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Abstract. We propose a heuristic-based method for discovering induc-
tive invariants in the parameterized verification of safety properties. The
promise of the method stems from powerful heuristics we have identi-
fied for verifying the cache coherence of directory based protocols. The
heuristics are based on syntactic analysis of counterexamples generated
during verification, combined with simple static analysis of the predicates
involved in the counterexamples to construct and refine inductive invari-
ants. The heuristics were effective in filtering irrelevant predicates as well
as keeping the sizes of the generated inductive invariants small. Contribu-
tions are: (i) the method is an efficient strategy for discovering inductive
invariants for practical verification; (ii) the heuristics scaled smoothly
from two small to one large cache coherence protocol (of complexity simi-
lar to commercial cache coherence protocols); (iii) the heuristics generate
relevant auxiliary invariants which are easily verifiable in few seconds;
and (iv) the method does not depend on special verification frameworks
and so can be adapted for other verification tools. The case studies in-
clude German, FLASH, and a new protocol called German-Ring. The
properties verified include mutual exclusion and data consistency.

1 Introduction

Parameterized verification methods—which verify systems comprised of multi-
ple identical components for an arbitrary number of these components—are of
growing importance in formal verification. Most parameterized verification tech-
niques for safety properties (such as cache coherence) are based on discovering
inductive invariants. Despite the large amount of research conducted in this area,
there is no general-purpose inductive invariant discovery method that has been
shown to be uniformly good across a spectrum of examples. High-level descrip-
tions of large systems contain enough state variables that even after applying
common reduction strategies, such as symmetry reduction, abstraction, and effi-
cient fixpoint computation algorithms, the system is far too large for automated
verification methods—let alone parameterized methods. Practical verification
therefore demands some kind of symbiotic interaction between the user and the
automated verification machinery to construct invariants that imply the safety
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property. Such a verification method should not only help solve the verification
problem but also help open a dialog between verification engineers and system
designers who may exchange their knowledge about important system invariants.

In this paper, we discuss heuristics that have allowed us to generate invari-
ants that are just strong enough to verify safety properties of cache coherence
protocols. We build our heuristics in the context of a decision procedure for the
equality fragment of first order logic with uninterpreted functions (EUF) [1].
The goal of these heuristics is to (i) cut down the number of invariants that are
needed for verifying the proof goal, and (ii) filter out irrelevant facts (predicates)
in the formation of inductive invariants. Our starting point is a concrete model
of the system and a safety property to be verified. We start the system from an
unconstrained state and symbolically simulate it for a single step. We then use
an EUF decision procedure to check that the next state obtained from symbolic
simulation satisfies the safety property, assuming the hypothesis that the start
state satisfies it. Naturally, we are bound to get a failure case as we started from
an unconstrained start state. We then construct invariants based on syntactic
analysis of such failure cases obtained during the verification process. The syn-
tactic analysis of the counterexamples is conceptually simple and can be easily
automated. We deploy efficient filtering heuristics to minimize the predicates
that make up the invariants. These heuristics, although context-dependent, are
a kind of static analysis and may be done (only once) before the verification pro-
cess starts. The heuristics are intuitive from a designer’s point of view and can
be automated for any cache coherence protocol. The idea behind the generated
invariants is to constrain the start state to be within the set of reachable states
such that the safety property holds. The process stops when the safety property
and all the invariants are proved. Note that our method is primarily intended
for verifying the safety property with respect to a model that has been thor-
oughly debugged through simulation as well as perhaps even formally verified
for small non-parametric instances of, say, 3-4 nodes. This fact justifies why a
user would react to a counterexample by strengthening the invariant—and not
suspecting that the model is incoherent. This mindset as well as division of labor
in achieving parametric verification is nothing new.

On simple but realistic examples, our heuristics worked without any adapta-
tions; in other cases, the method still offered a structured approach to invariant
discovery that had to be adapted only to a mild degree in an example-specific
manner. In all three of our case studies1—namely the original German proto-
col [2], the FLASH protocol, and the high-level version of a completely new in-
dustrial protocol (which we call German-Ring) used in the IBM z990 multibook
microprocessor complex [3]—our approach resulted in modestly sized inductive
invariants.

We used the UCLID tool [4] for our experiments. UCLID provides a reasonably
efficient collection of decision procedures for the logic of Equality with Uninter-

1 The proof scripts, UCLID reference models, and the first author’s MS thesis are avail-
able at http://www.cs.utah.edu/formal verification/charme05 pandav. Please
contact the first author for details.



preted Functions (EUF). On our examples, UCLID’s runtime was under a few
seconds. Our method relies on UCLID’s ability to generate concrete counterex-
amples. These counterexamples are analyzed in order to come up with invariant
strengthenings. Our key contributions are in terms of the manner in which we
analyze counterexamples and discover invariant strengthenings. We believe our
methods can be based on other counterexample-generating decision procedures
for sufficiently expressive fragments of first-order logic.

1.1 Related Work

Since the work of German [5], if not before, there has been a significant amount
of research on automating the discovery of invariants, see [6–9] for a (non-
exhaustive) list of efforts. In spite of the sophistication of these techniques, the
process of finding invariants is still mostly manual. Also these methods tend to
discover far too many invariants (equivalent to one large invariant with many
conjuncts), and there is currently no good way of deciding which ones are useful.

Predicate abstraction based methods [10, 11] to construct inductive invari-
ants automatically require complex quantified predicates. Das used predicate
abstraction for verifying mutual exclusion for FLASH [12], albeit on a simpler
model. Automated predicate discovery [10] tends to discover large predicates,
and so cannot be applied for verifying large protocols like FLASH. Lahiri [13]
developed a theory of automatically discovering indexed predicates to be used
to construct inductive invariants; predicates are iteratively discovered by com-
puting weakest preconditions, which can generate many superfluous predicates
at each stage. It requires manual filtering to get rid of useless predicates (which
needs human expertise); also, for large protocols like FLASH, the iteration may
fail to converge to a fixpoint. The method of invisible invariants [14] is a col-
lection of automated heuristics to construct auxiliary invariants. The heuristics
compute the reachable set of states for a finite instance of the system and then
generalize to construct an assertion, which is checked for inductiveness. How-
ever, the method is only known to work on a restricted class of systems, to
which protocols like FLASH do not belong.

For the FLASH protocol, there have been few previous attempts at discov-
ering inductive invariants for the data consistency property; namely, Park [15]
in the setting of the PVS theorem prover and Chou et.al. [16] in the setting of
Murphi. Park also proved sequential consistency property for FLASH (delayed
mode). Efficient abstraction-based techniques for parameterized verification have
been proposed in [16]. These techniques are suggested by a theory based on
simulation proofs, by which one can justifiably use “non-interference lemmas”,
generated from counter examples, to refine the abstract model and prove the
safety property. The lemmas are generated from counter example analysis, but
the analysis is not syntax-driven, as in our approach. McMillan used compo-
sitional model checking for the safety and liveness property verification of the
FLASH protocol [17]. The Cadence SMV tool has various built-in abstractions
and symmetry reductions to reduce an infinite state system to finite state, which
is then model checked. The user has to provide auxiliary lemmas, though few,



and has to decompose the proof to be discharged by symbolic model checking.
This requires significant human skill and knowledge for proving conjectures and
driving the tool. In our method, we do not need such human intervention in
using the tool. Rather, expertise is needed in picking relevant predicates for
our filtering heuristics. Fortunately, such intervention occurs at the higher level
of protocol design, which can help designers in not only understanding their
protocols better, but also in communicating insights at that level to designers.
In contrast to proofs done in the context of specialized tools such as Cadence
SMV, our method can be employed in the context of more general-purpose tools
such as UCLID or CVC-Lite that have EUF decision procedures which generate
concrete counterexamples. Emerson and Kahlon [18] verified the German pro-
tocol by reducing it to a snoopy protocol and then invoking their proposition
to automatically verify the reduced snoopy protocol. The reduction is manually
performed and requires expertise. It is not clear whether such a method can be
applied to FLASH. Recently, Bingham and Hu [19] proposed a new finite-state
symbolic model checking algorithm for safety property verification on a broad
class of infinite-state transition systems. They presented a method to reduce a
conjunctively guarded protocol to a broadcast protocol on which their algorithm
can be applied. They automatically verified German’s protocol for data consis-
tency within a minute. It is not clear, however, whether such a method can be
scaled to work on large protocols like FLASH.

2 Overview of the Invariant Discovery Process

We model a protocol with a set of state variables V. The values assigned to
state variables characterize the state of the system. We also use a set of input
variables I, which can be set to arbitrary values on each step of operation. The
value assigned to each input variable is nondeterministically chosen from the
domain, thus modeling the concurrent nature of the protocol.

A protocol is formalized by M = 〈V, θ,∆〉, a rule-based state machine, where
• V is a set of state variables. A state of the system M provides a type-consistent
interpretation of the system variables V. Let Σ denote the set of states over V.
• θ is an boolean EUF formula describing the set of initial states I ⊆ Σ.
• ∆ is a set of nondeterministic rules describing the transition relation R ⊆ Σ2.
Syntactically, each rule δ ∈ ∆ can be expressed as: g → a, where g is a predicate
on state variables and input variables and a is a next state function (action)
expression. If g holds, a is executed: this assigns next state values to a subset W
of state variables; any other state variables are unchanged when the transition
is taken. If the guards of multiple rules hold at the same time, just one of the
rules is picked up nondeterministically for execution.

2.1 Syntax based heuristics

For all cache coherence protocols that we are aware of—at least a dozen, includ-
ing industrial ones—cache coherence can be stated as the safety property

∀ i, j. ((i 6= j) ∧ cache(i) = exclusive) ⇒ cache(j) 6= exclusive



The data consistency property of coherence protocols and the invariants we
generate also enjoy a syntactically similar shape. Thus our method focuses on
properties of the form

P : ∀X .A(X ) ⇒ C(X ) (2.1)

where X is the set of index variables and A and C are the antecedent and
consequent of the formula, expressed using boolean connectives.

Let P = SP ∧
∧

i
Qi be the conjunction of the safety property SP and the

invariants Qi we generate. We can also treat P as a set of candidate invariants.
Initially P = SP , as we start with empty set of auxiliary invariants. Let D be
the decision procedure for the logic of EUF. Our method of inductive invariant
checking works as follows:

1 Pick a property P from the set P for verification 2. Use the decision procedure
D to verify that P holds for the initial state of the system.

2 Perform a one-step symbolic simulation of the system, moving from a general
symbolic state s to a successor state t according to the transition relation.
Use the decision procedure D to verify that the property P holds in the
successor state t, assuming the conjunction of invariants P holds in start
state s. We verify a formula of the form P(s) ⇒ P (t). If the result is true,
we are done with the verification of property P . Otherwise, there are three
possible failure cases, determined by the way in which the property can hold
in the first state s and not hold in the second state t. The failure case is
selected arbitrarily by the decision procedure.

3 Synthesize new formula Q from syntactic analysis and heuristics for the
corresponding failure case. Add it to the system i.e., P ′ = P ∧ Q; go to
(2). The intuition behind the new formula is to introduce a constraint that
would not only get rid of the absurd failure (typically a scenario from an
unreachable state space), but also trim the search space just enough to prove
the property.

We iterate till all the properties in P are proved to be inductive.
A failure (or a counterexample) is a tuple 〈σs, δ′, σt〉 where σs, σt gives the

start and next state interpretation for the system variables in the start and the
next states respectively, and δ′ is the (instantiated) transition rule. We say an
interpretation σ satisfies a boolean formula F (denoted as σ |= F ) if F is true
under the interpretation σ. The syntactic evaluation of a formula F under an
interpretation σ is denoted by 〈F 〉σ. Before we discuss the analysis of each failure
case, a few definitions that we will need in the discussion:

Given an interpretation σ and a boolean formula F , the satisfying core of
F under interpretation σ (SC(F, σ)) returns a maximal subformula, F ′, of F

such that 〈F ′〉σ ∧ (F ′ ⇒ F ). The maximal subformula can be easily computed
by traversing the syntax tree of F in a top-down manner. For example, if F =

2 We start with the safety property SP. Then select the property in the order in which
it is generated to be a potential invariant.



a1∨a2 . . .∨an then SC(F, σ) =
∨

i
{ai|〈ai〉σ = true}. The intuition is to capture

as much information from the formula F provided by the interpretation σ that
satisfies F .

Similarly, we define the violating core of a formula F under interpretation σ

to be a maximal subformula, F ′ such that ¬〈F ′〉σ ∧ (¬F ′ ⇒ ¬F ).
The action core of a variable v for the transition rule δ : g → a under the

interpretation σ is the conjunction of the cores of the guard and the conditions
in the nested ITE expression that assigns the next state value in the action
a. Before we formally define the action core, we first define the set of boolean
conditions in the nested ITE expression that leads to the next state assignment
of v. Let

C(a(v)) =

{

{c} ∪ C(t) ∪ C(e) if a(v) = ITE(c, t, e)
{} otherwise

We divide the above set into two, one set contains conditions that are satis-
fied in the ITE expression (”then conditions”) and other that are not (”else
conditions”). Let

I(a(v)) = {c ∈ C(a(v))|〈c〉σ = true}
J(a(v)) = {c ∈ C(a(v))|〈c〉σ = false}

Finally, the action core of a variable v for the rule δ : g → a under the interpre-
tation σ is given by:

AC(v, δ, σ) = SC(g, σ)
∧

∧

c∈I(a(v)) SC(c, σ)

∧
∧

c∈J(a(v)) ¬VC (c, σ)

The action core helps determine the predicates that were responsible for the next
state assignment to state variable v by executing the transition rule δ under the
interpretation σ. Since the guard g of the rule δ executed has to be satisfied, the
satisfying core SC(g, σ) is always included in the action core computation. Then,
if the assignment expression for state variable v is a nested ITE we also conjunct
the satisfying or the violating core of the boolean conditions in the nested ITE
that were satisfied or violated respectively for reaching the assignment.
Now we discuss each failure case analysis:

Failure case I (σs |= A ∧ σs |= C), (σt |= A ∧ σt 6|= C)
For this case, it is clear that the state transition rule δ′ in question has
assigned some of the variables in the consequent C leading to the failure.
Let SC be the set of such state variables. For each state variable v ∈ SC, we
compute the action core, AC(v, δ′, σs). Conjoin these action cores to obtain
a formula G′ =

∧

v∈SC
AC(v, δ′, σs). Let A′ = SC(A, σs) be the satisfying

core of the antecedent. The idea behind the various cores is to minimize
the predicates that make up our assertions. At the end of this process, we
generate the following assertion

A′ ⇒ ¬G′ (2.2)



The idea behind this formula is to disallow the conditions that lead to the
violation of the consequent, if an over-approximation of the antecedent holds.

Failure case II (σs 6|= A ∧ σs 6|= C), (σt |= A ∧ σt 6|= C)
In this case, the transition rule has assigned some variable in A, since the
truth value of A went from false to true when going from σs to σt. However,
the failed consequent is just propagated from one state to other. Thus, we
seek to suppress those conditions in the guard and action expressions of
the rule δ′ that led to the next state assignment satisfying the antecedent.
We first determine the violating subformula of C, C′ = V C(C, σs) (note
that σs 6|= C′, means σs |= ¬C′). Let SA be the set of variables in the
antecedent that got assigned. Again as in failure-case I, for each variable
v ∈ SA we compute the action core AC(v, δ′, σs). We then compute the
precondition G′ =

∧

v∈SA
AC(v, δ′, σs). This was the condition that fired the

counterexample rule δ′ and led to the next state assignment violating the
property of interest. We therefore generate the following assertion to deal
with failure case II:

¬C′ ⇒ ¬G′ (2.3)

The basic idea is to not allow a rule propagate the failed consequent to the
next state.

Failure case III (σs 6|= A ∧ σs |= C), (σt |= A ∧ σt 6|= C)
This case is the rarest, the main reason being that it arises for protocols
that are buggy.3 The transition rule δ′ has assigned values to state variables
present in both the antecedent and consequent, leading to violation. Under
no circumstances, should any transition rule assign values conflicting with
the invariance property. This failure case helped us identify modeling errors
in our experimental studies.

2.2 Filtering Heuristics

In contrast to the failure analysis above, the heuristics we now discuss are
context-dependent and can be applied only on cache coherence protocols. The
motivation for them is that the major component of G′ in the assertions 2.2,
2.3, consists of predicates from the guard g′. Large cache coherence protocols
like FLASH have guards with many predicates: retaining all predicates from the
guard g′ in the assertion would be impractical. To remedy this, we filter irrele-
vant predicates from a guard. We came up with the filtering heuristics based on
the empirical observations we made from our case studies.

Rules in cache coherence protocols can be categorized into two classes: P-
rules, which are initiated by the requesting processor (home or remote); and
N-rules, which are initiated by a message from the network. Messages in the
network can be classified, as either requests or grants. A request message typi-
cally is from a caching node to the home node (such as Get and GetX in FLASH

3 Parameterized verification is an expensive process and typically should be attempted
only after finite-state model-checking has extensively ferreted out bugs.



Rule (R) Msg Type (m) Client Type (c) Filter: pick predicates on

P-rule request home local variables

remote directory variables

N-rule request home (1) directory variables, (2) environment vari-

ables

remote channel variables describing the (1) type (2)
sender of the msg

grant — channel variables describing the msg type

Table 1. Filtering Heuristics: The numbers in the last column refers to the order
in which the predicates must be picked. For example, if the counterexample has a N-
rule of request msg type being processed by the home, then we construct assertion by
picking predicates on directory variables first. If we are not able to prove this assertion
inductive, then we add the predicates on environment variables to the assertion and
check for inductiveness.

or req shared and req exclusive in German). A grant message is a message typi-
cally sent by home node to a remote node (such as Put and PutX in FLASH or
grant shared and grant exclusive in German). All non-request messages, which
are part of a pending transaction, such as invalidations, invalidation acknowl-
edgments, etc. can be regarded as grants.

We also classify the state variables of cache coherence protocols in four types:
local variables — describing the state of a caching agent such as cache_state,
cache_data, . . . ; directory variables — such as dir dirty, excl granted,

. . . ; channel variables — describing the shared communication channels, such
as ch2, unet_src, . . . ; and environment variables — explaining the state of the
transaction or global state. For example, the variable current command in the
German protocol explains the command that is currently being processed, and
the variable some others left in FLASH which determines whether there are
any shared copies.

Our filtering heuristics are based on the above classifications, and are sum-
marized in Table 1. The predicates filtered by the heuristics are characterized by
the type of the state variables on which they are expressed. We tabulate these
context-dependent filtering heuristics based on our empirical observations. We
found them to be very efficient in constructing invariants. Let us look at an
instance how we apply the filtering heuristics. In German, rule5 treats what
happens when the home nodes receives a inv_ack message from a remote node.
The guard of the rule is:

(home current command 6= empty) ∧ (ch2(i) = invalidate ack)

This rule is a N-rule with message type grant. According to Table 1 one must
pick predicates on channel variables describing the message type. Thus the rel-
evant predicate from this guard is (ch2(i) = invalidate ack) and we need not
consider the predicate (home current command 6= empty).

As can be seen, the filtering heuristics are a kind of static analysis. The
tabular form of filtering heuristics (see Table 1) has resemblance to the tables



that designers use for design cache coherence protocols. Those tables explain the
action taken by a processing node for different protocol scenarios. We just order
the state variables involved and choose predicates on them from the guard of the
counterexample rule. So, these heuristics can be easily developed upon even by
the designer which can not only aid the verification process but also encourage
co-ordination between a verification expert and a designer in industrial setting.

Other Heuristics Apart from the above heuristics for filtering predicates from
the guard, other simple techniques can be useful:

Specialization: In cache coherence protocols, the home node has a distin-
guished status; therefore, if the counterexample deals with the home node, then
the new invariant should not be generalized for all nodes and is applicable only
for the home node.

Consistency Requirement: Sometimes, the right hand side of an assignment
to a state variable is another variable. Imagine the property to be verified has a
predicate p = r in the consequent, where p, r are term variables. This is common
in data consistency properties. Suppose also that a(p) = q where a is the action
function for the counterexample rule δ and q is a variable. In such cases, we
cannot rely solely on boolean conditions in the guard and ITEs of the action
to construct invariants, as the problem lies in the requirement that the state
variable q has to be consistent too. The invariant should include a predicate on
the consistency of this value. For example, if p and q are term variables and
the consequent of the property has the predicate p = i, then we construct the
invariant of the form g′ ⇒ (q = i).

3 A Detailed Illustration on the German Protocol

The ‘German’ directory based protocol was proposed as a verification bench-
mark by Steven German [2], and it provides a good illustration of our method.
Our UCLID model of the protocol extends that developed by Lahiri [20] with
a datapath description obtained from the Murphi model in [16]; the model is
available from our website. For lack of space, and since the German protocol has
been a popular example [16, 14, 13, 18, 11], we do not seek to explain the protocol
here.

Coherence property verification To start, let the coherence property

P : ∀ i, j. ((i 6= j) ∧ cache(i) = exclusive) ⇒ cache(j) = invalid

be symbolically simulated for one step as described in the previous section.
Counterexample 1: The decision procedure returns a counterexample in

which the start state satisfies coherence (node i is invalid while j is exclu-
sive). The client id cid chosen for execution is the node i, which receives a
grant_exclusive message from the home node (“home” hereafter). The rule
chosen for execution is rule8, which changes the cache state of cid to exclusive
upon receiving this message. This violates coherence after rule8 is executed.



Analysis: The start state doesn’t satisfy both the antecedent of P (since
cache(i) = invalid) and the consequent (since cache(j) = exclusive): thus P

is vacuously satisfied. The rule assigns next state value to cache(cid) such
that the antecedent holds in the next state and the violated consequent just
propagates itself from start state to next state. Thus this is a class II counterex-
ample as defined in Section 2.1. The boolean guard of the rule (obtained after
beta-reduction) is ch2(cid) = grant ex. We now let the syntax guide us in con-
structing a new assertion. First, we compute the violated core of the consequent,
which in this case is the consequent itself. So C′ = (cache(j) = exclusive). Then
we compute the action core for the state variable, cache, which is the only state
variable in the antecedent updated in the action of the counterexample rule.
Thus G′ = (ch2(cid) = grant ex ). We now need to eliminate the input variable
cid from G′. Since the counterexample gives the same interpretation to both i

and cid, cid may be replaced by i. Thus the constructed auxiliary assertion is,
according to Formula 2.3:

I1 : ∀ i, j. cache(j) 6= invalid ⇒ ch2(i) 6= grant ex

Filtering heuristics do not apply since G′ has just a single predicate. With I1 in
the system to prune the search space, we again check P for correctness.

Counterexample 2: We now obtain a new counterexample: node i is in
exclusive state in the start state (thus satisfying the antecedent of P ), while
node j is in invalid state (thus satisfying the consequent of P ). Thus P holds
in the start state. We also have node j receiving a grant sh message from home.
The client id cid chosen for execution is the node j, and the rule is rule7. This
rule changes the cache state of the client to shared, if the client has received a
shared grant from home. Thus we have node j in shared state while node i has
exclusive rights in the next state, which violates P .

Analysis: This counterexample is of type I. The state variable cache appears
in the consequent and gets updated by the action. We compute the action core for
cache, which is the guard ch2(cid) = grant sh. The assertion is built according
to the formula 2.2; replacing the input variable cid by its corresponding index
variable i. The constructed auxiliary assertion is

I2 : ∀ i, j. cache(i) = exclusive ⇒ ch2(j) 6= grant sh

With the auxiliary assertions I1 and I2 in the system, the property P is success-
fully proved. Note that both invariants I1 and I2 were constructed by following
the recipe suggested in the analysis. We did not need any protocol dependent
heuristics or filterings, as the involved guards were of small sizes. Of course, the
auxiliary assertions remain to be proved.

Filtering Heuristics Now we discuss an application of the filtering heuristics.
While following our approach in verifying assertion I2, we obtained a counterex-
ample in an application of rule9. The start state has node i in exclusive state
and node j is the current_client, satisfying the guard of the transition rule. In
the next state the client j has been granted grant_shared message by the home



node, as mandated by rule9, but node i is still in exclusive state, thus violating
assertion I2. This counterexample is of type I. The rule describes home granting
shared access to a client, if the client has requested shared access, home has not
granted exclusive access to any other node, and the response message channel is
empty. The calculated precondition G′

current command = req sh ∧ ¬exclusive granted ∧ ch2(current client) = empty

has three boolean predicates. Having all of them in the refined assertion would
perhaps be more than needed to construct an inductive version of I2. Therefore,
we use our filtering heuristics to prune G′. The counterexample rule, rule9, is
an N-rule of request type being processed by the home node. According to
the heuristics suggested for N-rule request (see Table 1), therefore, the pred-
icate on the directory variable, exclusive granted is chosen, as it is the most
crucial one in decision making. The predicate current_command=req_sh, which
explains the request message, is irrelevant since the concurrent nature of a cache
coherence protocol should allow request messages any time while the system
is running. Also, the predicate checking the emptiness of the shared channel,
ch2(current_client)=empty, doesn’t yield a global constraint. Therefore,the
strengthened assertion I2 is:

I2.1 : ∀ i, j.cache(i) = exclusive ⇒ ch2(j) 6= grant sh ∧ exclusive granted

After a few further steps, we arrive at the final version of I2.1 (call it I2.n):

I2.n : ∀ i, j. ((i 6= j) ∧ cache(i) = exclusive) ⇒
(

ch2(j) 6= grant sh ∧ exclusive granted ∧
ch3(j) 6= inv ack ∧ ch2(j) 6= inv ∧ ¬inv list(j) ∧ ¬sh list(j)

)

The structure of the formula to be synthesized into an inductive invariant can
be easily mechanized based on the case analysis of counterexamples. We blindly
followed the above counterexample based analysis and the filtering heuristics to
construct all the auxiliary invariants for verifying the coherence property.

Data Consistency Verification The datapath property is

∀i. ((¬exclusive granted ⇒ (memdata = auxdata)) ∧ (3.1)

((cache(i) 6= invalid) ⇒ (cache data(i) = auxdata)))

To verify data consistency, we needed just two additional invariants beyond those
discovered to verify the coherence property. Both the invariants were generated
from the counterexamples that violated the consistency requirement. We will
examine one such invariant. When we ran UCLID to check 3.1, we obtained a
counterexample where the start state has node i receiving grant ex message from
home, but the data variable of the channel ch2 carrying the message had a value
different from auxdata. The transition rule was rule8. The action of the rule
assigns cache data for node i the value possessed by ch2 data, which is not
auxdata, thus violating data consistency. So, following the consistency require-
ment heuristic (see Section 2.2), we invent the following auxiliary invariant:

D1 := ∀ i. (ch2(i) = grant ex) ⇒ (ch2 data(i) = auxdata) .



4 Summary of Verifications

Besides the German protocol, we have also applied our method to the datap-
ath and controlpath verification of FLASH and the controlpath verification of
German-Ring. We now briefly summarize how our method performed on all the
verifications.

German We needed a total of 9 invariants to completely verify the coherence
property of German. It took us a day to come up with the invariants. The total
time taken by UCLID to prove the properties was 2.16s.

The earlier manual proof by Lahiri needed 29 invariants and took 8 hours for
UCLID to finish the verification. Lahiri also applied an indexed predicate dis-
covery method [13] to construct inductive invariants for the German protocol.
He derived a single indexed invariant, which required a manually provided pred-
icate on the auxiliary variable last_granted. Note that auxiliary variables do
not participate in decision making and so such predicates cannot be discovered,
unless they are part of the property to be proven. For that reason, our invariants
do not depend on auxiliary variables. Lahiri also generated a dual indexed induc-
tive invariant automatically. However, this invariant had 28 predicates, against
just 13 needed for constructing our invariants (most of them dual indexed), and
took 2813 seconds of UCLID time, as against 2.16 seconds needed for ours.

We also verified data consistency for German; it required two additional
invariants. It took couple of hours to modify the model to include datapath
variables and finish the verification.

FLASH The FLASH model was translated from the SMV model of McMil-
lan [17]. We first verified coherence: no two nodes can be in the exclusive state.
Surprisingly, no predicates on the directory were needed to prove the safety
property except dir_dirty; this contrasts with the German coherence property
verification which pulled out almost the entire logic of the protocol. This clearly
points out that it is a waste of time and effort to generate invariants irrelevant
to the proof of the safety property. We also verified data consistency for FLASH.
New data variables for the cache, history variables, and auxiliary variables were
introduced. These variables do not appear in the guards of rules; however, the
data consistency property had predicates on these variables, so our method was
effective. Certain counterexamples showed scenarios that seem hard to humanly
imagine. For example, FLASH allows parallel operations like replacement to
occur while another critical transaction is pending. These operations affect im-
portant directory variables, and so invariants involving these directory variables
had to be strengthened. The filtering heuristics were very highly used in con-
structing the invariants. Many of the counterexamples had rules of N -rule grant
type processed by a remote node, especially involving the scenario where inval-
idation acknowledgements are pending. Invariants involving directory variables
such as shlist (keeps track of the nodes having a shared copy of cacheline) and
real (keeps track of number of invalidations sent in the system) were difficult
to construct as they needed to be precisely strengthened.



It took just 7 invariants [21] to prove the mutex property for FLASH, con-
taining just 9 predicates and UCLID took 4.71s to complete the verification.
Surprisingly, none of these invariants needed predicates on directory variables
other than dir_dirty, thus explaining the fact that we use only the information
that would be just enough to imply the safety property. An additional 15 invari-
ants were required to prove the consistency property and UCLID took 18.68s to
automatically verify them. This shows the difference in efforts and time needed
to verify different safety properties, and how our method efficiently adapts to
such verifications by saving tool processing time and human effort. These invari-
ants had predicates on almost all directory variables. Overall, it took us 3 days
to discover all the invariants needed to imply the data consistency property from
the counterexample guided discovery process.

German-Ring We applied our method to verify a high-level description of the
protocol used in the IBM z990 superscalar multiprocessor [3], provided to us by
Steven German. This is an unconventional protocol, where caches communicate
by sending messages on a bidirectional ring. The destination node for a message
in the ring is computed by arithmetic calculations using mod,× and ÷.

The invariants were constructed using just the counterexample analysis ex-
plained in subsection 2.1, without the need of filtering heuristics. Since the
UCLID language doesn’t support arithmetic operators like mod,×,÷ where the
arguments are variables, we could not model the ring topology of the proto-
col. Instead, we modeled an approximation in which nodes can send messages
arbitrarily to any node in the system. However, the rules behind message pass-
ing/processing and all state changes were completely modeled as in the high-level
specification of the German-Ring protocol. We were able to prove the coherency
property, no matter how the caches are arranged.

In the verification, our heuristics generated two invariants sufficient to verify
the safety property. It took us two days to complete the entire verification process
including modeling of the protocol and generating the invariants.

5 Automation

We now briefly explain how the syntactic analysis of counterexample and the
heuristics can be automated.

Automation Given an interpretation, the computation of satisfiability, vio-
lating and action cores can be easily automated. When a property fails, the
counterexample returned by a decision procedure is an assignment to variables
that are used in the system and property description. This assignment is the
interpretation that is used to decide to which failure case the counterexample
belongs. The corresponding transition rule is determined and the satisfiability
core of the guard is computed for the interpretation. Then we use our filter-
ing heuristics (this can be a manual process too) to filter the predicates from
the satisfying core formula of the guard. We would use this filtered formula to



construct the invariant. Depending on the failure case, the corresponding core
for the antecedent and consequent of the property is also computed. The action
core computation for the variables in the property that are assigned in the action
of the rule is also computed. Finally, the appropriate invariant is generated by
applying the formulas 2.2,2.3. All the steps in the computation, except perhaps
filtering heuristics, can be easily automated as they perform basic extraction
and manipulation of boolean formulas. Providing a system that automates these
steps and also provides a good interface for applying heuristics and backtracking
is useful future work.

How to detect over-strengthening? A crucial issue is how do we detect
whether we are over-strengthening the invariant or not. At present, we do not
have a concrete solution to this problem. We detect this in a very crude way
when we learn that we are picking the same predicates from the guard of the
transition rule involved in the counterexample that has already been used in
the invariant constructed so far. This signals that we are moving in circles and
should backtrack to the point where we can pick some other predicate suggested
by the priority ordering in filtering heuristics.

6 Conclusions

We have discussed new invariant generation techniques for the safety property
verification of cache coherence protocols, using a simple counterexample based
analysis. Our heuristics have been successfully applied to verify the mutual ex-
clusion and data consistency properties of the German and FLASH cache coher-
ence protocols. We were also pleasantly surprised at how effective they were on
the new German-Ring protocol. The invariants that our method generates are
sufficient but lean: just sufficient to prove the desired properties. Such invari-
ants typically offer sharper insights into the behavior of a system compared to
“flooding” the scene with too many invariants.

Industry level cache coherence protocols are too complicated for any current
formal verification system to handle automatically. Our heuristics can help tackle
this important problem by guiding manual deductive verification of such proto-
cols, and by being able to generate simple auxiliary invariants easily from the
counter example analysis. Our method is more general than previous approaches
that were often pursued in the context of special verification frameworks. In con-
trast, our method can be applied in the context of any decision procedure for
EUF logics that generate concrete counterexamples.

We have focused on constructing auxiliary invariants for safety property ver-
ification. We do not know whether such counterexample based analysis can be
adapted for liveness property verification. Some of the issues that could be ex-
plored in future work are: (1) almost all the steps in the counterexample analysis
and the heuristics can be automated; (2) it would be interesting to adapt our
methods to k-step inductive invariant checking of safety properties for cache
coherence protocols.
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7. A. Tiwari, H. Rueß, H. Säidi, and N. Shankar. A technique for invariant generation.

In Tiziana Margaria and Wang Yi, editors, TACAS’01, volume 2031 of LNCS, pages
113–127. Springer-Verlag, 2001.

8. N.Bjorner, A. Browne, and Z. Manna. Automatic generation of invariants and
intermediate assertions. Theor. Comput. Sci., 173(1):49–87, 1997.

9. S. Bensalem, Y. Lakhnech, and H. Säıdi. Powerful techniques for the auto-
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