
Real-Time Model Checking is
Really Simple

Leslie Lamport

Microsoft Research

Abstract. It is easy to write and verify real-time specifications with
existing languages and methods; one just represents time as an ordi-
nary variable and expresses timing requirements with special timer vari-
ables. The resulting specifications can be verified with an ordinary model
checker. This basic idea and some less obvious details are explained, and
results are presented for two examples.

1 Introduction

Numerous special languages and logics have been proposed for specifying and
verifying real-time algorithms. There is an alternative that I call the explicit-time
approach, in which the current time is represented as the value of a variable now
and the passage of time is modeled by a Tick action that increments now . Timing
constraints are expressed with timer variables.

Hardly anything has been written about the explicit-time approach, perhaps
because it is so simple and obvious. As a result, most people seem to believe
that they must use special real-time languages and logics. It has already been
shown that an explicit-time approach works fine for specifying and proving prop-
erties of real-time algorithms [1]. Here, I consider model checking explicit-time
specifications.

The major advantage of the explicit-time approach is that it can be used with
any language and logic for describing concurrent algorithms. This is especially
important for complex algorithms that can be quite difficult to represent in the
lower-level, inexpressive languages typical of real-time model checkers. For ex-
ample, distributed message-passing algorithms have queues or sets of messages
in transit, each with a bound on its delivery time. Such algorithms are difficult
or impossible to handle with most real-time model checkers. Section 2 briefly
explains the explicit-time approach with a simple distributed algorithm. A com-
plete specification of the algorithm in TLA+ [8], a high-level mathematics-based
language, appears in [9].

Explicit-time descriptions can use either continuous or discrete time. Sec-
tion 3 shows that when discrete time is used, these descriptions can be checked
with ordinary model checkers. This simple fact has been known for quite a while
and is implicit in several published results [5]. However, a direct statement of it
does not seem to have appeared before in print. Moreover, there are some aspects



of model checking explicit-time specifications that may not be obvious, includ-
ing the use of view symmetry and a method for checking that a specification is
nonZeno [1].

Section 4 describes the result of checking the algorithm described in Section 2
with TLC, a model checker for TLA+ specifications, and with Uppaal [10], the
only real-time model checker I know of that can handle this example. It also
compares TLC, Spin [6], and SMV [11] with Uppaal on the Fischer mutual
exclusion algorithm [13]. More details appear in [9].

2 Writing Explicit-Time Specifications

In an explicit-time specification, time is represented with a variable now that is
incremented by a Tick action. For a continuous-time specification, Tick might
increment now by any real number; for a discrete-time specification, it incre-
ments now by 1. Timing bounds on actions are specified with one of three kinds
of timer variables: a countdown timer is decremented by the Tick action, a count-
up timer is incremented by Tick , and an expiration timer is left unchanged by
Tick .1 A countdown or count-up timer expires when its value reaches some value;
an expiration timer expires when its value minus now reaches some value. An
upper-bound timing constraint on when an action A must occur is expressed
by an enabling condition on the Tick action that prevents an increase in time
from violating the constraint; a lower-bound constraint on when A may occur is
expressed by an enabling condition on A that prevents it from being executed
earlier than it should be.

I illustrate how one writes explicit-time specifications using the example of a
simple version of a classic distributed algorithm of Radia Perlman [12]. The orig-
inal algorithm constructs a spanning tree rooted at the lowest-numbered node,
called the leader. The tree is maintained by having the leader periodically propa-
gate an I’m Leader message down it that informs each node of its distance to the
leader. A new tree is constructed if a failure causes some node to time out before
receiving the I’m Leader message. I have simplified it by eliminating failures, so
correctness means simply that every node learns the leader within some fixed
length of time. A complete TLA+ specification of the algorithm appears in [9].
Here, I describe only the TLA+ specification of the Tick action.

The algorithm has three timing parameters, Period , MsgDelay , and TODelay .
Each node n has a countdown timer timer [n]. Setting timer [n] to τ causes a time-
out to occur between τ and τ +TODelay seconds later. By letting τ be the mini-
mum timeout interval, this models both delay in reacting to a timeout and varia-
tion in the running rate of physical timers. When its timeout occurs, node n sends
an I’m Leader message and sets timer [n] to Period . If n receives an I’m Leader
message from a lower-numbered node, it resets timer [n] to a suitable value. A
message is assumed to be received at most MsgDelay seconds after it is sent, a
constraint enforced with a rcvTimer countdown timer field in the message. The
1 Dutertre and Sorea [3] use a different kind of timer variable that predicts the time

at which an action will occur.



Tick
∆
= ∃ d ∈ {r ∈ Real : r > 0} :

∧ ∀ n ∈ Node : timer [n] + TODelay ≥ d
∧ ∀ms ∈ BagToSet(msgs) : ms.rcvTimer ≥ d
∧ now ′ = now + d
∧ timer ′ = [n ∈ Node 7→ timer [n]− d ]
∧msgs ′ = let Updated(ms)

∆
=

[ms except !.rcvTimer = ms.rcvTimer − d ]
in BagOfAll(Updated , msgs)

∧ unchanged 〈ldr , dist〉

Fig. 1. The Tick action’s definition for the leader algorithm.

algorithm achieves stability if, upon receiving a message from its leader, a node n
sets timer [n] to a value no smaller than Period +TODelay +dist [n]∗MsgDelay ,
where dist [n] is the distance from n to the leader.

Figure 1 contains the definition of the Tick action from the TLA+ specifi-
cation. It can’t be completely understood without seeing the rest of the speci-
fication and having some knowledge of TLA+ (including the definitions of the
operators BagToSet and BagOfAll from the standard Bags module). However,
it will indicate how timing constraints are specified and also give an idea of the
high-level nature of TLA+. This version is for a continuous-time specification,
in which now is incremented by some real value d . We obtain a discrete-time
specification by replacing “∃d ∈ {r ∈ Real : r > 0} : ” with “ let d ∆= 1 in ”.

The action’s first two conjuncts enforce the upper-bound constraints. The
first prevents timer [n] from becoming less than −TODelay , for each node n.
The second prevents the timer ms.rcvTimer from becoming negative, for all
messages ms in the bag (multiset) msg of messages in transit.

The action’s remaining conjuncts assert how the variables are changed. The
third conjunct asserts that now is incremented by d . The fourth and fifth con-
juncts assert that all the timers are decremented by d , the fourth for each
timer [n] and the fifth for the timer component ms.rcvTimer of each message
ms. The final conjunct asserts that the specification’s other variables are un-
changed.

The complete specification asserts the additional timing constraint that a
timeout action of node n cannot occur before timer [n] has counted down past 0.
This constraint is expressed by the conjunct timer [n] < 0 in that action’s defi-
nition.

3 Model Checking Explicit-Time Specifications

Most real-time system specifications are symmetric under time translation, mean-
ing that system actions depend only on the passage of time, not on absolute
time values. This section explains what symmetry and model checking under
symmetry mean and describes a simple method of model checking explicit-time
specifications that are symmetric under time translation.



3.1 Specifications and Temporal Properties

Let a state of a specification be an assignment of values to all the specification’s
variables, and let its state space be the set of all such states. A state predicate is
a predicate (Boolean function) on states, and an action is a predicate on pairs
of states. The formula s A−→ t asserts that action A is true on the pair s, t of
states. A behavior is a sequence of states. A temporal property is a predicate on
behaviors. Temporal properties are represented syntactically as temporal formu-
las.

Assume a specification S that consists of an initial predicate Init , a next-state
action Next , and a liveness assumption L that is a temporal property, possibly
equal to true. The initial predicate and next-state action form the safety part
S of specification S. A behavior s1, s2, . . . satisfies S iff s1 satisfies Init and
s i

Next−→ s i+1 for all i ; it satisfies S iff it satisfies both S and L.

3.2 Symmetry

A symmetry is an equivalence relation on states. A state predicate P is symmetric
with respect to a symmetry ∼ iff, for any states s and t with s ∼ t , predicate P
is true in state s iff it is true in state t . An action A is symmetric with respect
to ∼ iff, for any states s1, s2, and t1,

s1
A−→ t1 s1

A−→ t1

o implies there exists t2 such that o o
s2 s2

A−→ t2

In other words, for any states s1 and s2 with s1 ∼ s2 and any state t1, if s1
A−→ t1

then there exists a state t2 with t1 ∼ t2 such that s2
A−→ t2.

A symmetry ∼ is extended to an equivalence relation on behaviors in the
obvious way by letting two behaviors be equivalent iff they have the same length
and their corresponding states are equivalent. A temporal property is symmetric
(with respect to ∼) iff, for every pair of behaviors σ and τ with σ ∼ τ , the
property is true of σ iff it is true of τ .

A temporal formula is constructed from state predicates and actions by apply-
ing temporal operators, logical connectives, and ordinary (non-temporal) quan-
tification. The formula is symmetric if each of its component state predicates
and actions is symmetric.

3.3 Model Checking

An explicit-state model checker works by computing the directed graph G of a
specification S’s reachable states. The nodes of G are states, and G is the smallest
graph satisfying the following two conditions: (i) G contains all states satisfying
Init , and (ii) if state s is a node of G and s Next−→ t , then G contains the node t and
an edge from s to t . Paths through G (which may traverse the same node many



times) starting from an initial state correspond to behaviors satisfying S. Those
behaviors that also satisfy its liveness assumption are the ones that satisfy S.

The model checker constructs G by the following algorithm, using a set U of
unexamined reachable states. Initially, G and U are both empty. The checker first
sequentially enumerates the states satisfying Init , adding each state not already
in G to both G and U . It does the following, while U is nonempty. It chooses
some state s in U and enumerates all states t satisfying s Next−→ t . For each such
t : (i) if t is not in G then it adds t to G and to U ; (ii) if there is no edge from s
to t in G, then it adds one.

Model checking under a constraint P is performed by constructing a subgraph
of G containing only states that satisfy the state predicate P . To compute the
subgraph, this procedure is modified to add a state to G and U only if the state
satisfies P .

Model checking under a symmetry ∼ consists of constructing a smaller graph
E by adding a state to E and U only if E does not already contain an equivalent
state. The graph E constructed in this way satisfies the following properties:
(i) s 6∼ t for every distinct pair of nodes s, t of E ; (ii) for every state s satisfying
Init , there is a node t in E such that t satisfies Init and s ∼ t ; (iii) for every
node s of E and every state t such that s Next−→ t , the graph E contains a node t ′

with t ∼ t ′ and an edge from s to t ′. The specification is then checked as if E
were the reachable-state graph.

Here, I ignore practical concerns and assume a theoretical model checker
that can perform this algorithm even if the state graph is infinite. All the results
apply a fortiori if the state graph is finite.

For model checking with symmetry to be equivalent to ordinary model check-
ing, the following condition must hold:

SS. A behavior satisfies S iff it is equivalent (under ∼) to a behavior described
by a path through E starting from an initial state.

This condition does not imply that the behaviors described by paths through E
satisfy S, just that they are equivalent to ones that satisfy S. Condition SS is
true if the specification satisfies the following two properties:

S1. (a) Init is symmetric, or
(b) No two states satisfying Init are equivalent.

S2. Next is symmetric.

The specification is defined to be safety symmetric iff it satisfies S1 and S2.
An explicit-state model checker checks that a correctness property F holds by

checking that L ⇒ F holds for every behavior described by a path through the
reachable-state graph starting from an initial state, where L is the specification’s
liveness assumption. A symmetric property is true of a behavior iff it is true of
any equivalent behavior. Condition SS therefore implies that model checking
with symmetry is equivalent to ordinary model checking for verifying that a
safety symmetric specification with a symmetric liveness assumption satisfies a
symmetric property.



The simplest kind of temporal property is a state predicate P , which as a tem-
poral formula asserts that P is true initially. If the specification satisfies S1(b),
then model checking with symmetry is equivalent to ordinary model checking
for verifying that P is satisfied, even if P is not symmetric.

3.4 View Symmetry

A view symmetry is defined by an arbitrary function on states called a view. Two
states are equivalent under a view V iff the value of V is the same in the two
states. Many explicit-state model checkers test if a state s is in the state graph
G constructed so far by keeping the set of fingerprints of nodes in G and testing
if G contains a node with the same fingerprint as s. Such a checker is easily
modified to implement checking under view symmetry by keeping fingerprints
of the views of states rather than of the states themselves. TLC supports view
symmetry as well as symmetry under permutations of a constant set.

View symmetry is equivalent to abstraction [2, 4] for a symmetric specifica-
tion S. Abstraction consists of checking S by model checking a different speci-
fication A called an abstraction of S. The view corresponds to the abstraction
mapping from states of S to states of A.

3.5 Symmetry Under Time Translation

Time-translation symmetry is a special kind of symmetry in which two states
are equivalent iff they are the same except for absolute time. I now define what
this means, using the notation that s.v is the value of variable v in state s.

A time translation is a family of mappings T d on the state space of the
specification S that satisfies the following properties, for all states s and all real
numbers d and e: (i) T d(s).now = s.now+d , (ii) T 0(s) = s, and (iii) T d+e(s) =
T d(T e(s)). Specification S is defined to be invariant under this time translation
iff it satisfies the following two conditions, for all real numbers d .

T1. (a) A state s satisfies Init iff T d(s) does, or
(b) s.now = t .now for any states s and t satisfying Init .

T2. s Next−→ t iff T d(s) Next−→ T d(t), for any states s and t .

Given a time translation, we define the time-translation symmetry ∼ by s ∼ t
iff s = T d(t) for some d . T1 and T2 imply S1 and S2 for this symmetry. Hence,
a specification that is invariant under a time translation is symmetric under the
corresponding time-translation symmetry. Invariance under time translation is
stronger than time-translation symmetry because, in addition to implying SS, it
implies the following property.

TT. Let s1, . . . , sk and t1, t2, . . . be two behaviors satisfying S (the second
behavior may be finite or infinite). If sk = T d(t j ), then the behavior
s1, . . . , sk , T d(t j+1),T d(t j+2), . . . also satisfies S.



To define a time translation, we must define T d(s).v for every real number d ,
state s, and variable v . Explicit-time specifications have three kinds of variables:
now , timer variables, and “ordinary” variables that are left unchanged by the
Tick action. We know that T d(s).now equals s.now+d . Time translation should
not change the value of an ordinary variable v , so we should have T d(s).v = s.v
for such a variable. For a timer variable t , we should define T d(s).t so that the
number of seconds in which t will time out is the same in s and T d(s). The
value of a countdown or count-up timer directly indicates the number of seconds
until it times out, so T d(s).ct should equal s.ct for such a timer ct . Whether
or not an expiration timer et has timed out depends on the value of et − now .
The time translation T d preserves the number of seconds until et times out iff
T d(s).et −T d(s).now equals s.et − s.now , which is true iff T d(s).et = s.et +d .

With this definition of the T d , any explicit-time specification is invariant
under time translation, and hence safety symmetric under time-translation sym-
metry, if it expresses real-time requirements only through timer variables. Let
v1, . . . , vm be the specification’s ordinary variables and countdown and count-
up timer variables, and let et1, . . . , etn be its expiration timer variables. Then
symmetry under time translation is the same as view symmetry with the view
〈v1, . . . , vm , et1 − now , . . . , etn − now 〉.

3.6 Periodicity and Zeno Behaviors

Let NZ be the temporal property asserting that time increases without bound.
A specification S is nonZeno iff every finite behavior satisfying S can be ex-
tended to an infinite one satisfying S and NZ [1]. Property NZ is not symmetric
under time translation; by replacing states of a behavior with ones translated
back to the behavior’s starting time, we can construct an equivalent behavior in
which now never changes. Thus, model checking with time-translation symme-
try cannot be used to check that a specification is nonZeno. However, we can
take advantage of time-translation invariance as follows to use ordinary model
checking to show that a specification is nonZeno.

Let S be a specification that is invariant under time translation. For sim-
plicity, we assume that the initial condition of S asserts that now equals 0, so
s.now ≥ 0 for all reachable states s. For any reachable state s, let LeastTime(s)
be the greatest lower bound of the values t .now for all states t equivalent to s
(under time-translation symmetry). The period of S is defined to be the least up-
per bound of the values LeastTime(s) for all reachable states s of S. Intuitively,
if a system’s specification has a finite period λ, then all its possible behaviors
are revealed within λ seconds. More precisely, any λ-second segment of a system
behavior is the time translation of a segment from the first λ seconds of some
(possibly different) behavior.

Define the condition NZλ as follows, where λ is a positive real number.

NZλ. Every finite behavior satisfying S that ends in a state s with s.now ≤ λ
can be extended to a behavior satisfying S that ends in a state t with
t .now ≥ λ + 1.



It can be shown that if a specification S is time-translation invariant, has a
period less than or equal to the real number λ, and satisfies NZλ, then it is
nonZeno. Therefore, we can check that S is nonZeno by verifying that S has a
period of at most λ and that it satisfies NZλ.

Here is how we can use model checking under time-translation symmetry to
find an upper bound on the period of S. Let E be the state graph constructed by
model checking under this symmetry. Because every reachable state is equivalent
to a node in E , the period of S is less than or equal to the least upper bound
of the values s.now for all nodes s of E . (Since all initial states have now = 0,
the period of most specifications will equal this least upper bound for a model
checker that, like TLC, uses a breadth-first construction of the state graph.)
Debugging features allow the TLC user to insert in the specification expressions
that always equal true, but whose evaluation causes TLC to perform certain
operations. Using these features, it is easy to have TLC examine each state s
that it finds and print the value of s.now iff s.now > t .now for every state t
it has already found.2 This makes computing an upper bound on the period of
S easy. An explicit-state model checker that lacks the ability to compute the
upper bound can verify that λ is an upper bound on the period by verifying the
invariance of now ≤ λ, using time-translation symmetry.

To check that S satisfies NZλ, we must show that from every reachable state
with now ≤ λ, it is possible to reach a state with now ≥ λ + 1. We can do this
by model checking with the constraint now ≤ λ + 1, in which the model checker
ignores any state it finds with now > λ + 1. It is easy to verify NZλ under this
constraint with a model checker that can check possibility properties. With one
like TLC that checks only linear-time temporal properties, we must show that S
together with fairness assumptions on subactions of its next-state action imply
that the value of now must eventually reach λ+1 [1, 7]. That is, we add fairness
assumptions on certain actions and check that eventually now ≥ λ + 1 holds,
using the constraint now ≤ λ + 1.

All of this, including the definition of period, has been under the assumption
that now = 0 for all initial states. Extending the definition of period to the
general case is not hard, but there is no need to do it. Invariance under time
translation requires that either (a) the set of initial states is invariant under
time translation, or (b) the value of now is the same in all initial states. In case
(b), that value will probably either be 0 or else a parameter of the specification
that we can set equal to 0. In case (a), we conjoin the requirement now = 0
to the initial predicate. Invariance under time translation implies that, in either
case, modifying the specification in this way does not affect whether or not it is
nonZeno.

2 One of the features needed was added to TLC after publication of [8].



4 Comparison with Uppaal

4.1 The Leader Algorithm

I have checked the TLA+ specification of the leader algorithm with the TLC
model checker. Although the specification is time-translation invariant, the cor-
rectness property is not. It asserts (now > c(n)) ⇒ P(n) for each node n,
where c(n) is a constant expression and P(n) does not contain now . We could
add a timer variable and restate the property in terms of it. (This is what is
done in the Uppaal model.) However, I instead had TLC check the property
under a symmetry ∼ defined as follows. Let Σ be the maximum of c(n) for
all nodes n. Then s ∼ t iff s.now and t .now are both equal or both greater
than Σ. Both the specification and the correctness property are symmetric un-
der ∼. This symmetry is view symmetry under the view consisting of the tu-
ple 〈v1, . . . , vk , if now > Σ then Σ + 1 else now 〉, where the v i are all the
variables except now .

Real-time model checkers use much lower-level modeling languages than
TLA+. Uppaal [10] is the only one I know of whose language is expressive enough
to model this algorithm. Arne Skou, with the assistance of Gerd Behrmann and
Kim Larsen, translated the TLA+ specification to an Uppaal model. Since Up-
paal’s modeling language is not as expressive as TLA+, this required some encod-
ing. In particular, Uppaal cannot represent the potentially unbounded multiset
of messages in the TLA+ specification, so the Uppaal model uses a fixed-length
array instead. To ensure that the model faithfully represents the algorithm, Up-
paal checks that this array does not overflow.

TLC and Uppaal were run on different but roughly comparable machines.
As indicated, some Uppaal executions were run on a 30-machine network. More
detailed results are presented in [9].

The parameters of the specification are the number N of nodes, a constant
operator that describes the graph, and the timing constants Period , TODelay ,
and MsgDelay . The latter two are upper-bound constraints, which implies that
the number of reachable states is an increasing function of their values. Figure 2
shows the results of checking the correctness property on two different graphs,
with 3 and 4 nodes, for some haphazardly chosen values of the timing bounds.
Uppaal timings are given for a single machine and for the 30-machine network;
fail means that Uppaal ran out of memory.

We expect that increasing a timing bound will increase the number of reach-
able states, and hence TLC’s execution time, since it increases the number of
possible values of the timer variables. The time required by Uppaal’s algorithm
depends only on the ratios of the timing bounds, not on their absolute value.
The results show that Uppaal’s execution time is strongly dependent on the ratio
MsgDelay/Period . For ratios significantly less than .6, Uppaal’s execution time
depends almost entirely on the graph and not on the other parameters. TLC’s
execution time depends on the magnitude of the parameters as well as on this
ratio. Hence, if Uppaal succeeds, it is usually faster than TLC for small values
of the parameters and much faster for larger values. Using 30 processors extends
the range of parameters for which Uppaal succeeds. TLC can be run on multiple



N = 3 N = 4

1
©
H

2

3
1 2 3 4

MsgDelay 30-proc

N Period MsgDelay TODelay Period TLC Uppaal Uppaal

3 10 3 5 .3 255 9.4 2.9
3 1 1 .33 4 9.4 13.4
5 2 5 .5 70 11.2 2.9
5 3 1 .6 13 30.8 3.0
5 3 5 .6 265 fail 20.9
3 2 1 .67 7 10.2 3.0
3 2 2 .67 20 fail 16.6
5 4 1 .8 27 32.5 9.2
5 4 5 .8 980 fail fail
2 2 1 1 11 fail fail
1 2 1 2 270 fail fail
1 2 2 2 1280 fail fail

4 10 3 5 .3 1385 42.2 2.5
3 1 1 .33 6 43.9 2.7
5 2 2 .4 42 48.3 4.2
5 2 5 .4 390 93.0 4.3
2 1 1 .5 6 48.2 3.7
5 3 1 .6 28 72.8 3.8
5 3 5 .6 1770 fail 84.6
3 2 1 .67 12 73.1 9.8
3 2 2 .67 44 fail 73.1
5 4 5 .8 6760 fail fail
2 2 1 1 13 fail fail
1 2 1 2 390 fail fail
1 2 2 2 1650 fail fail

Fig. 2. Comparison of Uppaal and TLC execution times in seconds for the indicated
graphs with 3 and 4 nodes.



MsgDelay reachable msgs in transit
Period MsgDelay TODelay Period states max mean

2 2 1 1 6579 6 3.46

1 2 1 2 240931 12 6.57

3 2 2 .67 20572 6 3.69

10 3 5 .33 247580 6 3.85

Fig. 3. The number of messages in transit.

computers using Java’s RMI mechanism. Tests have shown that execution speed
typically increases by a factor of about .7 times the number of computers. This
suggests that, run on a network of processors, TLC’s execution speed is com-
parable to Uppaal’s for the range of instances tested. However, since increasing
the timing-constraint parameters increases the number of reachable states, TLC
will be slower than Uppaal for large enough values of these parameters.

The overall result is that Uppaal can check models with larger timing-con-
straint parameters, and hence with a finer-grained choice of ratios between the
parameters. However, TLC can check a wider range of ratios among the para-
meters. For finding bugs, the ability to check parameter ratios of both 1:2 and
2:1 is likely to be more useful than the ability to check ratios of both 1:2 and
11:20.3

The dependence on the MsgDelay/Period ratio can be explained as follows.
Since Period is a lower bound on the time between the sending of messages
and MsgDelay is an upper bound on how long it takes to deliver the message,
the maximum number of messages that can be in transit at any time should
be roughly proportional to this ratio. The table of Figure 3 gives some idea of
what’s going on, where the results are for the 3-node graph. The first two rows
show the dramatic effect of changing Period and leaving the other parameters
the same. The second two rows show that the MsgDelay/Period ratio is just one
of the factors determining the number of messages in transit and the number of
reachable states.

It is possible that these results reflect some special property of this example.
However, the sensitivity to the MsgDelay/Period ratio suggests that it is the
messages in transit that pose a problem for Uppaal. Each message carries a
timer, and the performance of real-time model checkers tends to depend on
the number of concurrently running timers. Perhaps the most common use of
real time in systems is for constraints on message transit time—constraints that

3 The Uppaal model was subsequently rewritten to improve its performance. Because
the TLA+ specification was written to be as simple as possible, with no consideration
of model-checking efficiency, the fairest comparison seems to be with the first Uppaal
model. Uppaal can check the new model on a single computer an average of 4.5
times faster for the N = 3 instances of Figure 2 and 50 times faster for the N = 4
instances, but it still fails when MsgDelay/Period is greater than about 1. The new
model therefore does not alter the basic result that Uppaal is faster than TLC for
the range of parameter ratios it can handle, but it cannot handle as wide a range.



Safety Liveness
K states TLCs TLC Spin SMV TLC Spin SMV

2 155976 9 29 .7 1.3 128 3.7 2.5
3 450407 10 78 2.4 3.8 385 13 6.3
4 1101072 16 194 6.9 6.5 1040 49 10
5 2388291 26 399 19 10 3456 171 16
6 4731824 47 784 51 14 5566 468 22
7 8730831 78 1468 142 25 13654 1317 40
8 15208872 132 2546 378 35 3593 54
9 25263947 244 4404 977 46 5237 73
10 40323576 446 7258 2145 62 95

Uppaal 135

Fig. 4. Execution times in seconds for a simple version of Fischer’s algorithm with 6
threads, where TLCs is TLC with symmetry under thread permutations.

are modeled by attaching timers to messages. This suggests that Uppaal might
have difficulty checking such systems if there can be many messages in transit.
However, more examples must be tried before we can draw any such conclusion.

TLC was also used to check that some of the instances in Figure 2 were
nonZeno. For N = 3, this took about twice as long as checking the correctness
property; for N = 4 the two times were about the same.

4.2 Fischer’s Algorithm

I also compared the explicit-state approach to the use of Uppaal on a version
of Fischer’s mutual exclusion algorithm [13] that is distributed with Uppaal.
Because TLA+ is a very high-level language, TLC must “execute” a specifica-
tion interpretively. It is therefore significantly slower than conventional model
checkers for verifying simple systems. I also obtained data for two other popular
model checkers whose models are written in lower-level languages: the explicit-
state model checker Spin [6] and the symbolic checker SMV [11] that uses binary
decision diagrams. The Spin model was written and checked by Gerard Holz-
mann, and the SMV model was written and checked by Ken McMillan. Checked
were the safety properties of mutual exclusion and deadlock freedom (except for
SMV) and a simple liveness property.

This version of Fischer’s algorithm uses a parameter K that is both an upper-
and lower-bound timing constraint. All the models were tested for 6 threads,
which is the smallest number for which Uppaal takes a significant amount of
time. The results for different values of K are shown in Figure 4. Uppaal’s
execution time is independent of K . For checking safety, TLC was run both with
and without symmetry under permutations of threads. (The liveness property
is not symmetric.) The speedups obtained by the 6-fold symmetry should not
be taken very seriously; in real examples one at best obtains only 2- or 3-fold
symmetry.



Since Uppaal’s execution time is independent of K , we know that for large
enough values of K it will be faster than a model checker whose running time
depends on K . All of the model checkers could check the specification for large
enough values of K to provide reasonable confidence of its correctness, though
the numbers do not bode well for the ability of TLC and Spin to check liveness
for more complicated examples. We do not expect TLC’s performance on live-
ness checking to be good enough for large applications. But because Fischer’s
algorithm is so simple, it is dangerous to infer from these numbers that the
performance of Uppaal and SMV would be good enough.

5 Conclusion

Experts in the field will not be surprised that one can write and check explicit-
time specifications using ordinary model checkers. But this is apparently not
widely appreciated because it has not been stated clearly in the literature. More-
over, the use of view symmetry and the method described here for checking that
a specification is nonZeno may be new even to experts.

I know of no previous comparisons of the explicit-state approach with the use
of a real-time model checker. The results reported here do not tell us how the two
methods will compare on other examples. But they do indicate that verifying
explicit-time specifications with an ordinary model checker is not very much
worse than using a real-time model checker. Indeed, the results for the leader
algorithm suggest that the explicit-time approach is competitive with Uppaal for
distributed algorithms. The results of using TLC to check two more complicated
versions of Fischer’s algorithm are reported in [9]. They too suggest that TLC
can be used in practice to check explicit-time specifications.

The main advantage of an explicit-time approach is the ability to use lan-
guages and tools not specially designed for real-time model checking. There are
practical reasons for using a higher-level language like TLA+ instead of one
designed expressly for model checking. As one industrial user remarked, “The
prototyping and debug phase through TLA+/TLC is so much more efficient than
in a lower-level language.”

References

1. Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. ACM
Transactions on Programming Languages and Systems, 16(5):1543–1571, Septem-
ber 1994.

2. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, September 1994.

3. Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant
real-time startup protocol using calendar automata. In Formal Techniques, Mod-
elling and Analysis of Timed and Fault-Tolerant Systems, Joint International Con-
ferences on Formal Modelling and Analysis of Timed Systems, FORMATS 2004



and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004,
Grenoble, France, September 22-24, 2004, Proceedings, volume 3253 of Lecture
Notes in Computer Science, pages 199–214. Springer, 2004.

4. Susanne Graf and Claire Loiseaux. Property preserving abstractions under parallel
composition. In Marie-Claude Gaudel and Jean-Pierre Jouannaud, editors, TAP-
SOFT’93: Theory and Practice of Software Development, volume 668 of Lecture
Notes in Computer Science, pages 644–657. Springer, 1993.

5. Thomas A. Henzinger and Orna Kupferman. From quantity to quality. In Oded
Maler, editor, Proceedings of the International Workshop on Hybrid and Real-Time
Systems (HART ’97), volume 1997 of Lecture Notes in Computer Science, pages
48–62. Springer-Verlag, 1997.

6. Gerard J. Holzmann. The Spin Model Checker. Addison-Wesley, Boston, 2004.
7. Leslie Lamport. Proving possibility properties. Theoretical Computer Science,

206(1–2):341–352, October 1998.
8. Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003. A link to an

electronic copy can be found at http://lamport.org.
9. Leslie Lamport. Real time is really simple. Technical Report MSR-TR-2005-30,

Microsoft Research, March 2005.
10. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.

International Journal of Software Tools for Technology Transfer, 1(1/2):134–152,
December 1997.

11. K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.
12. Radia Perlman. An algorithm for distributed computation of a spanningtree in an

extended LAN. In Proceedings of the Ninth Symposium on Data Communications,
pages 44–53. SIGCOMM, ACM Press, 1985.

13. Fred B. Schneider, Bard Bloom, and Keith Marzullo. Putting time into proof
outlines. In J. W. de Bakker, C. Huizing, W.-P. de Roever, and G. Rozenberg,
editors, Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer
Science, pages 618–639, Berlin, Heidelberg, New York, 1992. Springer-Verlag.


