting is no longer assumed. The first seven
columns give similar information as in Table 1. Because the considered proper-
ties have been weakened the resulting number of clauses and literals decreases.
However, since for each property learned information can be found in the data
base, conflict clauses can be reused. Thus, column Reused Cl. gives the percent-
age of reused clauses. In the last column the achieved speed-up is shown. As
can be seen for the 100 cell arbiter in case of the property mutualexclusion no
speed-up results. But for the three remaining examples a significant speed-up
was obtained, i.e. up to nearly a factor of 30.

In a second series of experiments we studied FIFOs of different depth. As
a property we prove that the content of a FIFO does not change under the
assumption that no write operation is performed. In the initial version of this
property it has also been assumed that no read operation is performed. Similar
information as for the arbiter examples is provided in Tables 3 and 4, respectively.
Also in this case for larger examples a speed-up of more than a factor of 10 can
be observed.

References

1. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 1579 of LNCS, pages 193–207. Springer Verlag, 1999.

2. D. Große and R. Drechsler. CheckSyC: An efficient property checker for RTL Sys-
temC designs. pages 4167–4170, 2005.

3. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an efficient SAT solver. In Design Automation Conf., pages 530–535, 2001.

4. Ofer Shtrichman. Pruning techniques for the SAT-based bounded model checking
problem. pages 58–70, 2001.

5. K. Winkelmann, H.-J. Trylus, D. Stoffel, and G. Fey. A cost-efficient block verifi-
cation for a UMTS up-link chip-rate coprocessor. In Design, Automation and Test
in Europe, volume 1, pages 162–167, 2004.


