
Plan and goal structure reconstruction: an
automated and incremental method based on

observation of a single agent

Bart lomiej Józef Dzieńkowski, Urszula Markowska-Kaczmar

Wroclaw University of Technology, Poland
{bartlomiej.dzienkowski,urszula.markowska-kaczmar}@pwr.wroc.pl

Abstract. Plan reconstruction is a task that appears in plan recogni-
tion and learning by practice. The document introduces a method of
building a goal graph, which holds a reconstructed plan structure, based
on analysis of data provided by observation of an agent. The approach
is STRIPS-free and uses only a little knowledge about an environment.
The process is automatic, thus, it does not require manual annotation
of observations. The paper provides details of the developed algorithm.
In the experimental study properties of a goal graph were evaluated.
Possible application areas of the method are described.

Key words: data analysis, hierarchical plan, sub-goals, reconstruction,
recognition, machine learning, agent system

1 Introduction

Building a plan in complex environments is a difficult task. Usually a system de-
signer simplifies a world model, thus, it can be rigidly constrained by a designer’s
knowledge. In practice this approach gives acceptable results. The process can
be improved by analysis and use of existing expert plans. There are sources from
which we can mine new plans from the perspective of an observer. However, we
do not have an access to some internal parts of the model, especially to a com-
munication channel between planning and execution modules. In fact, we can
analyze events in the environment to guess sub-goals of observed agents. Here
the task is similar to plan recognition. However, often plan recognition is limited
to predefined goals and tasks [3]. Thus, we would like to provide a method that
automatically extracts reusable plan elements from a set of recorded observa-
tions. We believe that avoiding predefined STRIPS-like conditions and operators
increases model flexibility [11].

The following section of the paper motivates the undertaken subject and
indicates possible fields of application. Next, references to other works and the
state of art is briefly introduced. The next part of the document provides details
of the developed method. Subsequently, study results are presented. The final
sections are conclusions and further work.

2 Motivation

The primary objective of the study is to provide a method that supports planning
by utilizing existing data containing effective solution templates. Moreover, the
crucial assumption is to deliver a solution which requires a minimal amount of
predefined knowledge, so that the model can become more flexible and domain
independent.

In order go give a better understanding of the target application domain,
we refer to a general example. Let’s assume there is an abstract environment in
which agents continuously fulfill their goals. The agents are black-boxes char-
acterized by a high level of intelligence. We are interested in their work and
solutions they generate because we can use them for solving our own problems
related to the same or an analogical environment. However, we do not have
enough resources to build a complete agent model since it is too complex.

The agent’s actions are the result of its decisions. Subsequently, the decisions
are the product of a plan. A nontrivial task is to reconstruct a plan on the basis
of observed actions and events that occur in an environment. Furthermore, a
structure of sub-goals inside a plan can be updated and extended when new
observations are provided.

The developed method collects plans from observed expert agents and merges
them into a map of goals connected by observed solutions. It supports trans-
ferring knowledge from experts and learning by practice approaches. However,
the algorithm can be applied in many fields. It can be used in network infras-
tructures for predicting an attacker’s goals and sub-goals based on historical
intrusions [1][2]. Another example is building a rescue robot or other a human
supporting machine by utilizing recorded human experts’ actions [5][4][6].

3 State of the art

Mining data from an expert’s actions have been previously done in several pa-
pers [7][9]. However, those approaches are based on STRIPS-like operators. In
this case the method is based on a general environment state representation,
which is an alternative approach. In fact, STRIPS operators (or other planning
concept) can be added later, but for the purpose of recorded data analysis our
algorithm focuses on an encoded sequence of environment states.

Defining a set of STRIPS operators is an additional task to accomplish during
development of a system and it can be difficult for complex environment models.
Not only operators, but also preconditions cause problems. In paper [7] authors
reported a problem with overgrowth of negative preconditions that detracted
quality of solutions. Finally, every predefined data greatly constrains system
flexibility. In fact, STRIPS provides human-readable planning rules, but it is
not perfectly suitable for automatically extracted state transition relations and
state transition operators.

Comparing to [7] our approach does not require a set of expert annotations
for each observation, or any other effort related to manual marking of recorded
data. All the provided input data is processed automatically.

4 Method description

This section provides details and a pseudo-code of the developed method. How-
ever, before we proceed to the detailed description of the algorithm a general
overview on a model is required.

4.1 General overview

The model consists of an environment and modules that share data flow (Fig. 1).
The environment is a well-defined part of an agent system exposed to the ob-
server module, which tracks and records events. The module holds a repository
of recorded state sequences. Our algorithm is located in the plan reconstruction
module. The output of the module is passed to the planner. An agent controlled
by the planner can be placed in the same or a similar environment.

Observer / Recorder Plan Reconstructor

Planner
Expert

Agent
Agent

Environment

Fig. 1. Module organization and data flow of the discussed model.

The method accepts a set of recorded state sequences on input and returns
a goal graph on output. Each input state sequence is an ordered list of encoded
environment states collected by a recorder component during a single simulation
run. A sequence covers the environment state from the initial to the final state
in which agent accomplishes its final task.

A returned goal graph represents a structure of directed connections between
environment goal states. It enables us to find the shortest path from the initial to
the final state. At the same time it provides a hierarchy of goals and information
about method of their accomplishment. In fact, two types of nodes can be found.
The first one is a Key Node that stands for a goal state. The second, a Transitive
Node is used for connecting Key Nodes. A sequence of adjacent Transitive Nodes
between two Key Nodes is a path that stores simple state-change information.
Subsequently – a goal graph is a data that can be successfully applied in hierar-
chical planning methods [10]. However, in this paper we focus on the description
of building a goal graph on the basis of an input set of state sequences.

state – encoded state of the environment
StateSequence – sequence of encoded states
SetOfStateSequences – set of state sequences
KEY – label for a Key State
TRANSITIVE – label for a Transitive State
GoalGraph – directed graph in which each node stores a value

and a list of references to child nodes

Table 1. Symbol description.

4.2 Algorithm details

The algorithm consists of several steps. Its general framework is presented by
Alg. 1 (look for the symbol description in Table 1). The first step is to initialize
an empty graph data structure. Next, each state sequence is preprocessed by
marking all elements as a Key or Transitive State (in analogy to a Key and
Transitive Node). If the goal graph is still empty, the first element from the first
state sequence is inserted as the root node. In the same loop the state sequence
is broken into a set of paths each of which is a sub-sequence that starts and ends
with a Key State – the algorithm is straightforward and specified by Alg. 3. Each
sub-sequence (path) is attached to the goal graph (Fig. 2).

Alg. 1 Build Goal Graph from a Set of State Sequences

function buildGoalGraph(SetOfStateSequences)

1: GoalGraph := 〈value = nil, children = {}〉
2: for all StateSequence in SetOfStateSequences do
3: StateSequence := markStates(StateSequence)
4: if GoalGraph.value = nil then
5: GoalGraph.value := StateSequence.getFirstElem()
6: end if
7: Paths := breakApart(StateSequence)
8: for all path in Paths do
9: GoalGraph := attachPath(GoalGraph, path)

10: end for
11: end for
12: return GoalGraph

The method of marking states as a Key or Transitive State showed by Alg. 2
depends on environment characteristics. In general, when we consider some dy-
namic environment, we should focus on environment state properties that an
agent has modified. We can assume that these properties are more important,
because they are somehow related to tasks of an agent. Thus, a modification
applied to the environment state can be recognized as fulfillment of a goal. A
specific approach for marking states problem is described in the next section.

A

B

C

D
C

B

A

E

Fig. 2. An example of a goal graph. The larger circles are Key Nodes and the smaller
are Transitive Nodes. Dashed arrows show places where new paths are attached to the
goal graph. In this case A is the initial node, {B,D,E} are the final nodes and C can
be considered as a sub-goal.

Alg. 2 Mark States

function markStates(StateSequence)

1: for all state in StateSequence do
2: find state properties modified by agent and mark them as important, ignore the

rest
3: if modification has permanent or long term effect

∨ state = StateSequence.getFirstElem() then
4: mark state as KEY
5: else
6: mark state as TRANSITIVE
7: end if
8: end for
9: return StateSequence

Alg. 3 Break Apart State Sequence

function breakApart(StateSequence)

1: Paths := {}
2: path := 〈〉
3: for all state in StateSequence do
4: path.add(state)
5: if state 6= StateSequence.getFirstElem() then
6: if state is KEY then
7: Paths.add(path)
8: path := 〈〉
9: path.add(state)

10: end if
11: end if
12: end for
13: return Paths

The last part of the method, attaching a path to a goal graph is presented
by Alg. 4. Since a node in a goal graph holds a state representation, we require
a special method of node comparison that provides some level of generality. In
other words, we are more interested in checking whether two nodes are equivalent
and represent a very similar situation in the environment rather than finding
out whether they are identical. This can be done referring to the previously
mentioned state property importance concept. The comparison method is used
for searching nodes in a goal graph. It is used for the first time for collecting
all nodes equivalent to the first element of the input path, we call them a set of
start nodes. In the next step, we use the same method of finding a set of end
nodes each of which is equivalent to the last element of the input path. These two
node sets enables us to connect gaps between each of two start and end nodes
using the input path. In case a connection between two nodes already exists, it
is replaced by a shorter path. If the set of end nodes is empty, the input path is
simply attached to the start node.

Alg. 4 Attach Path to Goal Graph

function attachPath(GoalGraph, path)

1: // value comparison is made according to the importance of state properties
2: StartNodes := GoalGraph.findNodesWithValue(path.getFirstElem())
3: EndNodes := GoalGraph.findNodesWithValue(path.getLastElem())
4: for all startNode in StartNodes do
5: for all endNode in EndNodes do
6: GoalGraph.connectNodes(startNode, endNode, path)
7: end for
8: if EndNodes.getCount() = 0 then
9: GoalGraph.attachPath(startNode, path)

10: end if
11: end for
12: return GoalGraph

The described algorithm is a set of general steps that can be adjusted accord-
ing to some special cases. However, there is an additional feature of the method
that is worth mentioning. The algorithm was showed to process all of the state
sequences in a single block. It is possible to organize the algorithm flow to work
incrementally. Thus, new state sequences can be attached to a goal graph online.
A set of sequences will produce the same result no matter the order of attach-
ing to a graph. Additionally, because duplicate paths in a goal graph can be
replaced, the graph is not expanding infinitely.

5 Test environment

For the purpose of the research we have developed an agent environment, which
is described in this section. The system was designed to cover a general case

of a possible application, but maintaining its simplicity. The environment space
is a discrete grid. Each space cell is a resource, but some of them are blocked
or their acquisition causes a special effect in the environment. In fact, there
are five kinds of resources: an empty space, a permanently blocked space, a
gate (a temporarily blocked space), a trigger (locks and unlocks gate), and an
objective. A configuration of the environment used in the experiment is presented
in Fig. 3. An agent starts a simulation run always in the same position cell. It
is able to acquire and move to an unblocked space resource provided that it is
in an adjacent cell. If an agent enters a trigger resource, the trigger’s internal
state ∈ {0, 1} is switched. Simultaneously, a gate linked to the trigger changes
its blocking state. A simulation run reaches the end when an agent acquires the
objective resource.

2

1

2

1

3

3

4

4

5

5

66

i i

i i

- agent

- trigger off/on

- gate closed/open

- objective

- blocked space

Fig. 3. A resource distribution of an example environment. The dashed line follows an
agent’s path from the initial position to the objective in 13 steps. A trigger opens (or
closes) a gate with the same index number.

An environment state is encoded as a two-dimensional array of state prop-
erties. Each state property in the array corresponds to a cell in the space grid.
A state property stores a type of a resource and its internal state. Additionally,
it shows a position of an agent. Despite the fact that the resource acquisition
action can be invoked at any time and it has assigned an execution time, the
observer module records only state changes.

Regarding the state marking method from the previous section, in this spe-
cific environment it is reasonable to mark state as a Key State whenever an
agent uses a trigger or reaches an objective. However, there is still an issue of
comparing equivalent states. The problem can be solved by assigning an impor-
tance flag to a state property. When an agent modifies a state property for the
first time, the property is set to important. Fig. 4 explains the procedure by an
example. Hereby, each important state property must match between two states
to be considered as equivalent (Fig. 5). The comparison function also checks a
stored position of an anent to maintain consistency of a goal graph.

Key (initial) Transitive Key Transitive Key Key Key (final)

(1) (2) (3) (4) (5) (6) (7)

Fig. 4. An example sequence of 7 states. Each state is labelled as a Key or Transitive
State. Cells surrounded with a bold border are state properties marked as important.

Fig. 5. Equivalency between two states (indicated by an arrow). States are equivalent
when all important properties (cells with bold border) of both states match.

6 Experimental study

This section describes an adopted testing methodology of the algorithm and
study results. The goal of the experiment was to study characteristics of out-
put graphs provided by the method. The algorithm was tested on sets of state
sequences generated by a randomly acting agent in the environment (Fig. 3).
Statistics of an example set of sequences generated using this method are lo-
cated in Table 2. Instead of preparing a large number of state sequences and
reading subsets, the sequences were generated on the fly. In the experiment a
different numbers of sequences were provided to the algorithm input. Parame-
ters of output graphs were measured. Tests were repeated 10 times and values
averaged.

size avg. len. stddev min. len. max. len.

2000 316.81 236.53 21 1648

Table 2. Statistics of an example generated set of sequences. The numbers stand for:
a size of a set, an average sequence length, standard deviation, the minimum sequence
length, and the maximum sequence length.

The first part of the experiment was prepared to measure a size of a goal
graph with respect to a number of input sequences. Increase of number of nodes

is visualized in Fig. 6. A number of Transitive Nodes initially grows quickly, but
then the increase slows down. Theoretically it is possible the number decreases
in the future while shorter paths between Key Nodes are provided. However,
in an early phase new connections are still revealed and added. The experiment
showed that even for our simple environment a goal graph can look very complex
– selected graphs are presented in Fig. 7.

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60 70 80 90 100

no
de

 c
ou

nt

size of input set of sequences

Number of nodes

avg. trans. nodes
avg. key nodes

Fig. 6. An average number of transitive and key nodes with respect to a size of an
input set of sequences.

Anyhow, Transitive Nodes are insignificant. In fact, they can be pruned since
a transition between two connected Key Nodes can be easily found with the aid
of a heuristic. More importantly the number of Key Nodes is stable. Even though
a number of Key States is proportional to a number of permutation of switchable
state properties, complexity of a graph depends on actions of an observed agent.

In the next part of the experiment we have studied how the number of input
sequences and graph expansion affects the length of the shortest path between
the initial and the final node. The results are visualized in Fig. 8. Clearly an
increase of input sequences positively influences a solution quality. Finally, a
long-run test showed that a much larger size of input gives no real improvement
of the shortest path length (Table 3).

7 Conclusions

The described algorithm differs from other STRIPS-based methods. It requires
only basic information about types of elements in an environment. Expert knowl-
edge about relations between objects and their use is compiled into a goal graph.
Thus, workload of a system designer is reduced.

Fig. 7. On the left a goal graph with 546 nodes built from 10 state sequences and on
the right a goal graph with 2953 nodes built from 7000 state sequences.

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

pa
th

 le
ng

th

size of input set of sequences

Shortest path length

avg. shortest path

Fig. 8. An average shortest path from the initial to the nearest final node with respect
to a size of an input set of sequences.

input set size avg. key nodes avg. trans. nodes avg. shortest path

7000 213 2737.3 13

Table 3. Statistics of the biggest tested input sequences set. The numbers stands for:
size of an input set of sequences, average number of key nodes, average number of
transitive nodes and shortest path from the initial to the nearest final node.

Despite the fact that the method in some cases can have a limited applica-
tion, its main advantage is flexibility and automatic data acquisition support. A
planner based on the approach is not required to manipulate STRIPS conditions
and operators. In fact, it can use a set of general transition functions to move be-
tween graph nodes. The set of transitions can be automatically extended based
on observed expert solutions.

However, the method is not free from flaws. It requires a large amount of input
data. Thus, it can be applied for analysis of existing models which continuously
generate data (e.g., multiplayer game matches). Additionally, the algorithm in
its original form can lead to performance problems. It is required to utilize some
graph search optimizations before applying in practice. Finally, the approach
can evolve to a hybrid model.

8 Further work

The described algorithm is dedicated to environments with a single agent, or
many agents that work independently. This assumption limits practical applica-
tion. However, the paper refers to an early stage of the research that aims on an
analogical approach but dedicated to a group of cooperating agents. In the new
case, the algorithm can no more entirely rely on environment state comparison.
A new approach based on cooperation patterns should be proposed. Hereby, not
a state change event but an execution of cooperation pattern will link nodes in
the goal graph [8]. Finally, in order to provide system flexibility, the cooperation
patterns should be automatically recognized and mined.

References

1. Gu, W., Ren, H., Li, B., Liu, Y., Liu, S.: Adversarial Plan Recognition and Op-
position Based Tactical Plan Recognition. In: International Conference on Machine
Learning and Cybernetics, pp. 499–504. (2006)

2. Gu, W., Yin, J.: The Recognition and Opposition to Multiagent Adversarial Plan-
ning. In: International Conference on Machine Learning and Cybernetics, pp. 2759–
2764. (2006)

3. Camilleri, G.: A generic formal plan recognition theory. In: International Conference
on Information Intelligence and Systems, pp. 540–547. (1999)

4. Takahashi, T., Takeuchi, I., Matsuno, F., Tadokoro, S.: Rescue simulation project
and comprehensive disaster simulator architecture. In: International Conference on
Intelligent Robots and Systems, vol. 3, pp. 1894–1899. (2000)

5. Takahashi, T., Tadokoro, S.: Working with robots in disasters. In: Robotics and
Automation Magazine, IEEE, vol. 9, no. 3, pp. 34–39. (2002)

6. Chernova, S., Orkin, J., Breazel, C.: Crowdsourcing HRI through Online Multiplayer
Games. In: Proceedings of AAAI Fall Symposium on Dialog with Robots, pp. 14–19.
(2010)

7. Wang, X.: Learning by Observation and Practice: An Incremental Approach for
Planning Operator Acquisition. In: Proceedings of the 12th International Conference
on Machine Learning, pp. 549–557. (1995)

8. Ehsaei, M., Heydarzadeh, Y., Aslani, S., Haghighat, A.: Pattern-Based Planning
System (PBPS): A novel approach for uncertain dynamic multi-agent environments.
In: 3rd International Symposium on Wireless Pervasive Computing, pp. 524–528.
(2008)

9. Nejati, N., Langley, P., Konik, T.: Learning Hierarchical Task Networks by Obser-
vation. In: Proceedings of the 23rd International Conference on Machine Learning,
pp. 665–672. (2006)

10. Sacerdoti, Earl D.: A Structure For Plans and Behavior. In: Artificial Intelligence
Center, Elsevier North-Holland, Technical Note 109. (1977)

11. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem
proving to problem solving. In: IJCAI, pp. 608–620. (1971)

