Formalization of the DE2 Language

Warren A. Hunt, Jr. and Erik Reeber

Department of Computer Sciences,
1 University Station, M/S C0500
The University of Texas
Austin, TX 78712-0233, USA
E-mail: {hunt,reeber}@cs.utexas.edu

Abstract. We formalized the DE2 hierarchical, occurrence-oriented fi-
nite state machine (FSM) language, and have developed a proof the-
ory allowing the mechanical verification of FSM descriptions. Using the
ACL2 functional logic, we have defined a predicate for detecting the well-
formedness of DE2 expressions. Furthermore, we have defined a symbolic
simulator for DE2 expressions which also serves as a formal cycle-based
semantics for the DE2 language. DE2 is deeply embedded within ACL2,
and the DE2 language includes an annotation facility that can be used
by programs that manipulate DE2 descriptions. The DE2 user may
also specify and prove the correctness of programs that generate DE2
descriptions. We have used DE2 to mechanically verify components of
the TRIPS microprocessor implementation.

1 Introduction

We present a formal description of and proof mechanism for the DE2 hierarchi-
cal, occurrence-oriented finite state machine (FSM) description language, which
we use to design and verify FSM-based designs or to optimize existing designs in
a provably correct manner. This definition is primarily aimed at the representa-
tion and verification of hardware circuits, but DE2 could also be used in other
areas such as protocols and software processes. Defining a hardware description
language (HDL) is difficult because of the many different ways in which it may
be used; for example, a HDL may be used to specify a simulation semantics,
define what circuits can be specified, restrict allowable names, enforce circuit
interconnect types, estimate power consumption, and provide layout or other
manufacturing information. We have formally described the DE2 language us-
ing the ACL2 logic [16], and we have formally verified DE2 descriptions using
the ACL2 theorem prover.

DE2 is designed to permit the rigorous hierarchical description and hierar-
chical verification of finite-state machines (FSMs). We call our language DE2
(Dual-Eval 2) because of the two-pass approach that we employ for the language
recognizers and evaluators. DE2 is actually a general-purpose language for spec-
ifying FSMs; users may define their own language primitives. We recognize valid
DE2 descriptions with an ACL2 predicate that defines the permissible syntax,

names, and hierarchy, of valid descriptions. The DE2 language also provides a
rich annotation language that can be used to enforce syntactic and semantic
design restrictions.

We begin our presentation by listing DE2 language characteristics, contrast-
ing the DE2 language with other related efforts, and presenting some DE2
language examples. We next present the definition of DE2’s simulation-based
semantics. We conclude by describing how we use the DE2 language to verify
circuits from the TRIPS microprocessor design [7].

2 DE2 Language Features

The development of DE2 required balancing many demands. In particular, the
demand for hardware verification requires that it be as simple as possible to
evaluate, translate, and extend. In this section we list the resulting characteristics
of DE2.

— Hierarchical: A module is defined by connecting submodules.

— Occurrence-Oriented: Each reference to a previously defined module is
called an occurrence. All named modules are defined as a sequence of occur-
rences (unnamed lambda modules are discussed in Section 4.2).

— Deep Embedding in ACL2: DE2 modules are represented as ACL2 con-
stants. Using the terminology defined by Boulton et al. [13], DE2 is deeply
embedded in the ACL2 language. This embedding allows us to write ACL2
functions which simulate, analyze, generate, and manipulate DE2 modules.

— Annotation Mechanisms: We use annotations to describe elements of a
circuit which are not defined by evaluation (e.g. layout information). In DE2,
annotations are first class objects.

— Parameterized Finite Types: In DE2, every module input and output
is a bit vector of parameterized length. When the lengths of all the inputs
and outputs are known, we may appeal to BDD- and SAT-based techniques
for verification.

— Two-pass Evaluation: A DE2 module is evaluated by twice interpreting
its list of occurrences. This two-pass evaluation necessitates a level-order for
the combination functions.

— Representation of Internal State: We represent the internal state of
a module as an arbitrary block of memory that is implicitly part of the
module’s input and output and is updated during the second evaluation
pass. This representation limits us to designing FSMs, but greatly simplifies
the design and verification of these machines.

— User-defined Primitive Modules: We allow users to define primitive
modules, rather than requiring that primitive modules be built into the lan-
guage.

— User-selectable Libraries: Sets of primitives can become libraries. Li-
braries can be loaded into similar projects, which allows reuse of modules
and verification efforts.

— Verified DE2 Language Generators: We can write ACL2 functions
which generate DE2 modules. Since the semantics of DE2 have been for-
malized in ACL2, these functions can be shown to always generate correct
DEZ2 code.

— Hierarchical Verification: Our verification process involves verifying prop-
erties of submodules and then using these properties to verify larger modules
built from these submodules. This hierarchical technique allows us to avoid
reasoning about the internals of complex submodules.

— Books for Verification Support: We have defined a number of ACL2
“books” to assist the verification of DE2 modules. When loaded into the
theorem prover, these books use the ACL2 semantics of DE2 to verify prop-
erties of DE2 modules. We have used these books on a number of verification
projects, some of which involve the verification of ACL2 functions that gen-
erate DE2 circuits.

3 Related Work

The hardware verification community has taken two approaches [13] to defin-
ing the semantics of circuits: shallow and deep embedding. Shallow embedding
defines a circuit description as a first-class object in a well-defined subset of a
formal language. The syntax and formal semantics of the HDL are therefore a
subset of the semantics of the formal language. Deep embedding defines a circuit
description as a constant in a formal language. The syntax and semantics of the
HDL are then written in the formal language.

The DE2 language has been defined by deeply embedding it inside the ACL2
language, a primitive recursive functional subset of Lisp [17]. By embedding
DE2 within ACL2, we are given access to a theorem proving environment which
has successfully verified large-scale hardware systems [8,9]. The formalization
of the DE2 language is similar in style to the embedding of the DUAL-EVAL
HDL in NQTHM [11] and the DE language in ACL2 [10]. The DE language is
different from DUAL-EVAL in that DE permits user-defined primitives, re-usable
libraries, annotations, and contains a different structuring of data for state-
holding elements. The DE2 language contains the new features of DE, but also
has a parameterized type system, a more sophisticated system for applying non
user-defined primitives (implemented as ACL2 functions), and a more automated
verification system.

In other hardware verification efforts with ACL2, hardware descriptions were
translated directly to ACL2 models in the style of shallow-embedding [8,9].
These efforts do not permit the syntactic analysis of the circuits so represented;
that is, it is not possible to treat the circuit descriptions as data so a program
may be used to analyze its suitability.

Tom Melham used the HOL system [12] to deeply embed some elements
of a hardware description language [12]. Boyer and Hunt attempted to deeply
embed a subset of VHDL in the ACL2 logic, but this specification grew to more
than 100 pages of formal mathematics, and its usefulness became suspect. Deeply

embedding a HDL into another language brings great analytical power at the cost
of having to manage all of the logical formalisms required—but these formalisms
represent the real complexity that are inherit in such languages and in their
associated analysis and simulation systems. To make such an embedding useful,
a serious effort needs to be made to ensure an absolute economy of complexity,
and there needs to be libraries that ease the use of such an embedding.

A significant amount of work has focused on the use of functional program-
ming languages to simplify the writing of HDL-based descriptions. Mary Sheeran
has developed the language Lava [1] and she has used it to design fast multi-
pliers [2]. The strengths of Lava is its facilities to write programs that generate
hardware—similar to the ACL2 programs we write to generate DE2 descriptions
—and its ability to embed layout information in the Lava language—similar to
annotations in DE2. The Lava implementation does not include an associated
reasoning system, but a user can appeal to SAT procedures to compare one Lava
description with another.

Our recent verification methodology, which combines a SAT-based decision
procedure with theorem proving, was partially inspired by the work at Intel com-
bining symbolic trajectory evaluation with theorem proving. This work makes
use of the functional languages Lifted-FL [4] and reFLect [3]. Some of the ways
DE2 differs from these languages include its simpler semantics (e.g. two pass
evaluation), its simple syntax, its close correspondence to a subset of Verilog,
and its embedding within a general-purpose theorem prover.

4 Example

The use of the DE2 language is similar to the use of other hardware description
languages. Circuits are specified in a hierarchical manner, and the syntactic form
of the hierarchical circuit description also defines the hierarchical structure of a
description’s associated state. Here we give an example of a DE2 circuit speci-
fication, and describe some of the restrictions imposed by the DE2 language.

Our DE2 language definition is a tremendous abstraction of the physical
reality. The DE2 language defines finite-state machines by permitting a user to
define primitive elements. For this section, we assume the definition of Boolean
connectives and state-holding elements have already been given. Issues such as
clocking, wire delay, race conditions, power distribution, and heat, have been
largely ignored.

Informally, the DE2 language hierarchically defines Mealy machines—i.e. the
outputs and next state of every module is a function of its inputs and internal
state. By successively repeating the evaluation of an identified FSM, the DE2
system can be used to emulate typical finite-state machine operation. DE2 lan-
guage definitions obey the syntax of Lisp constant expressions; that is, module
definitions are represented as Lisp data rather than Lisp function definitions,
macros, or other such constructs. We first give an example of several combina-
tional circuits, where we exhibit some of the restrictions our evaluation approach
imposes. Later we exhibit a sequential circuit.

4.1 Combinational Modules

Accumulator

vy’dth

+

load adder—out Liqm

width out

sel 1 0
MUX

mux—ou

width

Register

Fig. 1. Schematic of an Accumulator

Consider the circuit shown in Figure 1. In DEZ2, this circuit is represented
as follows.

(accumulator
(params width)
(outs (out width))
(ins (in width) (load 1))
(wires (adder-out width) (mux-out width))
(sts reg)
(labels (out ’data) (in ’data) (adder-out ’data)
(mux-out ’data) (load ’control))
(occs
(reg (out) (register width ’data) (mux-out))
(adder (adder-out) (bufn width ’data) ((bv-adder width in out)))
(mux (mux-out) (bufn width ’data) ((bv-if load in adder-out)))))

A module is identified by its name, in this case accumulator. Each module
is composed of a set of key-value pairs whose entries depend on the type of
the module. All modules have lists of parameters, outputs, inputs, and states
identified by params, ins, sts, and outs, respectively. Modules can also have
a list of wires local to the module, identified by wires. This module also has a
labels entry, which is an annotation. Annotations are not required, but can be
used to enable optimizations, assist verification, or provide information to other
tools. In this case, we use the labels annotation, along with a static checker,
to ensure that we do not use a data wire when a control wire was expected

or vice versa. Annotations can also be used to represent layout information or
other physical attributes—a user may define their own annotations.

A module will also include occurrences which define the relationship between
its inputs, outputs, and internal modules. Each occurrence consists of a unique
occurrence name, a list of outputs, a module reference combined with its pa-
rameter list, and a list of inputs. For example, the first occurrence in the above
example is named reg. The reg occurrence consists of an instance of a register
module with the parameter width, input mux-out, and output out. The fact that
reg occurs in the accumulator module’s sts list denotes that it is a state-holding
occurrence. Each input to an occurrence is specified by an ACL2 expression of
the inputs and internal “wires” of the module. Our primitive simulation-based
evaluator only defines a finite list of ACL2 functions (e.g. bv-adder and bv-if)
for use in such an expression.

The DE2 language evaluation semantics define the outputs of a module as
a function of its inputs and internal state. The next state of a module is also a
function of a module’s inputs and internal state. Evaluation is discrete; that is,
there is an implicit notion of time which is broken into discrete steps.

Module evaluation begins by binding input values to a module’s inputs and
binding state values to a module’s states. Each occurrence is then evaluated in
the order of its appearance. An occurrence is evaluated by binding its inputs
and state to the specified arguments and then evaluating the reference itself. For
the module defined above, the occurrence reg is evaluated first; the output of
a register depends only on its internal state, not its inputs. After the value of
mux-out is determined by evaluating the mux occurrence then internal state of
the reg occurrence is updated.

In Section 6.1 we present some properties of this example which we have
proven mechanically. Using the ACL2 theorem prover, we prove that for any
data-path width a LOAD of A (i.e. load is high, in is A) followed by an ADD
of B (i.e. 1load is low, in is B) produces the addition of A and B.

4.2 Primitives

A primitive module, corresponding to a hardware component built-in to a synthe-
sis tool, has a similar definition to that of a non-primitive module. The difference
between a primitive module is that rather than being defined in terms of occur-
rences of submodules, a primitive module is defined by lisp functions accessed
through lambda modules. A lambda module has formals corresponding to the
occurrence’s list of parameters followed by the occurrence’s list of inputs. The
lambda module evaluates to a list with its first element being the state of the
lambda module followed by its outputs. For example, the following is a definition
of the primitive module bufn, which is a submodule of our accumulator.

(bufn
(type primitive)
(params n sig-type)
(outs (q n))
(ins (x n))
(labels (q sig-type) (x sig-type))
(oces (st (q)
((lambda (x) (list ’mnil x)))
(x))))

The bufn module instantiates a single lambda module. Since the bufn module
has no state, this lambda expression evaluates to a list whose first element is nil.
The output of the bufn module, which corresponds to the second element of the
list, is equal to its input. The other primitive module found in our accumulator
example, register, is defined as follows.

(register

(type primitive)

(params width sig-type)

(outs (q width))

(ins (d width))

(sts st)

(st-decls (st width))

(labels (q sig-type) (d sig-type))

(occs

(st (q)

((lambda (width st d) (list d st)) width)
(st d))))

The register example shows how a state-holding primitive is defined in DE2.
The state of the register module is accessed through a lambda module named
st, which turns the implicit input and output of state into an explicit input
and output. The lambda module returns its input d as the next state and its
state st as its output. Note that the register module also has a new field,
st-decls, that declares the state element st to be a bit-vector of length width.
This declaration is not a requirement of DE2 modules, but enables the later use
of decision procedures.

5 The DE2 Evaluator

The definition of the DE2 evaluator is composed of two groups, each containing
two mutually recursive functions. These four functions implement the entire
hierarchical evaluation of the outputs and next-state values for any well-formed
hierarchical FSM defined using the DE2 language, except for the evaluation of
the lambda and ACL2 (primitive) expressions. This set of functions was designed
with a number of different goals in mind, so design decisions were made to
attempt to implement the desired properties while keeping the size of the system
as small as possible.

The DE2 language can be thought of as having two parts: primitive opera-
tions and interconnect. We have defined different primitive evaluators, depending
on our needs. The primitive evaluator we use for verification of gate-like primi-
tives interprets such primitive modules by applying ordinary Boolean operations.
If we are interested in the fan-out of a set of signals, we use a different primitive
evaluator. If we want to generate a count of the number of and type of primitive
modules required to implement a referenced module, we use a primitive evalu-
ator that collects that information from every primitive encountered during an
evaluation pass — note that this does not just count the number of defined mod-
ules, but it counts the number of every kind of modules required to realize the
FSM being evaluated. If we want to compute a crude delay or power estimate,
we use other primitive evaluators.

The semantic evaluation of a DE2 design proceeds by binding actual (eval-
uated) parameters (both inputs and current states) to the formal parameters of
the module to be evaluated; this in turn causes the evaluation of each submodule.
This process is repeated recursively until a primitive module is encountered, and
the specified primitive evaluator is called after binding the necessary arguments.
This part of the evaluation can be thought of as performing all of the “wiring”;
values are “routed” to appropriate modules and results are collected and passed
along to other modules or become primary outputs. This set of definitions is
composed of four (two groups of) functions (given below), and these functions
contain an argument that permits different primitive evaluators to be used.

The following four functions completely define the evaluation of a netlist of
modules, no matter which type of primitive evaluation is specified. The functions
presented in this section constitute the entire definition of the simulator for
the DE2 language. This definition is small enough to allow us to reason with
it mechanically, yet it is rich enough to permit the definition of a variety of
evaluators. The se function evaluates a module and returns its primary outputs
as a function of its inputs. The de function evaluates a module and returns
its next state; this state will be structurally identical to the module’s current
state, but with updated values. Both se and de have sibling functions, se-occ
and de-occ respectively, that iterate through each sub-module referenced in the
body of a module definition. We present the se and de evaluator functions to
make clear the importance we place on making the definition compact.

The se and de functions both have a f1g argument that permits the selection
of a specific primitive evaluator. The fn argument identifies the name of a module
to evaluate; its definition should be found in the netlist. The ins and st
arguments provide the primary inputs and the current state of the fn module.
The params argument allows for parameterized modules; that is, it is possible to
define modules with wire and state sizes that are determined by this parameter.
The env argument permits configuration or test information to be passed deep
into the evaluation process.

The se-occ function evaluates each occurrence and returns an environment
that includes values for all internal signals. The se function returns a list of

outputs by filtering the desired outputs from this environment. To compute the
outputs as functions of the inputs, only a single pass is required.

(defun se (flg fn params ins st env netlist)
(if (consp fn)
;; Primitive Evaluation.
(cdr (flg-eval-lambda-expr flg fn params ins env))
;; Evaluate submodules.
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let-names
(m-params m-ins m-outs m-sts m-occs)
(m-body module)

(Llet*
((new-env (add-pairlist m-params params nil))
(new-env (add-pairlist (strip-cars m-ins)
(flg-eval-list flg ins env)
new-env))
(new-env (add-pairlist m-sts

(flg-eval-expr flg st env)
new-env))
(new-netlist (delete-assoc-eq-netlist fn netlist)))
(assoc-eq-list-vals
(strip-cars m-outs)
(se-occ flg m-occs new-env new-netlist))))))))

(defun se-occ (flg occs env netlist)
(if (atom occs) ;; Any more occurrences?
env
;; Evaluate specific occurrence.
(let-names
(o-name o-outs o-call o-ins)
(car occs)
(se-occ flg (cdr occs)
(add-pairlist
(o-outs-names o-outs)
(flg-eval-list
flg (parse-output-list
o-outs
(se flg (o-call-fn o-call)
(flg-eval-list flg
(o-call-params o-call)
env)
o-ins o-name env netlist))
env)
env)
netlist))))

Similarly, the functions de and de-occ perform the next-state computation
for a module’s evaluation; given values for the primary inputs and a structured

state argument, these two functions compute the next state of a specified module.
This result state is structured isomorphically to its input’s state. Note that
the definition of de contains a reference to the function se-occ; this reference
computes the value of all internal signals for the module whose next state is
being computed. This call to se-occ represents the first of two passes through
a module description when DE is computing the next state.

(defun de (flg fn params ins st env netlist)
(if (consp fn)
(car (flg-eval-lambda-expr flg fn params ins env))
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil

(let-names
(m-params m-ins m-sts m-occs) (m-body module)

(let*
((new-env (add-pairlist m-params params nil))
(new-env (add-pairlist (strip-cars m-ins)
(flg-eval-list flg ins env)
new-env))
(new-env (add-pairlist m-sts

(flg-eval-expr flg st env)
new-env))
(new-netlist (delete-assoc-egq-netlist fn netlist))
(new-env (se-occ flg m-occs new-env new-netlist)))
(assoc-eq-list-vals
m-sts
(de-occ flg m-occs new-env new-netlist))))))))

(defun de-occ (flg occs env netlist)
(if (atom occs)
env
(let-names
(o-name o-call o-ins) (car occs)
(de-occ flg (cdr occs)
(cons
(comns
o-name
(de flg (o-call-fn o-call)
(flg-eval-list flg (o-call-params o-call) env)
o-ins o-name env netlist))
env)
netlist))))

This completes the entire definition of the DE2 evaluation semantics. This
clique of functions is used for all different evaluators; the specific kind of eval-
uation is determined by the flg input. We have proved a number of lemmas
that help to automate the analysis of DE2 modules. These lemmas allow us to
hierarchically verify FSMs represented as DE2 modules. We have also defined

simple functions that use de and se to simulate a DE2 design through any
number of cycles.

An important aspect of this semantics is its brevity. Furthermore, since we
specify our semantics in the formal language of the ACL2 theorem prover, we
can mechanically and hierarchically verify properties about any system defined
using the DE2 language.

6 Our Use of the DE2 System

Having an evaluator for DE2 written in ACL2 enables many forms of verifica-
tion. In Figure 2 we illustrate our verification system, which is built around the
DE2 language.

Verilog English Spec, C Model
Design and Test Suite
_ Testing & 3
Automatic Inspection . Manual
Translation . Translation
Optimizations DE s
& RQQUctlons @ Design ACL2 Spec
(verified)
Verified /\ Guided
Translation SAT-Based . Proof
Decision '
Procedure L
ACL2 Model Simplified
Invariants

Fig. 2. An overview of the DE2 verification system

We typically use the DE2 verification system to verify Verilog designs. These
designs are denoted in the upper left of Figure 2. Currently, the subset of Ver-
ilog includes arrays of wires (bit vectors), instantiations of modules, assignment
statements, and some basic primitives (e.g. &, ?: and |). We also allow the
instantiation of memory (array) modules and vendor-defined primitives.

We have built a translator that translates a Verilog description into an equiv-
alent DE2 description. Our translator parses the Verilog source text into a Lisp
expression, and then an ACL2 program converts this Lisp expression into a DE2
description.

We have also built a translator that converts a DE2 netlist into a cycle-
accurate ACL2 model. This translator also provides an ACL2 proof that the
DE2 description is equivalent to the mechanical produced ACL2 model. The

process of translating a DE2 description into its corresponding ACL2 model
includes a partial cone-of-influence reduction; an ACL2 function is created for
each module’s output and parts of the initial design which are irrelevant to that
output are removed. The DE2 to ACL2 translator allows us to enjoy both the
advantages of a shallow embedding (e.g. straightforward verification) and the
advantages of a deep embedding (e.g. syntax resembling Verilog).

We start with an informal specification of the design in the form of English
documents, charts, graphs, C-models, and test code which is represented in the
upper right of Figure 2. This information is converted manually into a formal
ACL2 specification. Using the ACL2 theorem prover, these specifications are
simplified into a number of invariants and equivalence properties. If these prop-
erties are simple enough to be proven by our SAT-based decision procedure,
we prove them automatically; otherwise, we simplify such conjectures using the
ACL2 theorem prover until we can successfully appeal to some automated deci-
sion procedure.

We also use our system to verify sets of DE2 descriptions. This is accom-
plished by writing ACL2 functions that generate DE2 descriptions, and then
proving that these functions always produce circuits that satisfy their ACL2
specifications.

Since DE2 descriptions are represented as ACL2 constants, functions that
transform DE2 descriptions can be verified using the ACL2 theorem prover.
By converting from Verilog to DE2 and from DE2 to back into Verilog, we
can use DE2 as an intermediate language to perform verified optimizations.
Another use of this feature involves performing reductions or optimizations on
DE2 specifications prior to verification. For example, one can use a decision
procedure to determine that two DE2 circuits are equivalent and then use this
fact to avoid verifying properties of a less cleanly structured description.

We can also build static analysis tools, such as extended type checkers, in
DE2 by using annotations. In DE2, annotations are first-class objects (i.e. an-
notations are not embedded in comments). Therefore an annotation, such as the
labels annotation in Section 4, is parsed as easily as any core language feature.
Such static checkers, since they are written in ACL2, can be analyzed and can
also assist in the verification of DE2 descriptions. Furthermore, annotations can
be used to embed information into a DE2 description to assist with synthesis.

6.1 Verification Example

To verify the DE2 circuit in Section 4, we first generate an ACL2 model which
is equivalent to the DE2 circuit. The following theorems, which are proven
automatically through a proof generated by our translator, prove that the ACL2
functions accumulator-next-st and accumulator-out produce the next state
and the out output of the accumulator module from Section 4.

(defthm accumulator-de-rewrite
(implies (accumulator-& netlist)
(equal (de flg ’accumulator params ins st env netlist)
(let ((st (flg-eval-expr flg st env))

(in (get-nth-value 0 flg ins env))

(load (get-nth-value 1 flg ins env))
(width (nth O params)))

(accumulator-next-st st width in load)))))

(defthm accumulator-se-rewrite
(implies (accumulator-& netlist)
(equal (se flg ’accumulator params ins st env netlist)
(let ((st (flg-eval-expr flg st env)))
(list (accumulator-out st))))))

We now can prove properties about the ACL2 model using the ACL2 theorem
prover. For example, consider the following theorem:

(thm
(let* ((statel (accumulator-next-st state0 width A (LOAD)))
(state2 (accumulator-next-st statel width B (ADD))))
(equal (accumulator-out state2) (bv-adder width a b))))

In this theorem, statel is the state of our accumulator after an arbitrary
LOAD instruction (i.e. the load input to the accumulator is high), and state2
is the state after following this LOAD with an ADD instruction (i.e. the load
input is low). The theorem then states that the output of the accumulator is
the addition of each cycles’ inputs. We proved this theorem using the ACL2
theorem prover for any width accumulator. If we choose a specific width (e.g.
a 32-bit accumulator), then this theorem can be proven automatically with our
SAT-based decision procedure.

6.2 Verifying Components of the TRIPS Processor

We are using our verification system to verify components of the TRIPS pro-
cessor. The TRIPS processor is a prototype next-generation processor being
designed by a joint effort between the University of Texas and IBM [7]. One
novel aspect of the TRIPS microprocessor is that its memory is broken up into
four pieces; each piece of memory has a separate cache and Load Store Queue
(LSQ). We plan to verify the LSQ design, based on the design described in
Sethumadhavan et al [6], using our verification system. We have already verified
properties of its Data Status Network (DSN) component.

The DSN hardware provides the communication and buffering between four
LSQ instances. Its design consists of 584 lines of Verilog code (including around
200 lines of comments), which we compile into a 427-line DE2 description (with
no comments). We use our verifying compiler to translate this DE2 description
into an ACL2 model and then prove the equivalence of the DE2 description

and its ACL2 specification. Using a mixture of theorem proving and a SAT-
based decision procedure, we have proved properties that relate the output of
the four DSN instances, communicating with each other over multiple cycles, to
the output of a simplified machine; this simplified machine specifies the output
that would be immediately produced if all communication were instantaneous.

7 Conclusion

The definition of the DE2 language provides a user with a hierarchical lan-
guage for specifying FSMs. By deeply embedding the definition of DE2 within
the ACL2 functional logic, we have provided a proof theory for verifying DE2
module descriptions with respect to a number of primitive interpretations. The
extensible structure of the DE2 language and its general-purpose annotation
language allow a user to embed other types of information, such as a mod-
ule’s size, specification, layout, power requirements, and signal types. Instead of
just verifying large netlists, we often compare netlists or transform one netlist
into another netlist in a provably correct manner. We have extended the ACL2
theorem-proving system with a SAT procedure that can provide counter ex-
amples. We also have proved the correctness of functions that automatically
generate circuits; this can greatly reduce the amount of DE2 module definitions
written by a user.

We believe that the design of DE2 more closely fulfills the needs of mod-
ern hardware design and specification than traditional HDLs. The increasing
demands placed on hardware or FSM specification languages is presently being
served by embedding all kinds of extra information in the form of comments into
a traditional HDL. This process forces non-standard, non-portable use of HDLs,
and prevents there from being a single design description that can be accessed
by all pre- and post-silicon development tools. We believe that DE2 is the first
formal attempt to integrate disparate design data into a single formalism. We
believe future design systems should include similar features.

The DE2 language, annotation system, and semantics provide a user with
a uniform means of specifying and verifying a wide variety of both functional
and extrinsic properties. We continue to expand the size and type of designs
that we have verified. In the future, we want to use DE2 to capture existing
design elements to ease the reuse problem. Typically, in an industrial design
flow, when a previously designed and verified design element is used in a new
design, the verification has to be completely redone. Our ability to specify and
verify modules in a hierarchical manner permits the reuse of prior verifications,
and perhaps this verification reuse is the real key. Being able to reuse the design
and the effort required to validate it will greatly reduce the effort of reusing
previously designed modules.

References

1. Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware De-
sign in Haskell. The International Conference on Functional Programming (ICFP),

10.

11.

12.

13.

14.

15.

16.

17.
18.

pages 174-184, Volume 32, Number 1, ACM Press, 1998.

Mary Sheeran. Generating Fast Multipliers Using Clever Circuits. In Alan J. Hu
and Andrew K. Martin, editors, Formal Methods in Computer-Aided Design (FM-
CAD), pages 6-20, LNCS, Volume 3312, Springer Verlag, 2004.

Sava Krstic and John Matthews. Semantics of the reFLect Language. Principles
and Practice of Declarative Programming (PPDP), pages 32-42, ACM Press, 2004.

. Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Lifted-FL: A Prag-

matic Implementation of Combined Model Checking and Theorem Proving. The-
orem Proving in Higher Order Logics (TPHOLs), LNCS, Volume 1690, Springer
Verlag, 1999.

Mark D. Aagaard, Robert B. Jones, John W. O’Leary, Carl-Johan H. Seger, and
Thomas F Melham. A methodology for large-scale hardware verification. In War-
ren A. Hunt, Jr. and Steve Johnson, editors, Formal Methods in Computer-Aided
Design (FMCAD), LNCS, Volume 1954, Springer Verlag, 2000.

S. Sethumadhavan, R.Desikan, D.Burger, C.R.Moore and S.W.Keckler. Scalable
Hardware Memory Disambiguation for High ILP Processors (Load/Store Queue
Design). 36th International Symposium on Microarchitecture (MICRO 36), pages
399-410, 2003.

The Tera-op Reliable Intelligently adaptive Processing System(TRIPS),
http://www.cs.utexas.edu/users/cart/trips/

Bishop Brock, Matt Kaufmann, and J Moore. ACL2 Theorems about Commer-
cial Microprocessors. In M. Srivas and A. Camilleri, editors, Formal Methods
in Computer-Aided Design (FMCAD’96), pages 275-293, LNCS, Volume 1166,
Springer- Verlag, 1996.

Jun Sawada. Formal Verification of an Advanced Pipelined Machine. PhD Thesis,
University of Texas at Austin, 1999.

Warren A. Hunt, Jr. The DE Language. Computer-aided Reasoning: ACL2 case
studies, pages 151-166, Kluwer Academic Publishers, 2000.

Robert S. Boyer and J Strother Moore. A Computational Logic Handbook. Aca-
demic Press, Boston, 1988.

M. J. C. Gordon and T. F. Melham (editors). Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge University Press, 1993.
Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert, and
John Van Tassel. Experience with Embedding Hardware Description Languages in
HOL, Theorem Provers in Circuit Design, pages 129-156, IFIP Transactions A-10,
Elsevier Science Publishers, 1992.

Mike Gordon. Why Higher-order Logic is a Good Formalism for Specifying and
Verifying Hardware. Technical Report 77, University of Cambridge, Computer Lab-
oratory, 1985.

Warren A. Hunt, Jr. and Bishop C. Brock. A Formal HDL and Its Use in the
FM9001 Verification. In C.A.R. Hoare and M.J.C. Gordon, editors, Mechanized
Reasoning and Hardware Design, pages 35—48, Prentice-Hall International Series
in Computer Science, 1992.

Matt Kaufmann and J Strother Moore. ACL2: An Industrial Strength Version of
NQTHM. Eleventh Annual Conference on Computer Assurance (COMPASS-96),
pages 23-34, IEEE Computer Society Press, 1996.

Guy Steele. Common Lisp: The Lanugage, Second Edition. Digital Press, 1990.
Phillip J. Windley and Michael L. Coe. A Correctness Model for Pipelined Micro-
processors, Theorem Provers in Circuit Design : Theory, Practice, and Ezperience,
LNCS, Volume 901, Springer Verlag, pages 33-51, 1995.

