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Abstract. The paper presents and discusses direct and indirect tun-
ing of a knowledge-driven harmonization model for tonal music. Auto-
matic harmonization is a data analysis problem: an algorithm processes
a music notation document and generates specific meta-data (harmonic
functions). The proposed model could be seen as an Expert System with
manually selected weights, based largely on the music theory. It em-
phasizes universality - a possibility of obtaining varied but controllable
harmonies. It is directly tunable by changing the internal parameters of
harmonization mechanisms, as well as an importance weight correspond-
ing to each mechanism. The authors propose also indirect model tuning,
using supervised learning with a preselected set of examples. Indirect
tuning algorithms are evaluated experimentally and discussed. The pro-
posed harmonization model is prone both to direct (expert-based) and
indirect (data-driven) modifications, what allows for a mixed learning
and relatively easy interpretation of internal knowledge.
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1 Introduction

Harmony is an important element of tonal music, it defines a vertical relation
between notes [1], and by definition is opposed tomelody - a horizontal succession
of notes in a specific voice. In fact, however, the harmonic relations of the leading
melody (regarding mono- or homophony) are largely depending on the horizontal
succession of notes and melodic intervals between them. Harmonic passages that
follow harmonic chords (with smaller or larger deviations) can be frequently
detected in a melody. Similar, but obviously much stronger harmonic relations
are to be found in an accompaniment, where the melody is less (or even not at
all) important, as the main goal is to define a background for the leading melody.
The obvious exception to these assumptions are polyphonic musical works. They
tend to cultivate two or more independent voices, that compete for attention,



but also have to cooperate harmonically, usually indicating strong harmonic
relations.

Automatic harmonization can be seen as a problem crossing two different
areas: 1) theoretical music knowledge and 2) formal mathematical computations
- presented in form of algorithms or slightly less formal Artificial Intelligence
solutions. From the technical point of view it could be seen as analyzing of a
music notation document and producing meta-data (harmonic functions). Over
the years, many various approaches and techniques were used to solve the prob-
lem (or similar). The most popular paradigms are: Expert Systems [2][3], Neural
Networks [4], Constraints and probabilistic approaches [5] [6] [7], evolutionary
algorithms [8]. Due to excessive complication and uncertainty, related to such
sensitive subject as music (feelings and sensitivity still tend to evade scientific
approaches), no approach seems to fully explore and describe the subject. In
fact, some of the approaches focus on a particular style of musical works, as
for example typically Baroque pieces of J. S. Bach in [4]. This allows for rel-
atively narrow specialization and therefore eases the algorithmic description of
the problem.

Frequent limitations for above-mentioned approaches seem to be: lack of uni-
versality (results limited to a specific area), an unpredictability, a need for a large
learning examples database and an extensive amount of calculations. The au-
thors’ approach is mostly based on an advanced theoretical music knowledge,
especially in the area of harmonization, and is aimed at solving these disadvan-
tages. The authors propose a model that may be customized at various levels
and does not need any learning examples, as they are replaced by an expert
knowledge of harmony, incorporated in model. It may be defined initially as Ex-
pert System with manually selected weights, however the authors also propose
a scheme for tuning the general harmonization model. With enough knowledge
of harmony one can also directly modify the model using internal parameters.

In this paper the authors concentrate on tuning procedures of their harmo-
nization model introduced in [9] and extended in [10]. The paper is organized into
five sections; Section 1 being an introduction. Section 2 presents basic concepts
concerning harmony and harmonization in tonal music. Section 3 describes the
harmonization model and explains mechanisms used. Section 4 discuses various
tuning possibilities of a proposed model and presents a sample of experimental
results. Finally, Section 5 concludes the paper, discuses configuration, universal-
ity properties and suggests future work.

2 On harmony in tonal music

The process of creating accompaniment to a homophony (lone melody - a single-
layered progression of sounds in time) can, in practice, be divided into two
phases. The first is harmonization (determination of harmonic functions and
chords corresponding to them), the second phase is creation of accompaniment
using previously determined chords. It is important to stress, that in vast num-
ber of cases there is no single, ultimate harmonization for a given melody. There



are many possibilities, from the most simple and obvious to the highly compli-
cated and non-trivial ones (e.g. improvised music, jazz). The decision depends
mostly on a style of music. It also relies on capabilities of the available instru-
ment/orchestration, and the abilities of performers/harmonizers. There are also
cases when no additional information is needed to perform the music, except for
the leading melody and harmonic functions. A common example is an improvised
à vista accompaniment to songs played on a guitar or a piano.

2.1 The tonal harmony

For the purposes of this paper the authors have focused on a tonal system with
two basic scales: major and minor (natural minor as well as harmonic and
melodic modifications). The authors’ considerations and experiments are based
on seven diatonic harmonic functions (built on 1st, 2nd, 3rd, 4th, 5th, 6th and 7th

grade of major/minor scales) with common modifications: adding the seventh,
ninth, and sixth (all three minor and major).

The harmonic relations in tonal system tend to be well defined in terms
of consonants (chords ’pleasant’ to human ear, stable) and dissonances (chord
slightly ’unpleasant’, unstable, introducing a tension that needs to be resolved
to consonants). The authors have omitted alterations and higher intervals (alike
eleventh, thirteenth), that may be considered as dissonances meant to resolve,
rather than intrinsic harmony.

3 Proposed harmonization model

The proposed harmonization model is based on several mechanisms that closely
follow music theory:

1. Particular note can have various harmonic importance (based on the
note’s relative length, the notes placement in measure, surrounding notes,
volume, etc.);

2. Each note excites (fits to) several harmonic functions, based on pitch
and function components taken into consideration (components higher than
9th are usually very rare and considering them is very difficult);

3. Some harmonic functions are more likely to occur than others (the
simplest example being Tonic - a base and consolation for vast majority of
tonal music, therefore usually occurring most frequently). It is preferable to
prioritize the commonly used functions;

4. Some specific successions of harmonic functions are more or less
probable, therefore it is possible to prioritize the more likeable (frequent)
successions (e.g. Dominant → Tonic or Tonic → Subdominant).

The mechanisms are implemented in an independent way (when possible) and
weighted using a standard range [0; 1], in order to easily configure (or eliminate)
their degree of influence.



3.1 Data representation of harmonic functions

Each harmonic function is stored in a structure that contains a vector of Har-
monic Function Strengths (since we consider 7 different diatonic functions its
length is 7) and a corresponding vector of function modifiers. Harmonic Func-
tion Strength is a factor used to determine probability of occurrence of a specific
diatonic harmonic function. In the authors’ experiments the function modifiers
are mostly limited to sevenths, with occasional ninths and in rare cases to sixths.
Sixth is present in so-called Chopin’s chord : Dominant with seventh and natural
or augmented sixth instead of fifth, resolving down to the first degree of scale.
The diatonic function with modifiers in a given key is equivalent to chords e.g.
Tonic with modifier seventh in key G-major is equivalent to G7. Some modifiers
cover others, e.g. a chord with a ninth is a variation of a chord with a seventh.
Modifiers can be seen as subclasses of the main class (basic diatonic function).

For simplification reasons the authors have decided to determine the har-
monic functions in constant intervals: twice per measure in the case of 3 or 4
beats and once per measure in the case of 2 beats. This is sufficient in most
cases, as in practice the harmonic functions rarely change more frequently. The
authors have also experimented with harmonic fragment being equal to the whole
measure. Musical piece is decomposed into harmonic fragments (defined as in-
divisible musical unit with a single diatonic function attached to each one of
them). The Harmonic Function Strength for a harmonic fragment is a sum of
function excitations (determined by note pitch) for all notes in the fragment,
according to varied degrees of Note Importance.

3.2 The flow of the proposed model

The flow of the proposed model regarding a single harmonic fragment is pre-
sented in Fig. 1, and proceeds as follows:

1. The harmony of a particular fragment is evaluated by examining all notes
that it is composed of. Based on a set of rules from Section 3.3, every note
is attached with a Note Importance value.

2. Each note excite (add a certain value to Function Strengths vector) several
corresponding diatonic functions by being a specific chord component, with
degree defined by the Function Excitation Matrix (Section 3.4).

3. After all the notes are processed, the vector of Function Strengths is el-
ementwise multiplied by a Function Popularity Vector (Section 3.5). This
primarily serves as a method of favouring the more popular functions. The
Function Popularity Vector can also be a way to get a rich and uncommon
harmony.

4. A Function Successions mechanism is applied after the individual process-
ing of all of the harmonic fragments is complete. Function Succession matrix
(Section 3.6) defines the degrees of desire for a specific succession of harmonic
functions. They serve as additional modifiers (regarding direct predecessor
and successor) for vectors of the Function Strengths. Every fragment is mod-
ified twice, first as a predecessor and the second time as a successor; only
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Fig. 1. Harmonization model flow

the outmost fragments are changed once. The modifications are calculated
for every possible function succession (a total of 49 combinations is possible
for 7 recognized functions, the modifiers are not taken into account). They
are multiplied by both corresponding function strengths and additionally by
a 1/12 factor what potentially keeps them in the original Function Strengths
range.

5. A classification decision is made for each Harmonic Fragment. It is based
on values of Function Strengths. Winner-takes-all decision was used for sim-
plicity reasons; the classification-like relations are already hidden inside the
above mentioned mechanisms. It is important to stress that any classifier
can be used for this purpose (including direct use of function subclasses,
described in Section 3.1. Determination of classifier for this purpose is a
large topic exceeding the scope of the paper. The winning diatonic func-
tion is translated into chord, regarding the key. Finally it is attached with
chord modifiers (e.g. seventh, ninth), that were stored independently during
Excitation.

Each omittable mechanism (Note Importance, Function Popularity, Function
Succession) is attached with an overall Global Configuration Weight from the
range [0; 1] (Fig. 1). It can be used to fine tune or disable the influence of a
specific mechanism on the final harmonization result. Excitation is an essential
mechanism to obtaining Function Strengths, therefore it may not be weighted in
a similar manner. The mechanisms are based on matrices (Function Excitation,



Function Succession), vectors (Function Popularity) or rules (Note Importance)
that offer substantial, direct and indirect configuration possibilities. The follow-
ing subsections describe in detail the above-mentioned mechanisms.

3.3 Note importance determination

Note Importance may be determined by:

– the length of note - longer notes have, in general, greater influence on the
harmony. The note length is used as an initial value for further importance
weighting. Values corresponding to neighboring note lengths (alike eighth
note and quarter note) have common ratio, empirically stated as 5/6.

– position in measure - notes at inherently accented parts of measure - on-
beat - are very important. Notes at generally unaccentuated parts of measure
- off-beat, are less significant. Notes occurring in-between these main beats
are harmonically even less important.

– notes that are at the end of ties have minor contribution to the
harmony; when played on string instruments (e.g. grand piano, upright
piano, guitar) they are not hit again. They are therefore relatively quiet.

– notes that are easily-heard by human ear are placed in extreme
voices (highest and lowest notes); notes in the middle voices are slightly
harder to hear and therefore contribute less to the local harmony;

– accentuation increases the volume and therefore harmonic value of the
note.

Homophony harmonization was chosen for the experimental evaluation, there-
fore the authors have determined a set of Note Importance rules described in
Table 1. In this case, rules regarding voice position are irrelevant, and are not
taken into consideration. These rules would be however important for music
works with many voices. Corresponding note length from upper part of the Table
1 is taken as an initial value of Note Importance. Initial values for non-standard
note lengths (e.g. a half note with a dot) are determined proportionally. The
weight corresponding to the first fitting rule from lower part of the Table 1
serves as the multiplier for the initial value.

3.4 Implementation of Functions Excitation by notes

A well-defined diatonic function contains at minimum three components (typi-
cally root note, third and fifth). More complicated diatonic functions contain also
additional or altered intervals. Determination of exact pitches of these function
components requires detection of the piece key and reading of the current key
signature.

Two matrices of Function Excitation are used to define the excitations of dia-
tonic functions with notes (from the melody or the accompaniment). The matrix
for major scales is presented in Table 2. Each diatonic function is excited by the
particular matching note to a specified degree. This, obviously, is relative to the



Table 1. Determining Note Importance

Note length Initial value

Whole note 1.440
Half note 1.200

Quarter note 1.000
Eighth note 0.833

Sixteenth note 0.694
Thirteenth-second note 0.579

Condition Importance weight

Note at the end of a tie 0.4
Note on the 1st beat 1.0

Note on the 3rd beat 0.9
Accentuated note 0.8

Note on the 2nd or 4th beat 0.7
Other notes 0.6

pitch of the note in question, and to the pitches of the notes occurring in the
tonal functions themselves. The authors have defined the weights of excitation
in the range of [0, 1], assigning:

– [0.8; 1.0] - greater degrees to the common chord components (e.g. root note,
third and fifth);

– [0.4; 0.6] - moderate degrees to the less common components: sixth, seventh,
ninth with occasional modification of natural third. Making major chords
from naturally minor chords using augmented third serves frequently as toni-
cization - a local Dominant → Tonic resolution);

– [0.1; 0.2] - small degrees to the rare modifications of natural sixth seventh
and ninth.

Table 2. Excitation weights for major scales

Absolute shift from function root note[in semitones]
0 1 2 3 4 5 6 7 8 9 10 11

D7 1 0 0 0.9 0 0 0.8 0 0 0 0 0
T6 1 0 0 0.9 0.1 0.1 0 0.8 0 0 0.4 0
D 1 0.5 0.2 0.1 0.9 0.1 0 0.8 0 0.4 0.6 0.1
S 1 0 0 0.1 0.9 0.1 0 0.8 0 0 0.4 0
T3 1 0 0 0.9 0.1 0.1 0 0.8 0 0 0.4 0
S2 1 0 0 0.9 0.1 0.1 0 0.8 0 0 0.4 0
T 1 0 0 0.1 0.9 0.1 0 0.8 0 0 0.4 0

A similar matrix has been prepared for minor scales. Due to space limitation
it is not presented in this paper. The obvious differences in reference to major



scales are the natural qualities of diatonic functions. The less straightforward
dissimilarity is a frequent conversion from naturally minor Subdominant and
Dominant to major. This commonly occurs in a melodic variation of scale, and
sometimes, in harmonic variations.

3.5 Function popularity

The goal of determining and applying weights corresponding to Function Pop-
ularity is to directly prioritize frequently occurring tonal functions (e.g. Tonic,
Subdominant, Dominant). This is a direct way to make them more frequent than
less popular functions, as inherently specified by music theory. The goal can be
indirectly obtainable by using lower coefficients in the Functions Succession ma-
trix (described in Section 3.6). Obviously, the direct method makes controlling
the process much easier. For experimental studies the authors have used the
Function Popularity vector, specified in Table 3.

Table 3. Function Popularity vector weights

Tonal function

Name Weight

T 1.0

S2 0.6

T3 0.7

S 0.9

D 0.95

T6 0.65

D7 0.2

3.6 Succession of harmonic functions

The succession of harmonic functions (horizontal relations between neighbor-
ing harmonic functions) is implemented using encouragement of more probable
combinations, with moderation of less likable ones. This is done using a Func-
tion Succession matrix. The matrices proposed for major and minor scales are
presented in Table 4. The matrix for minor scale is similar and due to space
limitations not presented here.

The matrices values were determined in order to prioritize the most likable
successions. The exemplary common successions are: Tonic into Subdominant,
Subdominant into Dominant and Dominant into Tonic - cadence (the simplest
and most common). Another example is less common deceptive cadence (Domi-
nant into Tonic6). The matrices also support tonicization (e.g. succession from
Subdominant2 into Dominant). It is worth mentioning that the most supported



Table 4. Functions Succession weights for major scales

Transfer into:
T S2 T3 S D T6 D7

D7 0.5 0.3 0.5 0.2 0.9 0.1 1.0
T6 0.4 0.8 0.3 0.8 0.7 1.0 0.2
D 0.9 0.4 0.7 0.3 1.0 0.8 0.3
S 0.7 0.4 0.4 1.0 0.9 0.5 0.1
T3 0.3 0.2 1.0 0.5 0.6 0.8 0.1
S2 0.2 1.0 0.2 0.5 0.9 0.4 0.2
T 1.0 0.4 0.3 0.8 0.9 0.6 0.1

quasi-succession is maintaining the current function (no change) with the max-
imum degree of support: 1.0. It allows more efficient handling of common cases,
where harmonic functions change less frequently than the arbitrary harmonic
fragment length (e.g. two beats). It is also important to mention that the sup-
port of succession occurs only between harmonically determinable harmonic frag-
ments, excluding these that do not contain notes at all (only pauses), or contain
only ongoing tied notes from previous beats. It is assumed that such fragments
continue the previous harmonic function (which is a slight oversimplification as
it does not have to be always true). The succession support occurs forwards
and backwards for each possible succession, with a degree defined by the sum
of products of the neighboring Function Strengths and a succession weight from
the Functions Succession matrix.

4 Model tuning and experimental results

The authors have implemented the proposed model and tested it using music
documents in MusicXML file format [11]. This section discuses various tuning
possibilities and presents exemplary homophony harmonizations with the use of
various tuning approaches.

The model has been applied to musical works containing a single melody
(monophony) with no key changes (no modulations). It may be considered as
a greater challenge (more harmonic uncertainty) than using musical works with
accompaniment or several independent voices, where harmonic functions are gen-
erally easier to detect. The proposed harmonization model is viable for almost
every musical piece, regardless of the number of voices, as long as it is maintained
in a tonal system, e.g. uses either major or minor scale (with possible modifi-
cations like harmonic, melodic, Dorian, etc.). In case of many voices or chords,
ideally, a customized Notes Importance determination is required (as described
in Section 3.3), in order to detect and prioritize more important voices, and at-
tenuate the less important ones. Efficient harmonization of a musical works with
key changes (modulations) requires detection or indication of such changes, and
an adequate update of tonal root and/or minor/major scale properties.

The authors propose the following model modifications:



1. changing values of Global Configuration Weights (respectively: Note
Importance, Function Popularity, Function Succession), exemplary applica-
tions are: moderation of less popular functions, introduction of uncommon
function successions;

2. direct tuning - changing values in the configuration matrices (Function
Excitation matrix, Function Popularity vector, Function Succession matrix)
and defining custom Note Importance determination rules. The initial values
are meant to be universal, changing them directly influences the behavior of
the model and produced results in a specific direction, but requires experi-
ence and advanced knowledge of harmony;

3. indirect tuning by learning from examples - modification of a part
of proposed approach (Function Popularity vector and Function Succession
matrix) using non-direct modification (tuning) of matrices. The example is a
harmonized music piece: a music document with attached harmony functions
corresponding to class labels. A simple statistical analysis of the occurring
harmonic functions are used to update the values in the Function Popularity
vector. Analysis of occurring harmonic function successions in the exam-
ple are used to update Function Succession matrix. Total extinction of rare
functions and successions may occur (depending on the harmony relations
included in the examples), therefore the authors propose to limit the min-
imal values to a fixed threshold 0.05. The learning process is independent
regarding the sequence of examples - similarly to batch learning, as sequential
learning would prioritize the recent examples over the previous ones.

The results in Fig. 2 present alternative harmonizations produced using different
tuning procedures. The fragment of musical piece (A. De Vita and H. Sharper -
Softly, as I leave you) was harmonized with harmonic fragments set to 2 beats
(half of measure). The first and second harmonies were obtained for original
model with various values of Global Configuration Weights (respectively: Note
Importance, Function Popularity, Function Succession): {0.4, 0.4, 0.4} in the first
case, {0, 0, 0.8} in the second case. In the second case less popular functions are
encouraged to appear. Third harmony was obtained by using direct tuning of
the model (by changing Function Excitation matrix to produce more seventh
and ninth chords, and Function Popularity vector to encourage rare functions.
Fourth harmony was obtained by using indirect tuning by learning from exam-
ples, with ten examples being modern popular music pieces of unspecified genre.
The learning set has relatively simple harmonies, therefore the harmonization
results (produced by the tuned model) are also simplified.

Regarding indirect tuning: it is possible to tune the original model into a
specific direction by training with a preselected set of examples (i.e. jazz pieces
with complicated harmony or musical pieces from a specific period). Such ap-
proach requires a number of carefully selected examples and is problematic as
musical styles are often ambiguous.



Fig. 2. Alternative harmonizations using different tuning procedures

5 Conclusion and future work

In this paper the authors have presented music theory based harmonization
model with emphasis on model tuning. The main goal of the approach is univer-
sality but also control over harmonization process and results. Various possibil-
ities of the initial model modifications are discussed with given examples.

5.1 Remarks on universality

The proposed model offers numerous configuration possibilities and universal-
ity: as it is not data-driven but knowledge-driven, it provides multiple levels of
model control and, to some extent, results of harmonization. As opposed to the
data-driven approaches (taught with examples) the authors’ methodology does
not need to be fed with large or representative sample of data (requiring data
gathering, selection and frequently producing uncontrollable results). It may be
used in many variants relying only on the theoretical knowledge. With modifi-
cations of underlaying configuration data one can achieve many valuable tasks,
such as:

– defining the Note Importance rules tuned to various musical pieces;
– defining the Function Excitation matrix to generate rare or simple func-

tions/modifications, resulting in a complicated or simplistic harmony;
– defining the Function Popularity vector to moderate, forbid or encourage

specific tonal functions, directly limiting or increasing probability of their
occurrence;

– defining the Function Succession matrix to moderate, forbid or encourage
specific harmonic function successions;

– changing the Global Configuration Weights of harmonization mechanisms in
order to tune the model to the specific needs and expectations;

– iterate through configurations in order to quickly generate various (possibly
interesting) harmonies for the same musical work.

The authors propose also data-driven tuning of the initial model, what could
provide more viable harmonizations or (with preselected set of examples) pro-
duce specific harmony style.



5.2 Future works

Future works in the area will be conducted in the following directions:

– continuous development and evaluation of the presented harmonization model;
– determination of configuration matrices and parameters for different styles of

musical works (like jazz, classical music, popular music, etc.) using indirect
tuning with preselected set of examples (what requires relatively large and
representative examples database);

– development of the Function Succession mechanism with use of chord mod-
ifiers;

– development of the Function Excitation mechanism using also relations be-
tween notes, rather than independent notes;

– developing criteria for automatic evaluation of the obtained harmony;
– automatic parametrization of the harmonization model based on the above-

mentioned criteria;
– further development of model tuning procedures, using well established ma-

chine learning paradigms, e.g. Artificial Neural Networks.

Acknowledgement

This work is supported by The National Center for Research and Development,
Grant no. N R02 0019 06/2009.

References

1. K. Sikorski, Harmony [in Polish], Polskie Wydawnictwo Muzyczne, 2003.
2. D. Cope, An expert system for computer-assisted music composition, In Computer

Music Journal, volume 11 (4), pp. 30-46, 1987.
3. K. Ebcioglu, An expert system for harmonizing four-part chorales, In Machine

Models of Music, pp. 385-401, MIT Press, 1993.
4. H. Hild and J. M. W. Feulner, Harmonet: A neural net for harmonizing chorals in

the style of J.S. Bach, In Advances in Neural Information Processing 4, 1992.
5. F. Pachet and P. Roy, Musical harmonization with constraints: A survey, In Con-

straints Journal, volume 6(1), pp. 7-19, Kluwer Publisher, 2001.
6. F. Pachet and P. Roy, Mixing constraints and objects: a case study in automatic

harmonization, In TOOLS Europe 95, pp. 119-126, Prentice-Hall, 1995.
7. J-F. Paiement, D. Eck and S. Bengio, Probabilistic Melodic Harmonization, Lecture

Notes in Computer Science 4013, pp. 218–229, 2006.
8. R. D. Prisco and R. Zaccagnino, An evolutionary music composer algorithm for

bass harmonization, In Applications of Evolutionary Computing, LNCS, 2009.
9. M. Rybnik and W. Homenda, Knowledge-driven Harmonization Model for Tonal

Music, Proceedings of the 4th International Conference on Agents and Artificial
Intelligence (ICAART 2012), pp. 445–450, 2012.

10. M. Rybnik and W. Homenda, Extension of Knowledge-driven Harmonization
Model for Tonal Music, 2012 International Joint Conference on Neural Networks
(IJCNN 2012), Brisbane, Australia, 2012.

11. M. Good, MusicXML for Notation and Analysis, in: The Virtual Score: Repre-
sentation, Retrieval, Restoration, W. B. Hewlett and E. Selfridge-Field (ed.), The
MIT Press, pp. 113–124, 2001.


