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Abstract. This paper uses a simple modification of classic Kohonen network
(SOM), which allows parallel processing of input data vectors or partitioning the
problem in case of insufficient resources (memory, disc space, etc.) to process
all input vectors at once. The algorithm has been implemented to meet a speci-
fication of modern multicore graphics processors to achieve massive parallelism.
The algorithm pre-selects potential centroids of data clusters and uses them as
weight vectors in the final SOM network.In this paper, the algorithm is used on a
well-known KDD Cup 1999 intruders dataset.
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1 Introduction

With the massive boom of GPU-based calculations, massive parallelism, memory con-
siderations, simplicity of algorithms and CPU-GPU interaction have yet again to play
an important role. In this paper, we present a simple modification of classic Kohonen’s
self-organizing maps (SOM), which allows us to dynamically scale the computation to
fully utilize the GPU-based approach.

There were some attempts to introduce parallelism in Kohonen networks [1,2,3,4,5],
however we needed an approach which is simple and easy to implement. Moreover, it
should work both with and without the bulk-loading algorithm [6].

In this paper, we present such approach, which divides the training set into sev-
eral subsets and calculates the weights in multi-step approach. Calculated weights with
nonzero number of hits serve as input vectors of SOM network in the following step.
Presently, we use a two-step approach, however more steps could be used if necessary.

The paper is organized as follows: in second chapter we mention classic SOM net-
works and describe the basic variant we have used. In third chapter we describe our
approach and provide the calculation algorithm, in fourth the GPU-based processing.
The fifth chapter introduces experimental data we have used and the final chapter be-
fore conclusion presents the comparison of results provided by our method with classic
SOM calculation.

2 Kohonen self-organizing neural network

In following paragraphs, we will shortly describe the Kohonen self-organizing neural
networks (self-organizing maps — SOM). The first self-organizing networks were pro-
posed in the beginning of 70’s by Malsburg and his successor Willshaw. SOM was
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Fig. 1. Kohonen network structure

proposed by Teuvo Kohonen in in the early 1980s and has been improved by his team
since. The summary of this method can be found in [7].

The self-organizing map is one of the common approaches on how to represent and
visualize data and how to map the original dimensionality and structure of the input
space onto another — usually lower-dimensional — structure in the output space.

The basic idea of SOM is based on the human brain, which uses internal 2D or
3D representation of information. We can imagine the input data to be transformed to
vectors, which are recorded in neural network. Most neurons in cortex are organized in
2D. Only the adjacent neurons are interconnected.

Besides of the input layer is in SOM only the output (competitive) layer. The number
of inputs is equal to the dimension of input space. Every input is connected with each
neuron in the grid, which is also an output (each neuron in grid is a component in output
vector). With growing number of output neurons, the quality coverage of input space
grows, but so does computation time.

SOM can be used as a classification or clustering tool that can find clusters of input
data which are more closer to each other.

All experiments and examples in this paper respect following specification of the
SOM (see also the Figure 1):

— The SOM is initialized as a network of fixed topology. The variables dim X and
dimY are dimensions of such 2-dimensional topology.

— V™ represents an m-dimensional input vector.

— W™ represents an m-dimensional weight vector.

— The number of neurons is defined as N = dim X * dimY and every neuron n €<
0, N — 1 > has its weight vector W"

— The neighborhood radius r is initialized to the value min(dimX, dimY')/2 and
will be systematically reduced to a unit distance.

— All weights vectors are updated after particular input vector is processed.

— The number of epochs e is know at the beginning.



The Kohonen algorithm is defined as follows:

1. Network initialization
All weights are preset to a random or pre-calculated value. The learning factor 7,
0 < n < 1, which determines the speed of weight adaptation is set to a value
slightly less than 1 and monotonically decreases to zero during learning process.
So the weight adaptation is fastest in the beginning, being quite slow in the end.

2. Learning of input vector
Introduce k training input vectors Vi, Vs, ..., Vi, which are introduced in random
order.

3. Distance calculation
An neighborhood is defined around each neuron whose weights are going to change,
if the neuron is selected in competition. Size, shape and the degree of influence of
the neighborhood are parameters of the network and the last two decrease during
the learning algorithm.

4. Choice of closest neuron
We select the closest neuron for introduced input.

5. Weight adjustment
The weights of closest neuron and its neighborhood will be adapted as follows:

Wij(t +1) = Wi (8) + n(0)h(v, t)(Vi — Wi; (1)),

wherei =1,2,...,dimX aj=1,2,...,dimY and the radius r of neuron’s local
neighborhood is determined by adaptation function h(v).
6. Go back to point 2 until the number of epochs e is reached.

To obtain the best organization of neurons to clusters, a big neighborhood and a big
influence of introduced input are chosen in the beginning. Then the primary clusters
arise and the neighborhood and learning factor are reduced. Also the  — 0, so the
changes become less significant with each iteration.

3 GM-SOM method

The main steps of SOM computation have already been described above. Following text
is focused on description of proposed method, that in the end leads to results similar
to the classic SOM (See also Figure 2 for illustration of our approach). We named
the method Global-Merged SOM, which suggests, that the computation is divided into
parts and then merged to obtain the expected result. Following steps describe the whole
process of GM-SOM:

1. Splitting of input set The set of input vectors is divided into a given number of
parts. The precision of proposed method increases with the number of parts, how-
ever, it has own disadvantages related to larger set of vectors in the final phase of
computation process. Thus the number of parts will be usually determined from the
number of input vectors. Generally, k£ > N xp, where k is the number of input vec-
tor, IV is the number of neurons and p is the number of parts. The mapping of input
vectors into individual parts does not affect final result. This will be later demon-
strated by the experiments, where all the input vectors were either split sequentially
(images) or randomly.
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Fig.2. GM-SOM: An Illustrative schema of the proposed method. All input vectors are divided
into ten parts in this case.

2. In parts computation Classic SOM method is applied on every part. For simplic-
ity sake, an acronym PSOM will be used from now on to indicate SOM, which is
computed on a given part. All PSOMs start with the same setting (the first distribu-
tion of weights vectors, number of neurons, etc.) Such division speeds up parallel
computation of PSOMs on GPU. Moreover, the number of epochs can be lower
than the the number of epochs used for processing of input set by one SOM. This
is represented by a factor f, which is going to be set to % in our experiments.

3. Merging of parts Weight vectors, that where computed for each part and corre-
spond to neurons with at least one hit, represent input vectors in the final phase of
GM-SOM. The unused neurons and their weight vectors have light gray color in
Figure 2. A merged SOM with the same setting is computed and output weights
vectors make the final result of proposed method.

The main difference between the proposed algorithm and well known batch SOM
algorithms is, that individual parts are fully independent on each other and they update
different PSOMs. Moreover, different SOM algorithms can be applied on PSOM of
a given part, which makes the proposed algorithm more variable. Next advantage can
be seen in different settings of PSOMs. Thus more dense neuron network can be used
in case of larger input set. The last advantage consists in a possibility of incremental
updating of GM-SOM. Any additional set of input vectors will be processed by a new
PSOM in a separate part and the final SOM will be re-learnt. For interpretation see
Figure 3.

4 GPU Computing

Modern graphics hardware plays an important role in the area of parallel computing.
Graphics cards have been used to accelerate gaming and 3D graphics applications, but
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Fig. 3. GM-SOM: Parallelization of the SOM computation by proposed method

recently, they have been used to accelerate computations for relatively remote topics,
e.g. remote sensing, environmental monitoring, business forecasting, medical applica-
tions or physical simulations etc. Architecture of GPUs (Graphics Processing Unit) is
suitable for vector and matrix algebra operations, which leads to a wide use of GPUs
in the area of information retrieval, data mining, image processing, data compression,
etc. Nowadays, the programmer does not need to be an expert in graphics hardware
because of existence of various APIs (Application Programming Interface), which help
programmers to implement their software faster. Nevertheless, it will be always neces-
sary to follow basic rules of GPU programming to write a more efficient code.

Four main APIs exists today. The first two are vendor specific, i.e. they were de-
veloped by two main GPU producers - AMD/ATI and nVidia. The API developed
by AMD/ATT is called ATI Stream and the API developed by nVidia is called nVidia
CUDA (Compute Unified Device Architecture). Both APIs are able to provide similar
results. The remaining two APIs are universal. The first one was designed by Khronos
Group and it is called OpenCL (Open Computing Language) and the second was de-
signed by Microsoft as a part of DirectX and it is called Direct Compute. All APIs
provide a general purpose parallel computing architectures that leverages the parallel
computation engine in graphics processing units.

The main advantage of GPU is its structure. Standard CPUs (central processing
units) contain usually 1-4 complex computational cores, registers and large cache mem-
ory. GPUs contain up to several hundreds of simplified execution cores grouped into so-
called multiprocessors. Every SIMD (Single Instruction Multiple Data) multiprocessor
drives eight arithmetic logic units (ALU) which process the data, thus each ALU of a
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Fig. 4. GM-SOM: Parallelization of the SOM computation by proposed method

multiprocessor executes the same operations on different data, lying in the registers.
In contrast to standard CPUs which can reschedule operations (out-of-order execution),
the selected GPU is an in-order architecture. This drawback is overcome by using multi-
ple threads as described by Wellein et al.[8]. Current general-purpose CPUs with clock
rates of 3 GHz outperform a single ALU of the multiprocessors with its rather slow
1.3 GHz. The huge number of parallel processors on a single chip compensates this
drawback.

The GPU computing has been used in many areas. Andrecut [9] described CUDA-
based computing for two variants of Principal Component Analysis (PCA). The usage
of parallel computing improved efficiency of the algorithm more than 12 times in com-
parison with CPU. Preis et al. [10] applied GPU on methods of fluctuation analysis,
which includes determination of scaling behavior of a particular stochastic process and
equilibrium autocorrelation function in financial markets. The computation was more
than 80 times faster than the previous version running on CPU. Patnaik et al. [11] used
GPU in the area of temporal data mining in neuroscience. They analyzed spike train
data with the aid of a novel frequent episode discovery algorithm, achieving a more
than 430 % speedup. The GPU computation has also already been used in intrusion de-
tection systems [12] and for human iris identification (for our experiments on this topic
see [13]).

The use of our SOM modification on GPU is illustrated in Figure 4.



5 Data Collection

The KDD Cup 1999 collection [14] represents data indicating several basic types of
attack on computer networks. Significant features have been recorded and the type of
attack has been evaluated. The data is based on the 1998 DARPA Intrusion Detection
Evaluation Program, which has been prepared and managed by MIT Lincoln Labs.
The main task is to build a predictive model (i.e. a classifier) capable of distinguishing
between intrusions (attacks), and normal connections.

The 1999 KDD intrusion detection contest dataset used a specific format of features,
extracted from original raw data, which corresponded to 7 weeks of traffic and had
approximately 4 GiB of compressed data streams, which were processed into about five
million connection records.

Each of the records consists of approximately 100 bytes and the result is labeled
based on the actual attack type (or normal, in case it is part of normal traffic) which
falls into one of the four basic categories:

— DOS - denial-of-service — the machine is flooded with requests and the exhaustion
of resources is attempted. Nowadays, it is mostly used in the distributed form.

— R2L — remote to local — unauthorized access from a remote machine, e.g. trying to
guess passwords or SSH keys.

— U2R - user to root — unauthorized user rights elevation, typically through some

exploit (e.g. using buffer overflow techniques) to gain superuser (root) privileges.

probing — port scans, active network surveillance and other probing.

There are 22 defined attack types, which were typical in 1998 and the normal cat-
egory in the training data and some additional attack types present only in the testing
data, which the classification framework should detect. The records contain both the
categorical, Boolean and numerical attributes, which makes the classification harder.

6 Experiments

The Table 1 is a summary table for seven performed experiments. The whole train-
ing data collection was divided into several parts for individual experiments. In each
experiment, every part represented an input data set for SOM. Then all partial results
(weights of neurons) were merged together and became a new input set for final com-
putation of SOM. Thus the total time consists of particular computation times of SOMs
plus required merging time. Sufficient number of graphics processor units (GPU) are re-
quired for such computation. Usually, more graphics contexts can be created on a single
GPU, however, they share all resources (memory, multiprocessors, etc.). If the number
of GPUs is less than the number of parts, and just a single graphics context per GPU
can be created (because of memory requirements, etc.), more parts must be computed
in series. Then the computation times of all such parts must be summed. Therefore, the
column “Total time” of the Table 1 shows ideal computation times in case of sufficient
computation power.

The number of parts affects the precision of SOM classification. The higher number
of parts the smaller precision. It depends on process of division of input data set as



Table 1. Computation times with respect to subdividing of input data set.

exp.|parts|size of a part|Comp. time|Merging| Total |Precision

id | [#] [#] per part [s] | time [s] [time [s]| [%]

1|1 1469529 1249 0 1249 | 94,29
215 293906 249 4 453 94,13
3110 146953 124 9 133 93,57
4120 73477 62 18 80 90,72
5130 48985 43 27 70 88,47
6 | 40 36739 32 36 68 87,91
7 150 29391 26 45 71 87,34

well. Every part consists of random set of input vectors in our experiments. Every two
parts represent disjoint sets of input vectors. Finally, every vector of the original data
set (non-divided) belongs to some part. The ratio between the number of parts and final
precision of classification method will be the subject of further research.

7 Conclusion

The need of parallel computation of SOM drove us to a new method, that has been also
utilized in this paper. Although it has some common features with well known SOM
batch or hierarchical algorithms, it is not one of them, as it has its unique properties.
The results presented in previous section show that whilst the classic SOM is much
faster because of the GPU-based computation, the use of PSOMs and their computation
by separate nodes furher improves the computation time.

Firstly, the proposed algorithm can utilize the power of batch processing in all inner
parts (PSOMs). Secondly, all PSOMs can have different number of neurons in their
networks, which could be found in hierarchical algorithms. Lastly, our method excludes
neurons, which do not cover any input vectors in the intermediate phase of GM-SOM.

All experiments suggest, that the results are very close to results provided by classic
SOM algorithm. Also, since we have used the KDD Cup 1999 collection, the data is
comparable with other experiments done on this collection.
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