High-Level Modelling, Analysis, and Verification
on FPGA-based Hardware Design

Petr Matousek, Ales Smrcka, and Tomas Vojnar

FIT, Brno University of Technology, Bozetéchova 2, CZ-612 66 Brno, Czech Republic
{matousp, smrcka,vojnar}@fit.vutbr.cz

Abstract. The paper presents high-level modelling and formal analy-
sis and verification on an FPGA-based multigigabit network monitoring
system called Scampi. UPPAAL was applied in this work to establish some
correctness and throughput results on a model intentionally built using
patterns reusable in other similar projects. Some initial experiments with
parametric analysis using TREX were performed too.

1 Introduction

Implementation of network components in hardware is a trend in advanced high-
speed network technologies which applies also for the network monitor and
analyser Scampi developed within the Liberouter project [4] that we consider
here. The Scampi analyser is implemented in FPGA on a special add-on card.
FPGA-based hardware provides a similar functionality of a system as software
implemented on general microprocessors. However, in comparison to a software
solution, programmable hardware is very fast—it allows Scampi to communicate
in multiples of gigabits per second.

In the paper (and its full version [3]), we discuss our experience from high-
level modelling and formal analysis and verification of certain important correct-
ness and throughput properties of Scampi. Our analysis of the system started
with a preliminary manual analysis, which we do not discuss here, and then con-
tinued by an application of automated formal analysis and verification methods.
We divide the model of Scampi we used for automated formal analysis and verifi-
cation into three kinds of components: a model of the environment (generators),
a model of buffers (queues, channels), and a model of executive units. We show
how the different model components may be constructed and especially in the
case of generators and buffers, we obtain general templates that may be reused
in different models of systems of the considered kind. Next, we discuss the prop-
erties we handled by automated formal analysis and verification using UPPAAL
[5] and—in some initial attempts for a parametric analysis—TREX [1].

2 The Design of Scampi

Scampi is a network adapter working at the speed of 10 Gbps. The system
consists of several components—input buffers, preprocessing units (a header field
extractor—HFE), and searching units (a lookup processor—LUP and processing
units—PU). The Scampi adapter reads data from one input port and distributes
them into four independent paths working in parallel. An IP packet is processed



by an HFE unit at first where the TP header is translated into a unified header

containing adjusted data like the sourc

e/destination IP address, MAC address,

port number, VLAN tag, etc. Then, the unified header is processed by a lookup

processor, see Fig. 1, where

TCAM

it is classified accord-

SSRAM ing to some pre-defined

UHFIFO

CAM

| ‘/‘:
. Block

UHFIFO T

UHFIFO

bt

Fig. 1. The structure of the Lookup

1

" (I

; RFIFO

il
RFIFO

[l
RFIFO

rules. Searching of the
LUP consists of packet
matching (parallel search-
ing) encoded into a TCAM
memory (Content Address
Memory) and of addi-
tional sequential search-
ing in an SSRAM memory
performed by PU.

The results give us in-
formation what to do with
the packet—e.g., to incre-
ment the number of dan-
gerous packets found, to
forward the packet to the

MX

Processor

software layer over Scampi, to broadcast the packet, or to simply release the

packet from the Scampi system.

3 Modelling Scampi

We now sketch models of several components of Scampi important for its cor-
rectness and throughput analysis—their detailed description can be found in [3].

In our approach, we recognise three
basic types of components that occur
in some form in many complex sys-
tems: (i) waiting FIFO queues (buffers,
channels)—deterministic, stochastic, or
non-deterministic; lossy queues, de-
layed queues, etc., (ii) exzecutive compo-
nents—multiplexers, processing units
(lookup processors, preprocessing units)
etc., and (iii) environment—generators
of incoming requests (packets) or out-
put units consuming the results.

Modelling Waiting Queues. A FIFO
queue is a typical abstract data struc-
ture that contains a sequence of stored
data. Here, we abstract away the con-
tent of the queue items and we concen-
trate only on the number of items in

empty
cnt—,y:=0 in?
out! cnt++,y:=0
cnt=1 and
y>=delay cnt<size—1
out! in?
cnt++
nonempty

cnt>1 and

’ y>=delay y<=max_delay
ent——,y:=0 cnt=size—1
ogt! in?
cnt++
y>=delay
full
y<=max_delay
in?

Q throwing

Fig. 2. A model of a delayed queue



the queue. FIFO queues are used to represent transmitting channels, interme-
diate buffers between a processing unit and a memory, etc. We can have lossy
queues where some data may be lost. There are delayed queues where data are
delayed. We can model bounded or unbounded queues, or we can also deal with
queues where a symbolic constant value—a parameter—defines the maximum
length of the queue. We try to model all these queues without expecting any
highly specialised features of the modelling language.

In Figure 2 there is a model of a delayed FIFO queue where every request
is guaranteed to be delayed at least delay time units before it is released, but
at maximum max_delay time units. The delayed queue is modelled using timed
automata. Transitions that release an element of the queue are augmented with
time constraints allowing to release an item only if the y > delay guard is
satisfied ensuring the lower bound on the delay. The upper bound is ensured by
the y < mazx_delay invariants of the appropriate states. This pattern of a waiting
queue was applied to model four UHFIFO queues and four RFIFO queues of the
Scampi system working in parallel.

Modelling Executive Components. While creating a model, one often has
to reflect the goal of the verification. In our case, we are interested in timing
of the components. If executive components have an accurate timing plan, we
distinguish two kinds of states in the model. The first is an urgent state that we
use for observers. The second type is a state that models delays of the system.
The latter kind of a state has an incoming transition resetting a clock (¢ :=
0), an invariant that defines a time constraint over the clock (¢ < delay), and
an outgoing transition constrained by a condition on the clock (t = delay).
Using these principles, we modelled the TCAM memory, PU, and multiplexer
components of the LUP.

We are interested in the minimum guaranteed throughput of the system
which can be calculated from the size S of an incoming packet in bits—we take

the minimum possible size which is the worst

cnt < max

cnt = max &&
t>delay/ts

slow

Fig.3. A timed automaton MX

for throughput checking

cnt = max && case in the given setting, the average delay

t= t<=delay/ts D of the rule matching process in time slots
ont =0 for the worst possible scenario, and the size
out? cnt++ T of a time slot in seconds: throughput =

S/(D % T). We approximate the average de-
lay for the worst case from the worst delay
possible for transmitting x results (a user
chosen, reasonably large value). To compute
the worst delay for x results, we can use
a counter of outgoing results and a clock.
When the counter reaches x, the system fires
a transition to an observer state (the slow
state in Fig. 3) provided the clock value is
greater than the allowed delay. The analysis

of the throughput is then based on manually finding the minimum value of the
delay (by running model checking several times) such that the system does not
reach slow.



4 Verified Properties

Verification by UPPAAL. Let us now mention a few examples of properties
(written in CTL) that we verified over the above presented models—more can
be found in [3]: (i) A O - deadlock—mo deadlock is possible in the system. (ii)
A0 —(RFIFOO.full Vv RFIFOl.full Vv RFIFO2.full v RFIFO3.full)—
this property holds even if the RFIFO size is 2. It means that RFIFO can be
replaced by a one-place buffer. We can use a similar property on other queues
and see whether some data is thrown away. (iii) A0 — M X.slow—this property
expresses the throughput checking mentioned above. The property is satisfied
when the delay for 1000 counted results is set at least to 16000 time slots (the
average delay for the worst case is 16 time slots). Now, we can calculate the
minimum system throughput (from the smallest supported packets—64 bytes)
caused by the Lookup Processor: (648 bits)/(16%20x10~% seconds) = 1.6 Gbps.

Parametric verification by TREX. Parametric verification is a technique
that can help one to discover values of the parameters of the system that satisfy
certain pre-defined constraints and cause the system to behave in a certain way.
Here, we are interested in the length of buffers preventing a buffer overflow and
in an optimal timing of the system maximizing the throughput of the system.
At first, we used a similar model as for UPPAAL for which the analysis did not
finish. So, we started to go from the simple building blocks of the system.

We created a simple parametric model of the FIFO queue with three param-
eters: the maximal length of the queue F'IFOsize, the rate of incoming request
uh_time, and the rate of reading data from the queue read_time. At first, we asked
what values the buffer UHFIFO overflows for. We get the following results:
If uh_time > read_time, the queue never overflows, and the length of the
buffer is not important. If uh_time < read_time, the analysis does not finish.
After setting the initial size of the queue FIFOsize = 3, we found that the
buffer overflows if 4 x read_time = uh_time. Then, we asked how many packets
are accepted until the first one is dropped.

In the future, we plan to apply TREX to more specific parts of the Scampi
system abstracted in a suitable way and we also intend to experiment with
alternative (perhaps newly developed or improved) symbolic representations in
TREX (e.g., based on parameterized intervals).

Acknowledgements. The work was supported by the FP5 projects No. IST-
2001-32603 and IST-2001-32404, the CESNET activity “Programmable hard-
ware”, and the Czech Grant Agency project No. 102/04/0780.

References

1. A. Bouajjani, A. Collomb-Annichini, and M. Sighireanu. TReX: A tool for Reachability
Analysis of Complex Systems. In Proc. of CAV’01, LNCS 2102, 2001. Springer-Verlag.

2. J. Holetek, T. Kratochvila, V. Rehdk, D. Safrének, and P. Simecek. How to Formalize
FPGA Hardware Design. Technical Report 4/2004, CESNET, October 2004.

3. P. Matousek, A. Smrcka, and T. Vojnar. High-Level Modeling, Analysis, and Verification
of Scampi2. Technical report, CESNET, 2005. To appear.

4. J. Novotny, O. Fucik, and D. Antos. Project of IPv6 Router with FPGA Hardware Accel-
erator. In Proc. of FPL’03, LNCS 2778, 2003. Springer-Verlag.

5. P. Pettersson and K.G. Larsen. UppaAL2k. Bulletin of the FEuropean Association for
Theoretical Computer Science, 70:40-44, February 2000.



