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Abstract. Consumer decision making processes are conditioned by var-
ious forces. Recognized premises are being constantly reevaluated and
future decisions are made in connection with previous ones. Therefore,
authors propose an approach to decision making modeling based on pairs
of vectors describing attitudes towards certain attributes influencing con-
sumer’s decision. As a result, possible is a description of preferences based
on multiple evaluations of one feature. Methodological approach allows
to reevaluate opinions, which even though were taken in past, but still in-
fluence current decisions. In the article we discuss how triangular norms
can be applied to decision making modeling based on information en-
couraging the choice gathered in paired vectors. Developed methodology
is based on combining different known triangular norms for given pairs
of vectors representing various consumers, who are facing the same de-
cision. The choice of preferences evaluation was performed so that they
would represent different real-life situations. Results of applied process-
ing based on combinations of triangular norms are compared. Drawn
are conclusions about various processing properties of aggregation op-
erators. Suggested is, in which cases, certain triangular norms describe
real-life processes accurately. Shown and described are also examples of
operators, which are not suitable at all.

1 Introduction

Decision making processes are driven by various needs. Needs determine our
actions, direct us towards reducing motivational tension. As we described in [6],
proposed were several hierarchies of how humans proceed with satisfying their
needs. A very interesting perspective on the grounds of decision making processes
was presented by K. Lewin, [8]. This article continues the discussion started in
[5] of how the theory of psychophysical field can be applied to consumer decision
making modeling using fuzzy sets and their generalizations.

First, we would like to recall basic notions of how a decision making process
can be perceived as a process inside the psychophysical field and how multi-
valued logic operators can be applied to model it. In section 3 we discuss various
triangular norms, which are applied in section 4 to modeling. Presented is a case
study of one particular choice. Decisions are based on fuzzy information, which



in fact is very common. Developed methodological approach allows us to reeval-
uate consumer’s opinions, which even though had been taken in past, but still
influence current decisions. We compare aggregation possibilities incorporated
in different triangular norms and suggest, which cases describe real-life processes
most accurately.

2 Preliminaries

Psychophysical field is an abstract term, describing decision making process. It
is formed as a combination of three factors:

1. The field (which can be perceived as a set of conditions). Field contains all
motivational stimuli arising when subject thinks about the decision. Condi-
tions of the decision are bounded by available knowledge and previous ex-
periences. The field includes not only premises speaking for or against given
choice, but also all conscious and subconscious factors, which may influence
the decision.

2. Processes, which describe a way of how one makes decisions. It is directly
connected with individual’s behavioral patterns. Processes are conditioned
by customer’s cognitive abilities, rationality and susceptibility to behavioral
biases.

3. The decision - called also the gestalt - it is the outcome of the decision making
process.

In this article we would like to focus on how triangular norms can be ap-
plied to decision making modeling. We would restrict our discussion to positive
premises only, though our future research will include bipolar information aggre-
gation techniques. Due to this restriction, we would be able to model only some
fraction of real-life processes, but presented techniques can be also adapted for
cases based on both positive and negative premises.

The field (all conditioning factors) will be grouped into two sets: premises
and priorities. These are all recognized motivational stimuli, which ground our
decisions. Processes are represented by triangular norms, which we apply. The
decision (gestalt) is the output of our computations.

As introduced nomenclature may raise some questions, at first, we would
like to explain used notions. While speaking about decision making process,
we would describe perceived stimuli in the terms of premises and priorities.
A premise, in our understanding, is received and decoded information influencing
given decision. We assume that one can evaluate the importance of a premise as
a number from the range [0, 1], where the greater is the value of the premise, the
stronger is positive influence of the premise on the decision. This allows us to
apply a flexible scale of evaluation. For each customer we discuss the same set
of premises (the decision is made about the same product), but with different
evaluations.

While computing the result of the decision making process we introduce
aggregating operators, which allow to obtain a decision as a number from the
[0, 1] range. The greater is the output of our computations, the more convinced
is given customer about the decision. What did we gain? First of all, discussed



models describe real life situations better. We are able to base and compute
imprecise information. Even though we may calculate the decision in the crisp
form (binary response), we are intentionally highlighting that plenty of real-life
decisions are perceived rather as weak or strong attitudes.

Premises describe customer’s motivation towards certain products or services.
In terms of needs theory (see [6]) premises are motivational stimuli, which elicit,
control and sustain certain behaviors. These are all factors, which arise when
an individual thinks of given decision in more general terms. It can be somehow
called an initial or an a priori motivation. Authors treat all premises as a set of
infinite amount of opinions or attitudes, from which while discussing a particular
decision accounted and considered is only a relatively small and countable subset.
Why small? Because people tend to simplify rather than complicate reality.
Moreover, facing time constraints, people are aware that in order to efficiently
manage one’s time, even though there might be million possibilities, only a few
are really worth discussing.

Second term present while discussing decision making processes are priori-
ties. Authors intend to use this term in the context of a second set of beliefs
(or in other words as a second set of motivational stimuli). Priorities allow us
to take into account reassessed attitude towards one particular choice. In this
paper, term premises concerns more general case, while priories describe certain
precise choices. Analogically, priorities can be expressed scaled, for example as
a number from the interval [0; 1]. Priorities are recognized and evaluated later
than premises, and their purpose is to provide a perspective of how one par-
ticular choice satisfies one’s needs. In this context, they may be perceived as
an aposteriori motivation, arising when subject has faced particular product or
service. Of course, a set of priorities evaluations might be drastically different
than premises.

3 Triangular norms

In this section we recall basic notions of fuzzy sets and generalization of fuzzy
connectives maximum and minimum to triangular norms. We will be expressing
fuzzy sets in the form of membership functions. Namely, a fuzzy set A defined
in the universe X is a mapping µ : X → [0, 1] or µA,X : X → [0, 1] if the names
of the set and the universe should be explicitly stated.

The Zadeh’s model of fuzzy sets can be described as a system similar to set
theory (F (X),∪,∩, ), where F (X) denotes fuzzy sets over the universe X and
∪, ∩, denote union, intersection and complement. This system is clearly in-
terpreted as ([0, 1]X ,max,min, 1−), where [0, 1]X denotes all mappings from the
universe X into the unit interval [0, 1], i.e. the space of membership functions,
and max, min and 1− applied to membership functions implement union, inter-
section and complement. We do not pay attention to the interpretation of fuzzy
sets in terms of a lattice LX .

In this paper study of fuzzy sets system was enriched with triangular norms
used in place of the max and min operators. Note: max and min are triangular
norms as well.



Triangular norms, i.e. t-norms and t-conorms, are mappings from the unit
square [0, 1]× [0, 1] onto the unit interval [0, 1] satisfying axioms of associativity,
commutativity, monotonicity and boundary conditions (cf. [7, 9] for details), i.e.:

Definition 1. t-norms and t-conorms are mappings p : [0, 1] × [0, 1] → [0, 1],
where p stands for both t-norm and t-conorm, satisfying the following axioms:

1. p(a, p(b, c)) = p(p(a, b), c) associativity
2. p(a, b) = p(b, a) commutativity
3. p(a, b) ≤ p(c, d) if a ≤ c and b ≤ d monotonicity
4. t(1, a) = a for a ∈ [0, 1] boundary condition for t-norm

s(0, a) = a for a ∈ [0, 1] boundary condition for t-conorm

t-norms and t-conorms are dual operations in the sense that for any given
t-norm t, we have a dual t-conorm s defined by the De Morgan formula

s(a, b) = 1− t(1− a, 1− b)

and vice-versa, for any given t-conorm s, we have a dual t-norm t defined by the
De Morgan formula

t(a, b) = 1− s(1− a, 1− b)

Duality of triangular norms causes duality of their properties. Note that the
min/max is a pair of dual t-norm and t-conorm. The selected known t-norms
and their dual t-conorms are given in Table 1. Note that Hamacher product is

Table 1. Selected triangular norms, dual t-norms and t-conorms are placed in one row

t-norm t-conorm

minimum min(x, y) maximum max(x, y)

product x · y probabilistic
sum

x + y − x · y

Lukasiewicz max(0, x + y − 1) bounded
sum

min(a + b, 1)

nilpotent
minimum

min(x, y) if x + y > 1

0 otherwise

nilpotent
maximum

max(x, y) if x + y < 1

1 otherwise

drastic


y if x = 1

x if y = 1

0 otherwise

drastic


y if x = 0

x if y = 0

1 otherwise

Hamacher
product

 0 if x = 0 = y
x · y

x + y − x · y otherwise
Einstein sum

x + y

1 + x · y

the chosen representative of the parametric class of Hamacher norms. t-norms
and t-conorms are bounded by minimum t-norm and maximum t-conorm, i.e.
for any t-norm t, any t-conorm s and any x, y ∈ [0, 1]:



t(x, y) ≤ min(x, y) ≤ max(x, y) ≤ s(x, y) (1)

We will be discussing consumers’ decision making process modeled with tri-
angular norms. In this study consumers’ decision making is interpreted in the
following way:

• first, a consumer attempts purchasing a product or a service considering
general needs for it. This solicitude results in a series of necessity factors
corresponding to needs. The necessity factors are expressed as values of
a membership functions and we call them premises
• then, (s)he confronts the general needs with properties of a concrete item or

offer, which fits the general need to some extent. The confrontation produces
fitting factors, again expressed as values of a membership function. We call
the fitting factors priorities,
• we assume that the property of a given item/service cannot increase corre-

sponding need, it rather may soften the need. We say that priorities moderate
premisses and implement the moderation with applying a t-norm. Note that
according to formula 1 the result of moderation cannot exceed weaker of the
premise and the priority,
• finally we aggregate moderated premisses and priorities with a t-conorm. We

assume here that needs vote for purchasing, therefore they either strengthen
each other, or at least not weaken themselves. Note that the formula 1 shows
that the aggregation with any t-conorm will produce a result not weaker than
the stronger moderated premise/priority.

In this study we consider only positive premisses. A discussion on negative pre-
misses, i.e. premisses which vote against purchasing, is not in the scope of this
paper. We only wish to note that initial discussion on this subject was under-
taken in [5]. That attempt, utilizing balanced fuzzy sets [4] in decision making,
combines both types of premisses: positive and negative. In frames of another
strive positive and negative premisses are aggregating separately and then final
decision is made on these aggregation. So called intuitionistic fuzzy sets [1, 2] or
vague fuzzy sets [3] can be used as vehicles for such aggregation.

4 Case Study

To be able to compare described in section 3 models and observe how their
properties are reflected while modeling decision making processes, we introduce
a case study. In this paper we will continue a discussion on a decision making
process regarding purchase of a car (by analogy to: [5]). In order to be able
to compare results, we will discuss the same set of eight pairs of premises and
priorities for five different customers.

We will be analyzing following attributes encouraging purchase of a car:

• if you have to take care of babies, it is easier to transport them in a car than
by public transport,
• shopping with a car is very convenient,
• in a city, where decision maker lives, car allows you to go faster than by bus

or by tram,



• having a nice car manifests consumer’s good taste and his wealth,

• with a car you can easily make weekend trips to nearby places,

• car allows you to travel at any time you’d like, you are not dependant on
any timetables,

• if the weather is bad, driving a car is better than waiting on the bus stop,

• car allows to transport plenty of luggage without overworking.

First, we describe customers and their vectors of premises and priorities. Next,
in subsection 4.2 we discuss methodology of applying triangular norms for com-
puting the decision.

4.1 Consumer’s vectors description

The analysis revolves around five customers (named A, B, C, D and E). All of
them are discussing the same set of attributes regarding a purchase of a car.
Selection of vectors of premises and priorities describing customer’s preferences
was performed by authors. We chose these particular values in order to capture
different real-life situations.

Customer A was assigned with following vector of premises:

Apremises = [ 0.00, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20 ] (2)

Customer A evaluated all premises as weak ones. First premise is considered
as not important at all (is equal to 0). He is not convinced that having a car
is necessary. Similarly, vector of priorities for customer A expresses his lack of
strong positive opinions regarding one particular car.

Apriorities = [ 0.00, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20 ] (3)

A is consequently convinced, that there is no strong motivation for him to
buy a car. We expect that consumer his final decision regarding the purchase of
a car will be weak.

Customer B was assigned with following vector of premises:

Bpremises = [ 1.00, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20 ] (4)

B has evaluated first premise as extremely important. He has small babies
and having a car would be very helpful to transport them. The rest of premises
were evaluated as rather not influencing. Below shown is vector Bpriorities, which
gathers customer B’s priories evaluation towards one particular car.

Bpriorities = [ 1.00, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20 ] (5)

Analogically, first priority was evaluated as extremely important - he believes
that this particular car is suitable and would play its role as a help while trans-
porting his family. The rest of priorities still have weak impact on his behavior.



Customer C is described by a following vector of premises:

Cpremises = [ 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80 ] (6)

All premises were recognized as very important. Analogically, C’s vector of
priorities Cpriorities contains high values.

Cpriorities = [ 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80 ] (7)

C is strongly convinced that buying car is necessary. Moreover, this one
particular car he is analyzing meets his expectations. We expect that C’s decision
should be strong positive.

Customer D has following values attached to premises regarding purchase of
a car in general:

Dpremises = [ 0.80, 0.30, 0.70, 0.00, 0.10, 0.60, 0.90, 0.30 ] (8)

His preferences are varied. There are several premises recognized as important
and several recognized as very weak. There is even one attribute (premise number
4: car as a way to manifest one’s wealth and social status), which in D’s opinion
initially does not matter at all. Vector Dpriorities describes D’s priorities towards
particular car.

Dpriorities = [ 0.10, 0.80, 0.20, 0.90, 0.60, 0.10, 0.00, 0.80 ] (9)

This customer’s strengths of all priorities are drastically different than strengths
of corresponding premises. When D has faced this one particular decision, he
drastically reevaluated his opinions. We will observe how different moderating
operators would cope with these vectors. Situation captured in Dpremises and
Dpriorities corresponds to a case, when facing one particular choice we recog-
nize several new important features of given product. In such case, old premises
lose their impart on the final decision. This can be caused for example by very
persuasive marketing communications, when customer starts to analyze new pri-
orities, which concern one particular car. Successful marketing campaign makes
customer D believe that these new projected features of advertised car are even
more important than original premises.

Customer E was assigned with following vector of premises:

Epremises = [ 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80 ] (10)

Customer E has reviewed his opinions regarding purchase of a car in general
and decided that all premises are very strong. But when one particular car was
analyzed, he reevaluated the importance of named priorities and it turned out
that all attributes are rather insignificant. Vector Epriorities presents reevaluated
priorities.

Epriorities = [ 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20 ] (11)

Situation described with vectors Epremises and Epriorities happens when at
first we are strongly convinced that some product is a necessity. Next, when
we face a particular decision, we are surprised to notice that what has been so
appealing has lost its charm and we are rather disappointed.



4.2 Results of aggregation

In following subsections we discuss results obtained for A, B, C, D and E after
applying operators described in section 3. We discuss three different methodolo-
gies of moderation and aggregation:

1. various t-norms for premises and priorities moderation and max t-conorm
for final decision calculation,

2. min t-norm for premises and priorities moderation and various t-conorms for
final decision aggregation,

3. various t-norms for premises and priorities moderation and their dual t-
conorms for final decision calculation.

Chosen strategy of applying triangular norms was dictated by literature re-
view and our intuition. Authors picked popular triangular norms and combined
them in order to obtain different results.

Moderation with different t-norms and aggregating with max t-conorm
In this subsection we will discuss decisions made for customers A, B, C, D and E
basing on maximum t-conorm and vectors of premises and priorities moderated
with different t-norms. At first, we would like to show exemplar outputs of mod-
eration. Please note that all calculations were performed according to formulas
given in Table 1.

Table 12 contains exemplar results of premises and priorities moderation
using minimum t-norm for consumers A and C.

A: 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2
C: 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

(12)

In the same fashion calculated were moderated values for consumers B, D and E.
Analogically, we moderated premises with priorities using other t-norms, namely:
product, Lukasiewicz t-norm, Nilpotent minimum, Drastic t-norm and Hamacher
product. Due to space limitations these calculations are not discussed to greater
extent. Please note, that none of results obtained via moderation using t-norms
different than minimum would give us values greater than ones received with
the minimum (property explicitly stated in formula 1).

Next, we would like to discuss final decisions obtained for consumers A, B, C,
D and E after applied maximum t-conorm. Table 13 contains values of decisions
aggregated with max for vectors moderated using various t-norms. The top row
of table 13, contains information about applied t-norms and t-conorms.

minimum product Lukasiew. Nilpotent Drastic Hamacher
maximum maximum maximum maximum maximum maximum

A: 0.20 0.04 0.00 0.00 0.00 0.29
B: 0.90 0.90 0.90 0.90 0.90 0.90
C: 0.80 0.64 0.60 0.80 0.00 0.67
D: 0.30 0.24 0.10 0.30 0.00 0.28
E: 0.20 0.16 0.00 0.00 0.00 0.19

(13)



Results of minimum t-norm and maximum t-conorm (first column) show that
only B and C are strongly convinced about the purchase of one particular car.
All other customers express weak opinions. Consumer B represents a situation,
when gathered is one strong positive information and several weak premises and
priorities. Decision computed for consumer C is also strong positive one, what
is no surprise, as all evaluations both of premises and priorities are high.

In this first case, consumers A, D and E are not convinced about the purchase
of given car. Even though some of them have recognized several strong priorities
(or premises) the process of moderation disregarded them and the decision was
computed as a weak one.

Second column contains values received by maximum t-conorm aggregation
on vector of moderated premises and priorities. Moderation was performed using
product t-norm. In the second case, only B and C made strong positive decisions.
Through properties of multiplication of numbers not greater than 1 the output
of moderation contains mostly low numbers. Therefore, max t-conorm as an
aggregation operator is more than necessary so that we can somehow balance low
results received through multiplication. Applied product t-norm and maximum
t-conorm for E gave us result equal to 0.16. Previously discussed combination
of operators also returned equally weak choice. The weakest value of aggregated
decision was computed for A. Product t-norm strongly reflected the fact that all
premises and priorities for A were weak ones.

Third column of table 13 contains decisions obtained with a combination of
Lukasiewicz t-norm and maximum t-conorm. Analogically to the previous case,
consumers B and C are the only ones, who are convinced about the purchase of a
car. Consumers A and E’s decisions are equal to 0 - they are absolutely indifferent
towards the decision regarding a particular car. This is first combination of t-
norms and t-conorms, which returns such a strict output.

Fourth column in table 13 presents values obtained after applying Nilpotent
minimum t-norm and max t-conorm for A, B, C, D, and E. Results of aggregation
obtained with Nilpotent minimum t-norm and maximum t-conorm are close to
results obtained using Lukasiewicz and maximum norms. B and C are strongly
convinced about the purchase of the car, while A, D and E would not buy the
car. In this case output for C is more satisfying (is higher) than in the previous
case - enhanced was the fact that C’s both vectors have all strong positive values.

Fifth column contains the results obtained after applying Drastic t-norm
and maximum t-conorm. As we expected, all uncertain cases were eliminated.
Positive decision was computed only for consumer B.

Sixth column in table 13 presents the output of moderation and aggregation
using Hamacher product t-norm and maximum t-conorm for all customers. No-
ticeable is that B and C are strongly convinced about the purchase of the car.
At the same time A, D and E’s decisions are weak positive.

Moderating with min t-norm and aggregating with various t-conorms
Second part of our experiment was to observe the differences between decisions
aggregated using different t-conorms. In this approach in each case premises
and priorities were moderated using minimum t-norm. Table 14 compares final



decisions obtained using t-conorms as aggregation operators. The top row of
table 13, contains information about applied t-norms and t-conorms.

minimum minimum minimum minimum minimum minimum
maximum prob. sum bound. sum Nilpotent Drastic Einstein

A: 0.20 0.79 1.00 0.20 1.00 0.89
B: 0.90 0.98 1.00 1.00 1.00 0.99
C: 0.80 1.00 1.00 1.00 1.00 1.00
D: 0.30 0.71 1.00 0.30 1.00 0.81
E: 0.20 0.83 1.00 0.20 1.00 0.92

(14)

Results obtained using min t-norm for moderation and various t-conorms for
output calculation are unsatisfactory. Apart from the first and fourth case, when
we applied min-max dual operators and minimum/Nilpotent maximum norms,
all other results compute strong positive decisions for each customer. Especially
undesirable effects obtained were for bounded sum and Drastic t-conorms.

We find second methodology rather unsuitable. Nevertheless, basing on dis-
cussed results, we observed how different t-conorms aggregate sequences of the
same values. For example, let’s discuss aggregation of an 8-element sequence of
0.2s. We observe that two t-conorms, namely maximum and Nilpotent maximum
maintain the same result and it is 0.2. All other discussed t-conorms gradually
saturate and tend to 1. Norm, which is returning 1 instantly is Drastic t-conorm.
Norm, which is tending most slowly to 1 is bounded sum. The higher are the
values of aggregated sequence, the faster the result tends to 1. For a sequence of
0.8s, only after three operations the result is saturated. Of course, by definition
of triangular norm, the result of aggregation is always bounded by 1.

In consequence, gradual saturation of the result means that certain triangular
norms, including bounded sum, probabilistic sum and Einstein sum incorporate
following property: the more positive motivational stimuli one recognizes the
closer the decision gets to 1. Second corollary is following: one strong positive
argument (moderated premise with priority) can be replaced by several weak ar-
guments. Discovering these properties is very important from the point of view
of consumer decision making modeling. Presented properties of aggregation op-
erators are highly desirable - economists prove that people tend to simplify
cognitive processes. What does it mean in the context of decision making? Satu-
ration of named t-conorms allows us to model a situation, when customer, even
though there might be an infinite number of premises, is able to efficiently make
a decision basing on relatively small set of arguments. Presented t-conorms al-
low to represent nontrivial aspects of the decision making processes, including
behavioral biases. We believe that applying them in the neoclassical theory of
consumer’s choice might be increase its accuracy and would allow us to describe
real-life situations more accurately.

Moderating with different t-norms and aggregating with their dual
t-conorms Last, but not least, we would like to discuss the decisions regarding
purchase of a car computed basing on various dual t-norms and t-conorms. Table



15 shows decisions made for consumers A, B, C, D and E. The top row informs us,
which t-norm and t-conorm was applied in order to compute particular decision.

minimum product Lukasiewicz Nilpotent Drastic Hamacher
maximum prob. sum bounded sum Nilpotent Drastic Einstein

A: 0.20 0.23 0.00 0.00 0.00 0.58
B: 0.90 0.92 0.90 0.90 0.90 0.98
C: 0.80 1.00 1.00 1.00 0.00 1.00
D: 0.30 0.60 0.20 0.20 0.00 0.78
E: 0.20 0.75 0.00 0.00 0.00 0.91

(15)

Obtained results prove again that the choice, of which operators apply for com-
puting the decision has major impact on the output. The differences between
particular results are substantial. It is vividly seen in the case of customer C,
whose decisions vary from 0 to 1, depending on the applied norm. Variety of
properties incorporated in different aggregating operators would allow us to use
ones, which would describe decision making phenomena the best.

Decisions obtained for D and E are analogical to ones received with the first
methodology. We find outputs computed using operators product/probabilistic
sum and Hamacher product/Einstein sum for D and E as too high. These two
vectors were constructed to reflect consumers who are undecided (D) or who are
disappointed with one particular car described by vector of priorities (E).

Customers B and C were assigned with strong positive decisions in all cases,
except from one (Drastic t-norm and t-conorm for consumer C). Comparing the
third methodology with the first and the second one, we see that C’s decisions
were computed before as weaker. For further research left is the topic, which
methodology is more suitable.

Finally, we’d like to discuss decisions computed using dual t-norms and t-
conorms for consumer A. Third approach computed rather optimistic results.
In comparison, for A’s decisions, first methodology in all cases computed val-
ues non greater than using the third approach. Third approach for the follow-
ing three dual operators: Lukasiewicz t-norm/bounded sum, Nilpotent mini-
mum/Nilpotent maximum, Drastic t-norm and Darstic t-conorm computed A’s
decisions as zeros. We find this results as too conservative, since these norms
disregard all preferences, which even though are weak, but still they exist. As we
mentioned in [5], Kahneman and Tversky proved that people tend to overweight
small probabilities and underweight moderate and high probabilities, c.f. [10].
Therefore justified would be the choice of conservative operators for the case of
consumer C and rather optimistic operators for A.

5 Conclusions

In the article we discuss how different triangular norms can be applied to model
decision making processes based on positive premises only. We support our pa-
per with the case study of five customers who decide about one particular car
basing on the same set of attributes. These five cases represent different real-
life situations of people, who show varied attitudes towards both a decision



regarding purchase of a car in general and different opinions regarding one par-
ticular car, about which the decision is made. We apply three methodological
approaches of how to calculate the decision using t-norms and t-conorms. First
one uses various t-norms for premises and priorities moderation and maximum
t-conorm to compute the output. Second approach applies minimum t-norm for
vector’s moderation and various t-conorms for decision calculation. Third ap-
proach uses dual t-norms and t-conorms. First and third methodologies bring us
satisfactory results. Second one we find rather not suitable. We noticed that sev-
eral t-norm/t-conorm combinations would allow us to model more conservative
(weak) decisions, while some other are optimistically enhancing the result. An
example of a set of operators strengthening the decision is Hamacher product
and Einstein sum. Examples of t-norms, which applied to vectors of premises
and priorities compute rather weak decisions, for almost each t-conorm, are
Lukasiewicz, Drastic and Nilpotent minimum t-norms. Important conclusions
were introduced while discussing aggregation of sequences using bounded sum,
probabilistic sum and Einstein sum norms. Saturation of decision computed
using named operators ideally reflects human’s tendency for simplification. Pre-
sented triangular norms allow to represent nontrivial aspects of the theory of
consumer’s choice. Possibility of incorporating behavioral biases into consumer
decision making models would allow us to develop a methodology, which would
describe real-life phenomena more precisely and more extensively.
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