How Thorough is Thorough Enough?

Avrie Gurfinkel and Marsha Chechik

Department of Computer Science, University of Toronto,
Email: {ari e, chechi k}@s. t oront 0. edu

Abstract. Abstraction is the key for effectively dealing with the state explosion
problem in model-checking. Unfortunately, finding abstractions which are small
and yet enable us to get conclusive answers about properties of interest is no-
toriously hard. Counterexample-guided abstraction refinement frameworks have
been proposed to help build good abstractions iteratively. Although effective in
many cases, such frameworks can include unnecessary refinement steps, leading
to larger models, because the abstract verification step is not as conclusive as it
can be in theory. Abstract verification can be supplemented by a more precise
but much more expensive thorough check, but it is not clear how often this check
really helps. In this paper, we study the relationship between model-checking and
thorough checking and identify practical cases where the latter is not necessary,
and those where it can be performed efficiently.

1 Introduction

Abstraction is arguably the most effective technique for dealing with the state explosion
problem in model-checking. The goal of abstraction is to build a system which is small
enough to analyze yet the one that allows to verify properties of interest. Such abstrac-
tions may be very hard to build; instead, we typically start with an abstraction which
may be too crude for certain properties, and then refine it, attempting to reach a definite
answer.

The best-known method for abstraction refinement, guided by counterexamples, has
been suggested by Clarke et al. [5] and is outlined in Figure 1(a). This framework
assumes that the abstraction K, is an overapproximation of the system of interest K,
i.e., every execution of K is an execution of K. When a universal property ¢ holds in
K, this result can be trusted. Otherwise, either ¢ does not hold in K., or the abstraction
is too crude. To tell between these cases, a counterexample obtained by verifying ¢ in
K., is checked for feasibility by playing it back in K .. This either establishes the failure
of ¢, or enables the refinement of K, that eliminates the spurious counterexample.

Several researchers [12,22,4,9, 11] proposed an improvement of this framework
that enables reasoning about arbitrary CTL formulas. In their framework, outlined in
Figure 1(b), an abstract model K, is 3-valued, which combines over- and under-approxi-
mation of K.. Model-checking a CTL formula ¢ on K, either yields true or false,
which can be trusted without the need to resort to the counterexample, or it returns
maybe, i.e., inconclusive. In this case, the counterexample can be used to refine the ab-
straction. Since building 3-valued models is no more expensive than classical [11], and
neither is 3-valued model-checking [4] nor 3-valued counterexample generation [15,
22], this framework is not more expensive than classical, while allowing to reason about
a larger class of temporal logic properties.

Goal: Check ACTL formula ¢ on a model K.

1. repeat until resources are exhausted Goal: Check CTL formula ¢ on a model K.

2. Build an abstract model K. 1. repeat until resources are exhausted

3. Model-check ¢ on K. 2. Build a 3-val abstract model K.

4. if YES, return “¢ holds on K.” 3. Model-check ¢ on K.

5. dse 4. if YES, return “p holds on K.”

6. Check if the counterexample is feasible 5. if NO, return “p failson K.”

7. if YES, return “o fails on K.” 6. elseuse the counterexample for refinement.

8. else use the counterexample for refinement.
(@ (b)

Fig. 1. Counterexample-guided abstraction refinement frameworks: (a) classical; (b) 3-valued..

()
D

S0

(b)
Fig. 2. (a) A concrete model K; (b) An abstraction K’ of K.

Both of these frameworks sometimes force a refinement step even though a conclu-
sive result can be obtained from the existing model K . For example, consider checking
aproperty ¢ = A[(—=pAq) U pl, where the original model K and its abstraction K’ are
shown in Figure 2. In K, states 5, and 35 correspond to sy and s3 of K, respectively,
whereas $; is a merge of s; and so, indicated by dashed lines in Figure 2(a). In classi-
cal abstraction, we typically treat literals of the concrete models as atomic propositions
of the abstract, thus both p and —p are false in state §; of K’. Our property ¢ fails
in K’, and a counterexample is produced. Clearly, this counterexample is not feasible,
so refinement is necessary. On a closer inspection, we note that this counterexample is
spurious not only in K but in every model that refines K. There are two concretizations
of this counterexample, and ¢ is true in both of them. Thus, it would be highly desirable
to be able to conclude that the property holds, avoiding unnecessary refinement steps.

Godefroid and Jagadeesan [12] suggested that one can use an additional, thorough,
check when the result of model-checking is inconclusive. This changes both algorithms
in Figure 1 after step 5 as follows:

5a. Apply the thorough check of ¢ on K.

5b. if conclusive, tell user and stop.

6. else use the counterexample for refinement.
which we refer to as classical thorough and 3-valued thorough, respectively. Even
though the thorough check is exponentially more expensive than model-checking [12],
this modification can potentially reduce the number of refinements. Since each refine-
ment adds atomic propositions, and each additional atomic proposition doubles the size
of the abstraction, the extra cost seems justified. Unfortunately, if the thorough check
is still inconclusive, it does not help the refinement, but levies a heavy performance
penalty. Without empirical evidence, it is not clear how useful this framework is in
practice. We are thus interested to find out answers to the following questions:

1. Are there classes of problems where the thorough check is not necessary, i.e., it
does not give a more precise result than model-checking?

2. In cases where the thorough check is required, can it be performed efficiently?

In this paper, we show that the thorough check of universal properties on models built
using predicate abstraction [14] does not give an additional precision and thus can be
skipped. For arbitrary abstraction, we give an algorithm for deciding ACTL formulas,
where the thorough check can be performed efficiently. This approach combines the
model-checking and the thorough step, resulting in an algorithm which is as precise as
the thorough check, while being only marginally more expensive than model-checking.
This algorithm also produces counterexamples which can be used for refinement.

The rest of this paper is organized as follows. We start by giving the necessary back-
ground in Section 2. In Section 3, we extend results of Godefroid and Jagadeesan [13]
to show that 3-valued models in which each atomic proposition is either boolean (i.e.,
true or false), or maybe in each state, are as expressive as arbitrary 3-valued Kripke
structures. This is used in Section 4 to show that 3-valued model-checking (referred to
as compositional) and thorough checking correspond to different semantics of quanti-
fied temporal logic (QTL). We answer the questions posed above in Section 5, using
previously established results for QTL. We compare our approach with related work in
Section 6 and conclude the paper in Section 7.

2 Background

In this section, we provide the necessary background on model-checking, 3-valued rea-
soning, and quantified temporal logic.

3-Valued Kleene Logic. A 3-valued Kleene logic [18] is an extension of a classical
two-valued logic of true and false, with an additional value maybe, representing un-
certainty. Logical operators in the logic are defined via the truth ordering C, where
false C maybe L true. Intuitively, ¢ C b indicates that « is less true than b. Conjunc-
tion and disjunction are given by meet (minimum) and join (maximum) operators of the
truth ordering, respectively. Negation is defined as: —true = false, —false = true, and
—maybe = maybe. Kleene logic preserves most of the laws of classical logic, such as
De Morgan laws (—(a A b) = —a V —b), and an involution of negation (——a = a), but
not the laws of excluded middle (a vV —a = true) and non-contradiction (—aAa = false).
The values of Kleene logic can also be ordered according to the information pre-order
=, where maybe =< true and maybe < false. That is, maybe contains the least amount
of information, whereas true and false are incomparable. We denote the set of boolean
values true and false by 2, and the set of values of Kleene logic by 3.

Models. A model is a 3-valued Kripke structure K = (S, R, Sy, AP, I), where S'is a
finite set of states, R : S x S — 3 is a total transition relation, Sy C S is a set of initial
states, AP is a set of atomic propositions, and I : S x AP — 3 is an interpretation
function, assigning a value to each atomic proposition a € AP in each state. A classical
(two-valued) Kripke structure is a 3-valued Kripke structure that does not use the value
maybe, i.e. the range of R and I is {true, false}.

Temporal Logic. Computation Tree Logic (CTL) [7] is a branching temporal logic,
whose syntax is defined with respect to set AP of atomic propositions, as follows:
e=LlpleVeloAp|~p|EXp|AXp|EFp| AFp
| EGo | AGo | Elp U ¢] | Alp U ¢,

1% (s) = ¢ [Pl * (s) = I(s,p)
llo AIIE(s) = [l (s) A Il (s) eV plI™ (s) = [l () V [[9]] (s)
1=l (s) = =llel|* (s) 1EXl|*(s) = V,yes(B(s,t) Allell™ (1)
I1BG|"(s) £ |lvZ - o NEXZ||*(s) || ElpU]||" () £ |InZ - v Vo AEXZ||" (5)

Fig. 3. Semantics of CTL.

where p € AP is an atomic proposition and ¢ € 2 is a constant. Informally, the meaning
of the temporal operators is: given a state and all paths emanating from it, ¢ holds in
one (E£X) or all (AX) next states; (¢ holds in some future state along one (E'F) or all
(AF) paths; ¢ holds globally along one (EG) or all (AG) paths, and ¢ holds until a
point where v holds along one (EU) or all (AU) paths.

The value of in state s of K is denoted by | ||| % (s); the value of ¢ in K is defined
with respect to all initial states of K: ||¢|| = Nsyeso l|o]| ¥ (s0). Temporal operators
EX, EG,and EU together with the propositional connectives form an adequate set [6].
The formal semantics of CTL is given in Figure 3. The only difference between the 2-
and the 3-valued semantics is the change in the domain of ¢. To disambiguate from
an alternative semantics presented below, we refer to this semantics as compositional.
Compositional semantics of CTL is interpreted over 3-valued Kripke structures with
respect to Kleene logic.

We write ([z] to indicate that the formula ¢ may contain an atomic proposition .
An occurrence of x is positive (or of positive polarity) if it occurs under the scope of
an even number of negations, and negative otherwise. An atomic proposition x is pure
in o if all of its occurrences have the same polarity, and is mixed otherwise. We write
o|x « y] for a formula obtained from by simultaneously substituting all occurrences
of z by y. A formula ¢ is universal (or in ACTL) if all of its temporal operators are
universal, and is existential (or in ECTL) if they are existential. In both cases, negation
is only allowed at the level of atomic propositions.

Relationships Between Models. We revisit definitions of simulation and bisimulation
for classical Kripke structures, and refinement for 3-valued Kripke structures.

Definition 1. [20] Let K and K’ be classical Kripke structures with identical sets of
atomic propositions AP. Arelation p C S x S’ isasimulation iff p(s, s") implies that

1. Vpe AP-I'(s',p) & I(s,p), and
2.V €S- R(s't') = 3t € S-R(s,t) A p(t, t').

A state s simulatesa state s if (s, s") € p. A Kripke structure K simulates K iff every
initial state of K is simulated by an initial state of K. Simulation between K and K’
preserves ACTL: for any ¢ € ACTL, ||¢||X = |l¢||¥’. K and K’ are bisimilar iff
exists a simulation p between K and K’ such that p—! is a simulation between K’ and
K. The set of all structures bisimilar to K is denoted by B(K). Bisimulation preserves
CTL: Vg € CTL-VK' € B(K) - ||¢||* < [|¢]|¥".

For a given a set of atomic propositions X, let K_ x denote the result of removing
all atomic propositions in X from K, i.e.,, AP_x = AP\ X. Let K and K’ be Kripke
structures such that AP’ = APUX. Then, K’ is X-bisimilar to K iff K" is bisimilar
to K. The set of all X-bisimilar structures to K is denoted by Bx (K).

Definition 2. [2] A relation p C S x S’ is a refinement between 3-valued Kripke
structures K and K’ iff p(s, s’) implies

1 Vpe AP -I(s,p) X I'(s',p);

2.Vt €S- (R(s,t) Jtrue) = 3t' € S"- (R'(s',t') J true) A p(t,t');

3.Vt e S (R'(s',t') D maybe) = 3t € S - (R(s,t) 3 maybe) A p(t,).
A state s is refined by s’ (s < &) if there exists a refinement p containing (s, s’). A
Kripke structure K is refined by K’ (K < K') if there exists a refinement p relating
their initial states: Vs € Sy - 3s" € S} - p(s,s') and Vs’ € S| -3s € Sy - p(s,8).
Bisimulation and refinement coincide on classical structures, and refinement preserves
3-valued CTL:

Theorem 1. [2] For 3-valued Kripke structures K and K’ and a CTL formula ¢, K <
K" implies|[o]|* < ||| .

Refinement can relate 3-valued and classical models as well. For a 3-valued Kripke
structure K, let C(K') denote the set of completions [3] of K — the set of all classical
Kripke structures that refine K. Forany K’ € C(K), the structure K can be seen as less
precise than K’ in the sense that any CTL formula ¢ that evaluates to a definite value
(either true or false) in K, evaluates to the same value in K, i.e., (||¢||¥ = true) =
(el <" = true) and (||| = faise) = (||| = faise).

Thorough Semantics. Compositional semantics of CTL is inherently imprecise: if ¢
is maybe in K, it may or may not be true in every completion. To address this, Bruns
and Godefroid [3] proposed an alternative semantics, calling it thorough. A formula
¢ is true in K under thorough semantics, written ||o||X = true, iff it is true in all
completions of K; itis false in K if it is false in all completions; and maybe otherwise.

The additional precision comes at a cost of complexity. Model-checking under
compositional semantics is linear in the size of the model and linear in the size of the
formula, but model-checking ¢ under thorough semantics is EXPTIME-complete, with
the best known algorithm quadratic in the size of the model and exponential in || [3].

Quantified CTL. Quantified CTL (QCTL) [19] is an extension of CTL with quantifi-
cation over atomic propositions. Thus, QCTL formulas consist of all CTL formulas and
formulas of the form Vz - ¢ and 3z - . In this paper, we only use a fragment of QCTL
in which all quantifiers precede all other operators. Thus, we consider formulas like
Vz-Jy-AG(x = AFy),butnotlike AX (3z-x = AFy), or (Vz-EXxz)A(3y- AXy)
The syntax of QCTL does not restrict the domain of quantifiers. Thus, there are
several different definitions of the semantics of QCTL with respect to a classical Kripke
structure; we consider two of these in this paper: structure [19] and amorphous [10].

Structure Semantics. Under this semantics, each free variable z is interpreted as a
boolean function over the statespace, i.e., x € [S — 2]. For example, Vx - ¢ is true
in K under structure semantics if replacing = by an arbitrary boolean function results
in a formula that is true in K. Formally, the values of Vz - ¢ and 3z - ¢ over a Kripke
structure K are defined as follows:

o] % ||| %, if o € CTL (structure semantics)
IV - || ~ Wy € 15— 2] [plr — ylll
132 - ol| £ = 3y €[S — 2] - [|¢lz — Y]l

where [S — 2] denotes the set of all boolean functions over S.

Alternatively, structure semantics can be understood as follows. For Kripke struc-
tures K and K’, we say that K’ is an X-variant of K if there exists a set of atomic
propositions X such that K and K’ y are isomorphic. A formula Vx - ¢ is satisfied
by K under structure semantics iff ¢ holds in all {x}-variants of K. Note that if x
is positive in ¢, then Va - ¢ is equivalent to o[z — false], and if « is negative — to
o[z « true].

Amorphous Semantics. Amorphous semantics of QCTL is defined as follows:

|| B f l|o||%, if p € CTL (amorphous semantics)
IV - ola]l ~ VK" € By(K) - llelallls
132 - o]l |5 = 3K € Bo(K) - [|ola]llg

That is, a formula Vz - ¢ is satisfied by K under amorphous semantics iff ¢ is satisfied
by every {z}-bisimulation of K.

For formulas without existential (3) quantifiers, amorphous semantics implies struc-
ture semantics; further, the implication is strict [10].

3 Expressiveness of 3-valued Models

In this section, we extend the results of Godefroid and Jagadeesan [13] on expressive-
ness of 3-valued models. In particular, we describe a transformation of 3-valued Kripke
structures to Partial Kripke Structures (PKSs) — Kripke structures with boolean tran-
sition relation — and from there to Partial Classical Kripke Structures (PCKSs), where
each atomic proposition is either always true or false, or is always maybe. This transfor-
mation enables us to use PCKSs as the theoretical model for developing our technical
results. When compared to the original 3-valued Kripke structure, the transformation
increases the number of atomic propositions. However, the transformation is used for
theoretical purposes only — we never propose to apply this transformation during anal-
ysis. Furthermore, while increasing the number of atomic propositions, the transforma-
tion to PCKSs does not affect the number of bits required to encode the original Kripke
structure.

From 3-valued models to PKSs. A 3-valued Kripke structure that has a boolean tran-
sition relation (R : S x S — 2) is called a Partial Kripke Sructure (PKS) [2]. An
example of a PKS is shown in Figure 5(a).

PKSs are as expressive as 3-valued Kripke structures [13]. The transformation 73
from 3-valued to Partial Kripke structures is very similar to a transformation from La-
beled Transition Systems to Kripke structures (e.g., see [21]). Intuitively, we treat tran-
sition values as actions, and the transformation “pushes” them into states.

Given a 3-valued Kripke structure K, we constructa PKS T} (K) = (APU{tval}, S'x
{0,1}, So x {0,1}, T1(R), T1(I)), where Ty (R) and Ty (I) are as follows:

1. T1(R)((s,1), (t, 1)) < (R(s,t) = true) and
Tl(R)(<sv i>, <t7 0>) A (R(S, t) = maybe),

2. foreveryp € AP, T1(I)({s,%),p) = I(s,p), and

3. the value of tval is determined by the second component of the state:
T1(I)({s,i),tval) is true if i = 1, and maybe otherwise.

Ti(p) =p Ti(—p) = "T1(p)
Ti(e AY) =Ti(p) NT1(Y) Ti(p Vo) =Ti(p) vV T1(¢)
T (EXp) = EX(tval NTi(p)) Ti(EGp) = o AN EXEG(tval ATi(p))
T1(E[pUy]) = Th(¢) VTi(¢) AN EXE[tval AT (p) U tval A Ti ()]

Fig. 4. Transformation of a temporal logic formula.

EHEHED

S0
(b)
Fig.5. (a) A PKS K. (b) A PCKS K.

Intuitively, tval represents the value of the transition relation. For example, since the
value of twal in a state (¢, 1) is true, a transition between (s,) and (¢, 1) indicates that
the transition between s and ¢ in K is true.

The transformation 77 is also extended to CTL formulas as shown in Figure 4.
Intuitively, T} replaces every occurrence of EXp with EX (tval A p) in the fixpoint
representation of the semantics of CTL (see Figure 3).

Theorem 2. [13] Partial Kripke Structures are as expressive as 3-valued Kripke struc-
tures. For any 3-valued Kripke structure K and a formula o, ||¢||% = ||T1 ()| 5.

From PKSs to PCKSs. A PKS in which every atomic proposition is either boolean
(i.e., true or false in every state) or maybe (i.e. maybe in every state) is called a Partial
Classical Kripke Sructure (PCKS), an example of a PCKS is shown in Figure 5(b).
Intuitively, a PCKS K is a classical Kripke structure extended with additional atomic
propositions such that nothing except their name is known about them. We show that,
for compositional semantics, PCKSs containing a single maybe atomic proposition are
as expressive as PKSs.

A value of a propositional formula in a 3-valued Kripke structure is given by a 3-
valued function S — 3 over the statespace. Consider a PKS K shown in Figure 5(a).
The value of p in K is given by a function that maps s to true, s; to maybe, and s3 to
false. Next, consider the PCKS K’ shown in Figure 5(b): it is the same structure, but
with different atomic propositions. All atomic propositions of K’ are boolean, except
for m which is maybe in every state. Note that £ has two boolean atomic propositions
ptand p™ such that p? is true in a state iff p is true in the same state of K, and p™ is true
iff p is not false. The formula p* v (p™ Am) in K’ is semantically equivalent to p in K:
for any state, both are true in s1, maybe in ss, and false in s3. Thus, any propositional
formula in K can be reduced to a semantically equivalent one in K. Furthermore, tem-
poral operators of CTL can be seen as predicate transformers operating on the semantic
meaning of their arguments. Thus, the value of EXp in K is equivalent to the value of
EX(p'V (p™Am))in K’

Formally, we define a transformation 75> from a PKS K to a PCKS T,(K) =
(T2(AP), S, So, R, T>(I)) as follows: (a) for each atomic proposition p of K, T>(AP)
contains a pair of boolean atomic propositions p* and p™, (b) T>(I)(s,p') is true iff

I(s,p)istrue, and To(I)(s,p™) is true iff I(s, p) is not false, and (c) 7> (AP) contains
an atomic proposition m whose value is maybe in every state of 75 (K).

For an atomic proposition p, T>(p) is defined as p* v (p™ A m), and for a CTL
formula ¢, T5(y) is obtained by replacing each atomic proposition p of ¢ with T5(p).
For example, T2 (AG(p = EFq)) = AG(Tz(p) = EFT»(q)).

Theorem 3. Let K beaPKS and ¢ bea CTL formula. Then, ||| | = || T ()| T2 5).

Combining this result with Theorem 2, we obtain that PCKSs are as expressive (for
compositional semantics) as 3-valued Kripke structures.

The transformation 75 does not work in the case of thorough semantics: the value
of ¢ in K is not necessarily equivalent to the value of T5(¢) in To(K). For example,
under thorough semantics, the value of p Vv —¢ is maybe in a state where both p and ¢ are
maybe. However, since p = maybe implies p’ = false and p™ = true, the transformed
formula Tx(p V —q) = (p* vV (p™ Am)) V —(q* V (¢™ A m)) is logically equivalent to
m V —m, which, in turn, is equivalent to true under thorough semantics. The problem
is that in each state of 75 (K), the atomic proposition m controls how all of the atomic
propositions in this state are refined (i.e., either they are all set to true, or they are all set
to false). This is easily avoided by introducing a different atomic proposition for each
atomic proposition of K.

We define another transformation 75 from a PKS K to a PCKS T5(K) as follows:
(a) we first apply the transformation 75, i.e., T3(K) = T5(K), and (b) foreachp € AP
we add a new atomic proposition m,, to T3 (AP), setting it to maybe in every state. For
an atomic proposition p, T5(p) is defined as p* v (p™ A m,,), and for a CTL formula ¢,
T5(¢) is obtained by replacing each atomic proposition p of ¢ with T5(p).

Theorem 4. Let K beaPKS, and ¢ bea CTL formula. Then, ||¢||X = [|T5(¢)| 7>).
Combining this result with Theorems 2 and 3, we obtain that PCKSs are as expressive
as 3-valued Kripke structures, for compositional and thorough semantics.

The distinction between transformations 75 and T35 highlights the key difference be-
tween compositional and thorough semantics. The former can be seen as a conservative
approximation of laws of excluded middle and non-contradiction, i.e., if p is unknown,
then so is —p, and thus ||p V —p|| = maybe V maybe = maybe. On the other hand,
thorough semantics can be seen as applying these laws symbolically. Thus, even if the
value of p is unknown, ||p V —p||¢ is still true.

4 Quantified Temporal Logic and 3-valued Model-Checking

In this section, we use the equivalence between 3-valued Kripke structures and PCKSs
established in Section 3 to relate 3-valued model-checking and model-checking for
QCTL.

The definition of 3-valued refinement, when restricted to PCKSs, is virtually iden-
tical to the definition of X-bisimulation. If K is a PCKS and X is the set of all of
its maybe atomic propositions, then K’ is a completion of K iff K’ y is bisimilar to
K_x,i.e., K'is X-bisimilarto K_x. Thus, deciding whether a formula ¢ is either true
or false in a PCKS reduces to amorphous model-checking of a universally quantified
formula, as stated in the theorem below.

Theorem 5. Let K bea PCKS, X C AP bethe set of all of its maybe atomic proposi-
tions, and ¢ be an arbitrary CTL formula. Then, the value of ¢ in K under thorough se-
manticsis: (||¢||X = true) & |[VX - p||a~ and (||¢||K = false) < [[VX - |0 ¥,

Similarly, compositional semantics is related to structure semantics for QCTL; how-
ever, the connection is somewhat more subtle. Let K be a PCKS, m be the only maybe
atomic proposition of K, and ¢ be a CTL formula containing m. Furthermore, assume
that all occurrences of m are positive. Then, |||/ is true iff ||p[m « false]||X- is
true [16]. Next, consider the formula Vm - : since m is positive in ¢, |[Vm - || 5 is
true iff ||o[m « false]||¥~ is true [17]. Thus, in this case, deciding whether ¢ is true
under compositional semantics reduces to checking Vm - ¢ under structure semantics.
Moreover, the result easily extends to the case where m occurs negatively.

The above does not hold when m is not of pure polarity in . For example, the
value of ||m v —m||¥ is maybe, but ||Vm - (m v —-m)||X is true. The problem is that
compositional semantics treats positive and negative occurrences of the same atomic
proposition independently. Thus, we can obtain the desired result by quantifying pos-
itive and negative occurrences of m separately. That is, we let m™ and m™ denote
positive and negative occurrences of m in ¢[m], respectively; then, ||¢[m]||¥ is true
iff ||[Vz,y - p[m™ — x,m~ «— y]||X is true, and similarly [|¢[m]||¥ is false iff
|Vz,y - ~p[mt « x,m~ « y]||X is true. The following theorem formalizes this
result for an arbitrary number of maybe atomic propositions.

Theorem 6. Let K bea PCKS and let M = {mg,...,m,} bethe set of all maybe
atomic propositions of K. For a CTL formula ¢, let m;™ and m; denote the positive
and negative occurrences of m;, respectively. Then,

(H@HK:true) <:>”\v/xh"wmn'vylv'“:yn'@ll‘f and
(]| = false) o Va1, - om Vs, - ||
where ¢’ :(p[mf Ty MY T, MY Y1y — Y

A corollary of Theorem 6 is that if every maybe atomic proposition of K occurs
with pure polarity in ¢, then both thorough and compositional semantics reduce to
deciding the same universally quantified formula, under amorphous and structure se-
mantics, respectively. Furthermore, for universally quantified formulas, amorphous se-
mantics imply structure (||VX - ¢||o = ||¥X - ¢]|s). Note that in general, for 3-valued
semantics the implication is reversed, i.e., compositional semantics implies thorough
((ll¢]|® = true) = (||¢||E = true). So, when every maybe atomic proposition is pure
in ¢, thorough and compositional semantics for ¢ coincide:

Theorem 7. Let K be a PCKSand ¢ be a CTL formula such that all occurrences of
maybe atomic propositions of K are of pure polarity in ¢. Then, ||¢||EX = ||¢]|¥.

Since every atomic proposition is either boolean or maybe in PCKSs, deciding
whether all occurrences of maybe propositions in a formula are of pure polarity is
trivial for these models. However, to determine this for arbitrary 3-valued Kripke struc-
tures, we first have to reduce them to PCKSs, which is not an option in practice since
model-checking typically occurs on-the-fly during the construction of the model. In the
next section, we use properties of particular abstractions to determine polarity of maybe
propositions of ¢ and thus to decide when a thorough check is necessary.

5 Thorough Semantics and Abstraction

In this section, we exhibit practical cases where a thorough check does not give addi-
tional precision and thus can be eliminated, and cases where a thorough check can be
performed efficiently.

5.1 Abstraction and 3-Valued Model Checking

Abstraction is a mapping between a concrete system and a smaller, abstracted, system.
Here, we consider abstractions that map sets of concrete states into a single abstract
state. Let K be a Kripke structure with statespace .S and transition relation R. An ab-
stract domain is a pair (S,,), Where S, is a set of abstract states, and y : S, — 2° is
a total concretization function that associates each abstract state with its interpretation
as a set of concrete states.

Like Godefroid et al. [11], we use 3-valued Kripke structures to represent abstract
models over an abstract domain (S,). A 3-valued Kripke structure K, with a states-
pace S, is an abstraction of a Kripke structure K if its transition relation R, satisfies
the following conditions:

(Ra(é,ti) Jtrue) = Vse~v(8)-3Itecry(E) - R(
s, t

) - R(s,t)
(R (8,%) 2 maybe) < 3s € v(8) - 3t € v(£) - R(s, 1)

Note that these conditions do not guarantee the precision of the abstract model. In
particular, a 3-valued Kripke structure over S, with a maybe transition between every
pair of states satisfies the above conditions, and is a trivial abstraction of every classical
Kripke structure over S.

Each atomic proposition of K, corresponds to a predicate over the statespace of
K. In an abstract state §, an atomic proposition p is true iff the corresponding predicate
p is true in every state of (), false if p is false in v(8), and maybe otherwise. Note
that any predicate over the concrete statespace can be replaced by an atomic proposition.
Thus, without loss of generality, we assume that every atomic proposition of the abstract
system corresponds to an atomic proposition of the concrete.

As a 3-valued Kripke structure, an abstraction K, of K is refined by K, i.e.,
K, = K, which guarantees that K, preserves arbitrary CTL formulas. Moreover, an
arbitrary 3-valued Kripke structure is an abstraction of any model that refines it, where
the concretization ~ is induced by the refinement [11].

Predicate (or boolean) abstraction [14, 1, 11] is a popular technique for building ab-
stractions, and has been successfully applied in practice [14, 5]. Given a concrete system
K and a set of n predicates P = {p1, ..., pn}, the abstract statespace of predicate ab-
straction consists of (at most) 2™ states, where each state assigns a boolean value to
each of the predicates. The concretization ~ is defined as follows:

v(8) ={s | Vp € P-|lpll(3) = llpll(s)}

That is, an abstract state s corresponds to the set of all concrete states that agree with §
on the values of all of the predicates in P. Thus, if K, is aresult of predicate abstraction,
then its transition relation is 3-valued, but atomic propositions are boolean.

Cartesian abstraction [1,11] is an extension of predicate abstraction, where the
statespace consists of 3™ states, and each state assigns one of true, false, or maybe

to each of the predicates. The concretization ~y is defined as follows:
v(8) ={s|Vp e P-|pll(5) 2 Ipll(s)}

That is, an abstract state s corresponds to the set of all concrete states that agree with
5 on the values of all of the predicates in P that have a definite value (i.e. true or false)
in . Thus, if K, is a result of a Cartesian abstraction, then both its atomic propositions
and the transition relation are 3-valued.

Model-checking a property ¢ in the abstract system K, is done with respect to
compositional semantics. Thus, a maybe result from the model-checker does not nec-
essarily indicate that the abstraction is at fault and must be refined. In these cases, it
seems natural [12] that an additional check of ¢ under thorough semantics will yield
more precise results. In what follows, we show that in many practical applications, thor-
ough semantics does not offer an advantage over compositional.

5.2 Thorough Semantics and Predicate Abstraction

Let K, be an abstract system constructed by predicate abstraction, and K/, = T (K,)
be a PKS corresponding to it. Note that all of the atomic propositions of K/, are boolean,
except for tval, which was added as part of 7T3.

Assume that we want to check a CTL formula ¢ in K. By Theorem 2, there exists
a CTL formula ¢’ = T} (¢) such that ||| K« = ||¢||*«. Although ¢ does not mention
tval explicitly, each temporal operator of ¢ results in at least one occurrence of tval in
. The polarity of these occurrences is positive for existential operators and negative
for the universal ones. For example, EXp is transformed by T} into EX (tval A p),
while AXp is transformed into 71 (AXp) = Th (~EX—p) = AX (tval = p).

Thus, if all temporal operators of ¢ are universal or all are existential, i.e., ¢ €
ECTL or ¢ € ACTL, then ¢ contains at most one non-boolean atomic proposition
tval, and tval is pure in ’. Combining this with Theorem 7, we establish that in this
case thorough and compositional semantics for ¢ in K, coincide:

Theorem 8. Let K, be a 3-valued Kripke structure constructed by predicate abstrac-
tion. Then, Yo € ECTL U ACTL - ||| = [|¢p|| =,

In particular, this theorem implies that for predicate abstraction and for universal prop-
erties, the original abstraction-refinement framework of Clarke et al. [5] is as precise as
the extension proposed by Godefroid and Jagadeesan [12].

In the case of Cartesian abstraction, K, may contain 3-valued atomic propositions,
and Theorem 8 is no longer applicable. One way to ensure that thorough and composi-
tional semantics coincide in this case, is to require that all atomic propositions, not just
tval, be of pure polarity. This gives rise to the following theorem:

Theorem 9. Let K, be a 3-valued Kripke structure. Then, for any ACTL or ECTL
formula ¢ in which every atomic proposition occurs with pure polarity, compositional
and thorough semantics are equivalent.

For example, according to the above theorem, compositional and thorough semantics
of AG(—p A q) are equivalent, since each atomic proposition occurs once, and polarity
of p is negative, and polarity of ¢ is positive. Of course, many interesting properties do

contain atomic propositions of mixed polarity. For example, a property “in every state,
only one of p and ¢ holds” is expressed in CTL as AG((—p A q) V (p A —q)), and both
of its atomic propositions are of mixed polarity. In this case, thorough semantics can
offer additional precision. On the other hand, consider checking the property AG(—q A
AF(p A q)) on the model in Figure 2(b). In this property, ¢ occurs with mixed polarity,
but it does not have value maybe in any reachable state of the model. For this and other
properties where the proposition of mixed polarity does not have value maybe in the
model, compositional semantics coincides with thorough, and the additional check is
not required.

5.3 Thorough Model Checking for ACTL

In this section, we show that in the case of ACTL formulas, which are sufficient for ex-
pressing arbitrary safety properties, deciding whether a formula is true under thorough
semantics can be done efficiently. Furthermore, in this case, the compositional check
used in the abstraction-refinement framework of Clarke et al. [5] can be completely
replaced by an efficient algorithm for implementing the thorough one.

We start by showing that for a classical Kripke structure and an ACTL formula ¢,
model-checking Vz - ¢[x] under amorphous semantics is reducible to model-checking
w[x] (1). Using Theorem 5, we extend this result to an efficient algorithm for deciding
whether an ACTL formula is true under thorough semantics on a PKS (1), and, finally,
doing the same on an arbitrary 3-valued Kripke structure (I11).

(1. Let K be a classical Kripke structure, = be an atomic proposition that does not
appear in K, and ¢ be an ACTL formula containing x. Recall that ||Vz - || X is true
iff is true in every K’ that is {z}-bisimilar to K. Let Ty(K) = (Tu(AP),Tx(S),
T4(So), T4(R), T4(I)) be a Kripke structure obtained from K by adding a new atomic
proposition z that changes non-deterministically. The transformation 7 is defined as
follows:

Ty(AP) = AP U {a}
Tu(S) = S x {0,1}
T4(So) = S() X {0, 1}
T4(R)(<Svi>> <t7]>) And R(S7t)
(1) ({5, i%p) = I(5,p)
Ty(I)((s,1),x) = trueifi =1 and

false otherwise

Note that the value of each atomic proposition p € AP is determined by the first
component of the state, and the value of & depends on the second component.

Clearly, Ty (K) is {x}-bisimilar to K. Moreover, any Kripke structure that is {z}-
bisimilar to K is simulated by T, (K) [17]. Since simulation preserves ACTL, ||Vz -
©||K is equivalent to ||||7*(5). The result easily extends to an arbitrary number of
universally-quantified atomic propositions of . Note that if x is of pure polarity in
¢, the transformation T} is unnecessary, since ||Vz - o[z]||X is equivalent to either
l|@[x « true]||X or ||p[z « false]||*, depending on the polarity of z.

(11). Combining (1) with Theorem 5, we conclude that deciding whether an ACTL
formula ¢ is true in a PKS K under thorough semantics is reducible to classical model-
checking. In particular, for an ACTL formula ¢, ||¢||X = true iff ||¢||X" = true,
where K’ is a classical Kripke structure obtained from K via a process very similar

to T4, treating maybe atomic propositions non-deterministically. However, rather than
splitting all states, we only split those where an atomic proposition has a value maybe.
That is, if p is an atomic proposition and s is a state such that the value of p in s is
maybe, then s is replaced by two states s’ and s’ such that

(@) s’ and s have the same successors as s,

(b) for every atomic proposition ¢ different from p, s’ and s’ assign the same

interpretation as s (I(s,q) = I(s',q) = I(s",q)),
(c) the value of p is true in s’ and false in s, and
(d) every transition from a state ¢ to s is replaced by a pair of transitions
from¢to s’ and s”.
This process is repeated until there are no more reachable states that assign maybe to an
atomic proposition. Since each atomic proposition that is treated non-deterministically
doubles the statespace, the statespace of K’ is in the worst case exponential in the
number of atomic propositions of K.

(111). From amorphous semantics, we know that Vz - ¢ is equivalent to o[z « false]
if is positive in ¢, and to @[z < true] if x is negative. Therefore, our translation can
treat atomic propositions that are of pure polarity in ¢ as either true or false, depending
on the polarity, whereas others must be treated non-deterministically. Thus, for a 3-
valued Kripke structure K and an ACTL formula ¢, deciding whether ||¢||X = true is
reducible to model-checking ¢ in K’, obtained from K as follows:

(a) for every positive atomic proposition of ¢, change its maybe occurrences in K

to false,

(b) change maybe occurrences of negative ones to true,

(c) treat mixed ones as non-deterministic, and

(d) change all maybe transitions to true.

Note that transitions can be embedded into states using an atomic propaosition tval (see
Section 3), which has negative polarity for ACTL. In the worst case, the size of K’
is exponential only in the number of mixed atomic propositions of ¢, which gives our
algorithm the following complexity:

Theorem 10. Let K be a 3-valued Kripke structure, and ¢ be an ACTL formula. Then,
the complexity of deciding whether ¢ istrue in K under thorough semanticsis O(2" x
|K| % |¢]), wheren is the number of atomic propositions of mixed polarity in .

Since we reduced the thorough check to classical model-checking, our algorithm ei-
ther produces a definite result or generates a counterexample. Thus, it can completely
replace step 3 in the abstraction refinement framework of Clarke et al. [5], shown in
Figure 1(a). The resulting framework is as precise as the classical thorough framework
(see Section 1 for definition), and requires the same number of iterations. Yet it is only
marginally more expensive than the original framework. Moreover, in the case where
all atomic propositions of ¢ are pure, the modified framework is the same as the orig-
inal: same results, same running time. Finally, the algorithm can be applied on-the-fly,
i.e., during the construction of the abstract model.

6 Discussion and Related Work

Dams et at. [9] developed a general framework for constructing abstractions based on
the Abstract Interpretation [8] methodology. These abstractions are sound for full CTL

(and richer logics such as CTL* and p-calculus). Instead of 3-valued Kripke structures,
their modeling formalism is Mixed Transition Systems (MTSs) — transition systems
containing two kinds of transitions, where existential path quantifiers are interpreted
over one kind and universal over the other. 3-valued Kripke structure can be seen as
MTSs where truth of existential path quantifiers depends only on true transitions, while
the truth of universal quantifiers depends on both true and maybe transitions [16].

The work of Dams et al. [9], as well as most other research on combining abstraction
and model-checking (e.g., see [5, 22, 14]), handles explicit occurrences of negation in
a formula by restricting negation to the level of atomic propositions and treating each
literal of the concrete model as an atomic proposition of the abstract. For example,
literals p and —p are represented by two distinct atomic propositions, say, a and b. This
looses information but ensures that all of the atomic propositions of a formula checked
on an abstract model are pure, and thus a thorough check does not provide an additional
advantage.

Thorough semantics was introduced by Bruns and Godefroid [3] via generalized
model-checking, which is the problem of deciding whether there exists a completion of
a 3-valued Kripke structure in which a given formula holds. This can be seen as a gener-
alization of both satisfiability and model-checking: ¢ is true in the coarsest abstraction
iff o is satisfiable, and true in a classical Kripke structure K iff K is a model for . In
this paper, we show that generalized model-checking can be also seen as an extension
of amorphous semantics for existentially quantified temporal formulas from PCKSs to
arbitrary 3-valued Kripke structures. In a sense, it combines amorphous quantification
with the reduction to PCKSs.

The expressive power of various 3-valued models have been studied by Godefroid
and Jagadeesan [13]. Our work completes the picture by showing that allowing for
maybe atomic propositions is as expressive as allowing unrestricted occurrences of the
value maybe in a model. The question whether or not 3-valued Kripke structures with
boolean atomic propositions and a 3-valued transition relation are as expressive remains
open. However, our results suggest that even if such a reduction exists, it is not trivial. In
particular, this reduction would allow us to transform model-checking of ACTL under
thorough semantics, which is EXPTIME-complete, into model-checking under compo-
sitional semantics, which is linear in the size of the model and the formula.

7 Conclusion

In this paper, we study the difference between compositional and thorough semantics
for 3-valued model-checking. We show that the relationship between the two becomes
more clear by casting 3-valued model-checking as model-checking for quantified tem-
poral logic.

Our main motivation is a seemingly apparent advantage of thorough semantics over
compositional in the abstraction refinement framework. However, we show that in many
practically interesting cases, i.e., when properties are universal, thorough semantics is
either no more precise than compositional, or can be efficiently combined with clas-
sical model-checking approaches. Although we used CTL as our temporal logic, our
results depend only on its invariance to bisimulation, and thus naturally extend to other
universal logics, such as LTL.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

. T.Ball, A. Podelski, and S. Rajamani. “Boolean and Cartesian Abstraction for Model Check-
ing C Programs”. In TACAS 01, volume 2031 of LNCS, pages 268-283, 2001.

G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with 3-Valued Temporal
Logics”. In CAV'99, volume 1633 of LNCS, pages 274-287, 1999.

G. Bruns and P. Godefroid. “Generalized Model Checking: Reasoning About Partial State
Spaces”. In CONCUR' 00, volume 1877 of LNCS pages 168-182, 2000.

M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. “Multi-Valued Symbolic
Model-Checking”. ACM Trans. on Soft. Eng. and Methodology, 12(4):1-38, 2003.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-Guided Abstraction
Refinement for Symbolic Model Checking”. Journal of the ACM, 50(5):752-794, 2003.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. “Automatic \erification of Finite-State Con-
current Systems Using Temporal Logic Specifications”. ACM Trans. on Prog. Lang. and
Systems, 8(2):244-263, 1986.

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model For Static Anal-
ysis of Programs by Construction or Approximation of Fixpoints”. In Proceedings of the 4th
POPL, pages 238-252, Los Angeles, California, 1977.

D. Dams, R. Gerth, and O. Grumberg. “Abstract Interpretation of Reactive Systems”. ACM
Trans. on Prog. Lang. and Systems, 2(19):253-291, 1997.

T. French. “Decidability of Quantifed Propositional Branching Time Logics”. In Al’'01,
volume 2256 of LNCS pages 165-176, 2001.

P. Godefroid, M. Huth, and R. Jagadeesan. “Abstraction-Based Model Checking Using
Modal Transition Systems”. In Proceedings of CONCUR' 01, volume 2154 of LNCS pages
426-440, 2001.

P. Godefroid and R. Jagadeesan. “Automatic Abstraction Using Generalized Model-
Checking”. In CAV' 02, volume 2404 of LNCS pages 137-150, 2002.

P. Godefroid and R. Jagadeesan. “On the Expressiveness of 3-Valued Models”. In VM-
CAI’' 03, volume 2575 of LNCS, pages 206-222, 2003.

S. Graf and H. Saidi. “Construction of Abstract State Graphs with PVS”. In CAV’ 97, volume
1254 of LNCS, 1997.

A. Gurfinkel and M. Chechik. “Generating Counterexamples for Multi-Valued Model-
Checking”. In FME’ 03, volume 2805 of LNCS 2003.

A. Gurfinkel and M. Chechik. “Multi-Valued Model-Checking via Classical Model-
Checking”. In CONCUR' 03, volume 2761 of LNCS 2003.

A. Gurfinkel and M. Chechik. “Extending Extended Vacuity”. In FMCAD’ 04, volume 3312
of LNCS pages 306-321, 2004.

S. C. Kleene. Introduction to Metamathematics. New York: Van Nostrand, 1952.

O. Kupferman. “Augmenting Branching Temporal Logics with Existential Quantification
over Atomic Propositions”. J. of Logic and Computation, 7:1-14, 1997.

R. Milner. ”An Algebraic Definition of Simulation between Programs”. In Al’'71, pages
481-489, 1971.

M. Miiller-Olm, D. Schmidt, and B. Steffen. “Model-Checking: A Tutorial Introduction”. In
SAS 99, volume 1694 of LNCS, pages 330-354, 1999.

S. Shoham and O. Grumberg. “A Game-Based Framework for CTL Counter-Examples
and 3-Valued Abstraction-Refinement”. In CAV' 03, volume 2725 of LNCS pages 275-287,
2003.

