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Abstract. Counterexample minimization tries to remove irrelevant vari-
ables from counterexamples, such that they are easier to be understood.
For the first time, we proposes a novel approach to minimize loop-like
and path-like counterexamples of ACTL properties. For a counterex-
ample s0 . . . sk, our algorithm tries to extract a succinct cube sequence
c0 . . . ck, such that paths run through c0 . . . ck are all valid counterex-
amples. Experimental result shows that our algorithm can significantly
minimize ACTL counterexamples. 1

1 Preliminaries

BDD contain two terminal nodes and a set of variable nodes. Attribute value(u)
is associated with terminal nodes u. Every variable node has two outgoing edges:
low(u) and high(u). A variable var(u) is associated with every node u.

Symbolic model checking with BDD is first proposed by K.McMillan [1],
which is implemented by procedure Check that takes a CTL formula and returns
BDD of those states that satisfy the formula.

Assume the state variable set of Kripke structure M = 〈S, I, T, L〉 is V =
{v0, . . . , vn}. A state s ∈ S can be seen as assignments to V , which is denoted
by s = {v0 ← b0, . . . , vn ← bn}, with bi ∈ {0, 1} are boolean constant. Assume
V ′ = {vi0 , . . . , vim} is a subset of V , then projection of s to V ′ is defined as

s|V ′ = {vi0 ← bi0 , . . . , vim ← bim} (1)

A state set S′ ⊆ S is a cube iff there exists V ′ = {vi0 , . . . , vim} ⊆ V and
{bi0 , . . . , bim}, such that S′ == {s| s|V ′ == {vi0 ← bi0 , . . . , vim ← bim}}

Assume state s is in state set S′, then c is a cube guided by s in S′ iff
s ∈ c ⊆ S′. We denote c by GuidedCube(S′, s), it can be computed as below.
Algorithm 1: Computing GuidedCube(S′, s)

1. Assume s = {v0 ← b0, . . . , vn ← bn}.
2. c = φ V ′ = φ are all empty set
3. cn=root node of BDD of S′
4. while(cn isn’t a terminal node)

(a) assume var(cn) is vi

(b) if(bi == 0) then cn = low(cn) else cn = high(cn)
(c) c = c ∪ {vi ← bi} V ′ = V ′ ∪ {vi}

5. GuidedCube(S′, s) = {s′| s′|V ′ == c}
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2 Minimizing Counterexample of ACTL Property

Existing approaches[2] can only deal with path-like counterexamples of invariant
AG f . For the first time, this paper proposes a novel approach to minimize loop-
like and path-like counterexamples of ACTL properties. Due to duality of ACTL
and ECTL, we will focus on minimizing witness of ECTL formula.

To make a witness s0 . . . sk more easy to be understood, some state variables
must be removed. So a minimized witness must be a cube sequence c0 . . . ck. We
define the criteria that it must satisfied.

Definition 1 (Criteria of Minimized Witness of ECTL Property). As-
sume s0 . . . sk is a witness of an ECTL property f . Cube sequence c0 . . . ck is the
minimized witness of s0 . . . sk iff

1. si ∈ ci(0 ≤ i ≤ k)
2. Every path s′0 . . . s′k that satisfy

∧
0≤i≤k s′i ∈ ci must be witness of f

We will discuss minimizing witness of EX, EU and EG below.

2.1 Minimizing Witness of EX and EU

Assume PreImage(S′) is a procedure that computes pre-image of S′. We can
minimize EXf witness s0s1 and E[fUg] witness s0 . . . sk−1 in the following way:

Algorithm 2: Minimizing Witness of EX f

1. c1 = GuidedCube(Check(f), s1)
2. c0 = GuidedCube(PreImage(c1), s0)

Algorithm 3: Minimizing Witness of E[f U g]

1. ck−1 = GuidedCube(Check(g), sk−1)
2. for i = k − 2 to 0
3. ci = GuidedCube(PreImage(ci+1) ∩ Check(f), si)

Correctness proof is omited due to space limitation.

2.2 Minimizing Witness of EG

A loop-like witness of EGf contains two segments: a stem s0 . . . sm and a loop
sm . . . sn. We will first prove the following theorem below.

Theorem 1. Assume a loop-like witness of EGf contains two segments: a stem
s0 . . . sm and a loop sm . . . sn. Then a cube sequence c0 . . . cn is its minimized
witness if the following 4 equations hold true

∧

0≤i≤n

si ∈ ci (2)



cn ⊆ PreImage(cm) ∧
∧

m≤i≤n−1

ci ⊆ PreImage(ci+1) (3)

∧

0≤i≤m−1

ci ⊆ PreImage(ci+1) (4)

∧

0≤i≤n

ci ⊆ Check(f) (5)

Proof. By equation (2), the 1st criteria of Definition 1 is satisfied.
Assume a path s′0 . . . s′n satisfy T (s′n, s′m) ∧∧

0≤i≤n s′i ∈ ci. By equation (5),∧
0≤i≤n M, s′i |= f .

Thus this theorem is proven.

We compute an approximation of cm . . . cn with following algorithm.
Algorithm 4 Min(x)

1. cm = x
2. cn = GuidedCube(PreImage(cm) ∩ Check(f), sn)
3. For i = n− 1 to m
4. ci = GuidedCube(PreImage(ci+1) ∩ Check(f), si)
5. return cm

To compute cm . . . cn that satisfies equation (3), we first let

C = Check(EGf) (6)

And then run Min(C). Cube sequence cm . . . cn obtained in this way satisfies
almost all ⊆ relation in equation (3), except cn ⊆ PreImage(cm).

So we need to run Algorithm 4 iteratively, and obtain the following sequence:

Min(C),Min2(C), . . . Mint(C), . . . (7)

We terminate above iteration only when Mint−1(C) ⊆ Mint(C), at which cn ⊆
PreImage(cm) and equation (3) can be satisfied. So we must prove that iteration
in equation (7) is terminable with following theorems.

Theorem 2. Min(x) is monotonic. (Proof is omited due to space limitation)

Theorem 3. C ⊇ Min(C)

Proof. By Algorithm 4, for every state s′m ∈ Min(C), there is a path s′ms′m+1 . . . s′nsm”,
such that sm” ∈ C. That is to say, there is an infinite path p starting from sm”,
and f holds true at all states along p.

By Algorithm 4, f holds true on all states of s′ms′m+1 . . . s′nsm”.
Thus, we can concatenate s′ms′m+1 . . . s′nsm” and p, to form a new path p′. f

hold true at all states along p′. Thus, p′ is witness of M , s′m |= EGf .
By equation (6), we can conclude that s′m ∈ C.
Thus, C ⊇ Min(C) is proven.



Table 1. Experimental Result

Cex name Cex length Original cex Minimized cex
Number of. Run Number of Run
Variables. time Variables time

P1 13 1027 0.12 244 0.12

P2 7 308 0.01 172 0.02

L1 64 975 0.991 791 1.45

L2 76 1140 1.26 942 1.96

L3 75 1125 2.83 929 4.09

L4 22 858 0.19 510 0.24

L5 22 858 0.28 467 0.33

L6 22 858 0.16 455 0.17

L7 22 858 0.12 408 0.17

Theorem 4. The iteration in equation (7) is terminable.

Proof. By Theorem 2 and 3, it is obvious that : C ⊇ Min(C) . . . ⊇ Mint(C) . . ..
So ∃t.Mint−1(C) == Mint(C) hold true. Thus, this theorem is proven.

Thus, we can construct minimized witness cm . . . cn in the following way:
Algorithm 5: Minimizing Witness of EG f

1. cm = Mint(C)
2. cn = GuidedCube(PreImage(cm) ∩ Check(f), sn)
3. for i = n− 1 to 0
4. ci = GuidedCube(PreImage(ci+1) ∩ Check(f), si)

3 Experimental Result

We implement our algorithm in NuSMV, and perform experiments on NuSMV’s
benchmarks. All experiments run on a PC with 1GHz Pentium 3.

Table 1 presents experimental result. The 1st column lists the name of coun-
terexamples. P1 and P2 are path-like counterexamples. All others are loop-like
counterexamples. The 2nd column lists their length. The 3rd column lists the
number of variables in original counterexamples. The 4th column lists the time
taken by NuSMV to generate these counterexamples. The 5th column lists the
number of variables in minimized counterexamples. The last column lists the
run time of our approach.

From the experimental result, it is obvious that our algorithm can signifi-
cantly minimize counterexamples.
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