AN OVERVIEW OF SECURITY ISSUES AND
TECHNIQUES IN MOBILE AGENTS

Mousa Alfalayleh and Ljiljana Brankovic
The School of Electrical Engineering and Computer Science, The University of Newcastle,
Newcastle, NSW 2308, Australia. E-mail: {mousa, lbrankov}@cs.newcastle.edu.au

Abstract: Mobile agents are programs that travel autonomously through a computer
network in order to perform some computation or gather information on behalf
of a human user or an application. In the last several years, mobile agents have
found numerous applications including e-commerce. In most applications, the
security of mobile agents is of the utmost importance. This paper gives an
overview of the main security issues related to the mobile agent paradigm.
These issues include security threats, requirements, and techniques for keeping
the mobile agent platform and the agent itself secure against each other.

Key words: Security, Mobile agents, Mobile code, Malicious host, Electronic commerce.

1. INTRODUCTION

During the last several years, we have witnessed fundamental changes in
distributed and client-server computer systems. In the past, software
applications were bound to particular nodes in computer networks. This
reality has changed with the appearance of mobile agents [1], that is,
programs that act in a computer network on behalf of a human user or an
application. Agents can travel autonomously among different nodes in the
network, in order to perform some computation or gather information [2]. In
this paradigm, clients do not need to have a network connection established
while their agents are performing operations on different servers. As such,
they provide an appealing alternative to the client-server architecture for
many applications [3].

The applications of mobile agent technology are abundant and include
electronic commerce, personal assistance, distributed information search and

60 Mousa Alfalayleh and Ljiljana Brankovic

retrieval, monitoring, network management [4], real-time control, building
middleware services, military command and control [5], and parallel
processing. The promises made by this technology can hardly be overstated.
There are numerous advantages of using the mobile agent paradigm rather
than conventional paradigms such as client-server based technologies. Using
a mobile agent paradigm reduces network usage [2], dynamically updates
server interfaces, improves fault tolerance [6], introduces concurrency [2],
and assists operating in heterogeneous environments [4].

On the other hand, mobile agent technology has some limitations,
primarily in the area of security. These limitations have raised many
concerns about the practical utilisation of mobile agents. Current research
efforts in the area of mobile agent security adopt two different points of
view. Firstly, from the platform perspective, we need to protect the host from
malicious mobile agents such as viruses and Trojan horses that are visiting it
and consuming its resources. Secondly, from the mobile agent point of view,
we need to protect the agent from malicious hosts. Both points of view have
attracted much research effort. This paper gives an overview of the main
solutions that have been described in the literature to keep the mobile agent
platform and the agent itself protected from each other.

The paper is organized as follows. Section 2 deals with the security
issues related to the mobile agent paradigm such as security threats and
requirements. Section 3 gives an overview of the main solutions for keeping
a mobile agent platform secure against a malicious mobile agent. Similarly,
Section 4 presents a set of solutions for ensuring the security of mobile
agents against illegitimate platforms. Finally, Section 5 gives some
concluding remarks.

2. SECURITY ISSUES IN THE MOBILE AGENT
- PARADIGM

The mobile agent paradigm appeals to many specialists working in
different applications. This is especially true for e-commerce applications,
including stock markets and electronic auctions. Such applications involve
dealing with vast amounts of money and thus users will hesitate to use
mobile agents unless they feel that they are secure and can be trusted.
Therefore, the security of mobile agents is an important issue that has
triggered much research effort in order to find a suitable solution.

One of the most valuable characteristics of mobile agents is their
mobility that enables them to travel autonomously through the network.
However, it is precisely because of this property that mobile agents are

An Overview of Security Issues and Techniques in Mobile Agents 61

exposed to different types of attacks. We next present these attacks, together
with those that are launched by agents to harm platforms.

Unauthorized Access. Malicious mobile agents can try to access the
services and resources of the platform without adequate permissions. In
order to thwart this attack, a mobile agent platform must have a security
policy specifying the access rules applicable to various agents, and a
mechanism to enforce the policy.

Masquerading. In this attack, a malicious agent assumes the identity of
another agent in order to gain access to platform resources and services, or
simply to cause mischief or even serious damage to the platform. Likewise, a
platform can claim the identity of another platform in order to gain access to
the mobile agent data. In both cases, the malicious agent or platform will not
receive any blame for its potentially detrimental actions. Instead, the
unsuspecting agent or platform whose identity was misused will be held
responsible [2,4].

Denial of Service. A malicious platform can cause harm to a visiting
mobile agent by ignoring the agent’s request for services and resources that
are available on the platform, by terminating the agent without notification,
or by assigning continuous tasks to the agent so that it will never reach its
goal. Likewise, a malicious agent may attempt to consume the resources of
the platform, such as disk space or processing time, or delete important files
or even the whole hard disk contents, thus causing harm to the platform and
launching a denial of service attack against other visiting agents [2,4].

Annoyance attack. Examples of this attack include opening many
windows on the platform computer or making the computer beep repeatedly
[2]. Such attacks may not represent a very serious problem to the platform,
however they still need to be prevented.

Eavesdropping. In this attack, a malicious platform monitors the
behavior of a mobile agent in order to extract sensitive information from it.
This is typically used when the mobile agent code and data are encrypted.
Monitoring may include the identity of the entities that mobile agent is
communicating with, and the types of services requested by the mobile agent
[2,4]. |

Alteration. In the alteration attack, a malicious platform tries to modify
mobile agent information, by performing an insertion, deletion and/or
alteration to the agent’s code, data, and execution state. Modifying the
mobile agent execution code and state may result in the agent performing
harmful actions to other platforms, including the agent’s home platform
[2,4].

We next explore the different security requirements that the mobile agent
paradigm needs to satisfy.

62 Mousa Alfalayleh and Ljiljana Brankovic

Confidentiality. It is important to ensure that the information carried by
a mobile agent or stored on a platform is accessible only to authorized
parties. This is also the case for the communication among mobile agent
paradigm components.

Integrity. It is essential to protect the mobile agent’s code, state, and data
from being modified by unauthorized parties. This can be achieved either by
preventing or by detecting unauthorized modifications.

Availability. Platforms typically face a huge demand for services and
data. In the case that a platform cannot meet mobile agents’ demands, it
should notify them in advance. Additionally, a platform must be able to
afford a certain level of fault-tolerance and fault-recovery from unpredicted
software and hardware failures [4].

Accountability. Platforms need to establish audit logs to keep track of all
visiting mobile agents’ actions in order to keep them accountable for their
actions. Audit logs are also necessary when the platform needs to recuperate
from a security penetration or a system failure.

Anonymity. As mentioned above, platforms need to keep track of mobile
agents’ actions for accountability purposes. However, platforms also have to
balance between their needs for audit logs and mobile agents’ needs to keep
their actions private [4].

In the next two sections we present the existing techniques for protecting
agents and platforms. These techniques fall into two categories: Prevention
and detection. Prevention techniques are aimed at making it impossible for
platforms and agents to successfully perform an attack. For example, a
tamper-proof device can be used to execute an agent in a physically sealed
environment. However, in the literature the term “prevention mechanism” is
often used to denote a technique that makes it impossible to modify an agent
in a meaningful way [26]. Examples of such techniques include
“Environmental Key Generation” and “Computing with Encrypted
Functions”. On the other hand, detection techniques aim at detecting the
attacks. The “Co-Operating Agents” technique and “Execution Tracing”
belong to this category.

3. SECURITY OF PLATFORMS

The primary issue in the security of mobile agent systems is to protect
mobile agent platforms against malicious attacks launched by the agents.
This section presents a set of detection and prevention techniques for
keeping the platform secure against a malicious mobile agent.

An Overview of Security Issues and Techniques in Mobile Agents 63
3.1 Sandboxing

Sandboxing [7] is a software technique used to protect mobile agent
platform from malicious mobile agents. In an execution environment
(platform), local code is executed with full permission and has access to
crucial system resources. On the other hand, remote code, such as mobile
agents and downloadable applets, is executed inside a restricted area called a
“sandbox” [10,11]. Restriction affects certain code operations [9] such as
interacting with the local file system, opening a network connection,
accessing system properties on the local system, and invoking programs on
the local system. This ensures that a malicious mobile agent cannot cause
any harm to the execution environment that is running it. A Sandboxing
mechanism enforces a fixed security policy for the execution of the remote
code. The policy specifies the rules and restrictions that mobile agent code
should confirm to. A mechanism is said to be secure if it properly
implements a policy that is free of flaws and inconsistencies [8].

The most common implementation of Sandboxing is in the Java
interpreter inside Java-enabled web browsers. A Java interpreter contains
three main security components: ClassLoader, Verifier, and Security
Manager [8,11,12,13,16]. The ClassLoader converts remote code into data
structures that can be added to the local class hierarchy. Thus every remote
class has a subtype of the ClassLoader class associated with it [8]. Before the
remote code is loaded, the Verifier performs a set of security checks on it in
order to guarantee that only legitimate Java code is executed [12,13]. The
remote code should be a valid virtual machine code, and it should not
overflow or underflow the stack, or use registers improperly [8,16].
Additionally, remote classes cannot overwrite local names and their
operations are checked by the Security Manager before the execution. For
example, in JDK 1.0.x, classes are labelled as local and remote classes.
Local classes perform their operations without any restrictions while remote
classes should first surrender to a checking process that implements the
platform security policy. This is implemented within the Security Manager.
If a remote class passes the verification, then it will be granted certain
privileges to access system resources and continue executing its code.
Otherwise, a security exception will be raised [8,11,12,13,16].

A problem with the Sandboxing technique is that a failure in any of the
three above mentioned interrelated security parts may lead to a security
violation. Suppose that a remote class is wrongly classified as a local class.
Then this class will enjoy all the privileges of a local class. Consequently,
the security policy may be violated [8]. A downside of the Sandboxing
technique is that it increases the execution time of legitimate remote code [7]

64 Mousa Alfalayleh and Ljiljana Brankovic

but this can be overcome by combining Code Signing and Sandboxing, as
will be explained later.

3.2 Code Signing

The “Code Signing” technique ensures the integrity of the code
downloaded from the Internet. It enables the platform to verify that the code
has not been modified since it was signed by its creator. Code Signing
cannot reveal what the code can do or guarantee that the code is in fact safe
to run [14,15].

Code Signing makes use of a digital signature and one-way hash
function. A well-known implementation of code signing is Microsoft
Authenticode, which is typically used for signing code such as ActiveX
controls and Java applets [15].

Code Signing enables the verification of the code producer’s identity but
it does not guarantee that they are trustworthy. The platform that runs mobile
code maintains a list of trusted entities and checks the code against the list. If
the code producer is on the list, it is assumed that they are trustworthy and
that the code is safe. The code is then treated as local code and is given full
privileges; otherwise the code will not run at all. This is known as a “black-
and-white” policy [8,16], as it only allows the platform to label programs as
completely trusted or completely untrusted.

There are two main drawbacks of the Code Signing approach. Firstly,
this technique assumes that all the entities on the trusted list are trustworthy
and that they are incorruptible. Mobile code from such a producer is granted
full privileges. If the mobile agent is malicious, it can use those privileges
not only to directly cause harm to the executing platform but also to open a
door for other malicious agents by changing the acceptance policy on the
platform. Moreover, the affects of the malicious agent attack may only occur
later, which makes it impossible to establish a connection between the attack
and the attacker [8]. Such attacks are referred to as “delayed attacks”.
Secondly, this technique is overly restrictive towards agents that are coming
from untrustworthy entities, as they do not run at all. The approach that
combines Code Signing and Sandboxing described in the next section
alleviates this drawback.

33 Code Signing and Sandboxing Combined

Java JDK 1.1 combines the advantages of both Code Signing and
Sandboxing. If the code consumer trusts the signer of the code, then the code
will run as if it were local code, that is, with full privileges being granted to
it. On the other hand, if the code consumer does not trust the signer of the

An Overview of Security Issues and Techniques in Mobile Agents 65

code then the code will run inside a Sandbox as in JDK 1.0 [17,21]. The main
advantage of this approach is that it enables the execution of the mobile code
produced by untrustworthy entities. However, this method still suffers from
the same drawback as Code Signing, that is, malicious code that is deemed
trustworthy can cause damage and even change the acceptance policy.

The security policy is the set of rules for granting programs permission to
access various platform resources. The “black-and-white” policy only allows
the platform to label programs as completely trusted or untrusted, as is the
case in JDKI1.1. The combination of Code Signing and Sandboxing
implemented in JDK 1.2 (Java 2) incorporates fine-grained access control
and follows a “shades-of-grey” policy. This policy is more flexible than the
“black-and-white” policy, as it allows a user to assign any degree of partial
trust to a code, rather than just “trusted” and “untrusted” [16,17]. There is a
whole spectrum of privileges that can be granted to the code. In JDK1.2 all
code is subjected to the same security policy, regardless of being labelled as
local or remote. The run-time system partitions code into individual groups
called protection domains in such a way that all programs inside the same
domain are granted the same set of permissions. The end-user can authorize
certain protection domains to access the majority of resources that are
available at the executing host while other protection domains may be
restricted to the Sandbox environment. In between these two, there are
different subsets of privileges that can bé granted to different protection
domains, based on whether they are local or remote, authorised or not, and
even based on the key that is used for the signature [16,17,18]. Although this
scheme is much more flexible than the one in JDK 1.1, it still suffers from
the same problem, that an end user can grant full privileges to malicious
mobile code, jeopardising the security of the executing platform.

3.4 Proof-Carrying Code

Lee and Necula [19] introduced the Proof-Carrying Code (PCC)
technique in which the code producer is required to provide a formal proof
that the code complies with the security policy of the code consumer. The
code producer sends the code together with the formal safety proof,
sometimes called machine-checkable proof, to the code consumer. Upon
receipt, the code consumer checks and verifies the safety proof of the
incoming code by using a simple and fast proof checker. Depending on the
result of the proof validation process, the code is proclaimed safe and
consequently executed without any further checking, or it is rejected
[4,19,21,22]. PCC guarantees the safety of the incoming code providing that
there is no flaw in the verification-condition generator, the logical axioms,
the typing rules, and the proof-checker [20].

66 Mousa Alfalayleh and Ljiljana Brankovic

PCC is considered to be “self-certifying”, because no cryptography or
trusted third party is required. It involves low-cost static program checking
after which the program can be executed without any expensive run-time
checking. In addition, PCC is considered “tamper-proof” as any modification
done to the code or the proof will be detected. These advantages make the
Proof Carrying Code technique useful not only for mobile agents but also for
other applications such as active networks and extensible operating systems
[19,22].

Proof Carrying Code also has some limitations, which need to be dealt
with before it can become widely used. The main problem with PCC is the
proof generation, and there is a lot of research on how to automate the proof
generation process. For example, a certifying compiler can automatically
generate the proof through the process of compilation [19,23].
Unfortunately, at present many proofs still have to be done by hand [21].
Other limitations of the PCC technique include the potential size of the proof
and the time consumed in the proof-validation process [19].

35 State Appraisal

While a mobile agent is roaming among agent platforms, it typically
carries the following information: code, static data, collected data, and
execution state. The execution state is dynamic data created during the
execution of the agent at each platform and used as input to the computations
performed on the next platform. The state includes a program counter,
registers, local environment, control stack, and store. The state of a mobile
agent changes during its execution on a platform. Farmer et al [25]
introduced the “State Appraisal” technique to ensure that an agent has not
become malicious or modified as a result of its state alterations at an
untrustworthy platform.

In this technique the author, who creates the mobile agent, produces
a state appraisal function. This function calculates the maximum set of safe
permissions that the agent could request from the host platform, depending
on the agent’s current state. In other words, the author needs to anticipate
possible harmful modifications to the agent’s state and to counteract them
within the appraisal function. Similarly, the sender, who sends the agent to
act on his behalf, produces another state appraisal function that determines
the set of permissions to be requested by the agent, depending on its current
state and on the task to be completed. Subsequently, the sender packages the
code with these state appraisal functions. If both the author and the sender
sign the agent, their appraisal functions will be protected against malicious
modifications. Upon receipt, the target platform checks and verifies the
correct state of the incoming agent. Depending on the result of the

An Overview of Security Issues and Techniques in Mobile Agents 67

verification process, the platform can determine what privileges should be
granted to this incoming agent given its current state. Clearly, when the
author and the sender fail to anticipate certain attacks, they cannot include
them in the appraisal functions and provide the necessary protection
[4,24,25].

In addition to ensuring that an agent has not become malicious during its
itinerary, the State Appraisal may also be used to disarm a maliciously
altered agent [25]. Another advantage of this technique is that it provides a
flexible way for an agent to request permissions depending on its current
state and on the task that it needs to do on that particular platform [24,25].
The main problem with this technique is that it is not easy to formulate
appropriate security properties for the mobile agent and to obtain a state
appraisal function that guarantees those properties [24].

3.6 Path Histories

When an agent travels through a multi-hop itinerary, it visits many
platforms that are not all trusted to the same extent. The newly visited
platform may benefit from the answers to the following questions: Where
has the agent been? How likely is it that the agent has been converted to a
malicious one during its trip? To enable the platform to answer these
questions, a mobile agent should maintain an authenticable record of the
previously visited platforms during its travel life. Using this history, the
platform makes the decision whether to run the agent and what level of trust,
services, resources and privileges should be granted to the agent [4,26,27].
The list of the platforms visited previously by the agent is the basis of trust
that the execution platform has in the agent. Typically, it is harder to
maintain trust in agents that have previously visited a huge number of
platforms. Likewise, it is harder to trust the agent whose travel path is
unknown in advance, for example the agent that is searching for new
information and creates its travel path dynamically [27].

The “Path History” is constructed in the following way. Each visited
platform in the mobile agent's travel life adds a signed record to the Path
History. This record should contain the current platform’s identity together
with the identity of the next platform to be visited in the mobile agent’s
travel path. Moreover, in order to prevent tampering, each platform should
include the previous record in the message digest that it is signing [4]. After
executing the agent, the current platform should send the agent together with
the complete Path History to the next platform. Depending on the
information in the Path History, the new platform can decide whether to run
the agent and what privileges should be granted to the agent. The main
problem with the Path History technique is that the cost of the path

68 Mousa Alfalayleh and Ljiljana Brankovic

verification process increases with the path history [4,26,27]. Constructing
algorithms for Path History evaluation is an interesting research area [27].

4. SECURITY OF MOBILE AGENTS

In the previous section, we presented several techniques for protecting
mobile agent platforms against malicious mobile agents. On the other hand,
mobile agents themselves are exposed to various threats by the platforms
they visit.

4.1 Co-Operating Agents

In order to improve the security of mobile agents against the attacks that
are launched by the malicious platforms, the Co-Operating Agent technique
[28,29,4] distributes critical tasks of a single mobile agent between two
co-operating agents. Each of the two co-operating agents executes the tasks
in one of two disjoint sets of platforms. The co-operating agents share the
same data and exchange information in a secret way. The Co-Operating
Agent technique reduces the possibility of the shared data being pilfered by a
single host. Each agent records and verifies the route of its co-operating
agent [28,29]. Co-Operating Agents can be used to perform e-commerce
tasks or protocols such as the authorization of negotiation, bidding, auction,
electronic payment, etc [29,30].

When the agent travels from one platform to another, it uses an
authenticated communication channel to pass information to its co-operating
agent. The information includes details about the agent's itinerary such as the
last platform visited by the agent, the current platform, and the next platform
to be visited. The peer agent takes a suitable action when anything wrong
occurs, e.g., a platform sends the agent to a wrong destination, or claims to
have received the agent from an incorrect source. However, this technique
has some drawbacks. One of them is the cost of setting up the authenticated
communication channel for each migration. Another drawback is that in the
case of a co-operating agent being killed, it is difficult for its peer to decide
which platform is responsible [4,28,29].

It is worth noting that an assumption made in the Co-Operating Agent
technique, is that only a small percentage of platforms are in fact malicious
and that it is not very likely that both agents will encounter such a host.
However, care should be taken that the two sets of platforms assigned to the
two agents are indeed disjoint, that is, that they never encounter the same
host. This method can easily be extended to more than two co-operating
agents.

An Overview of Security Issues and Techniques in Mobile Agents 69
4.2 Execution Tracing

Execution Tracing enables detection of any possible misbehavior by a
platform, that is, improper modification of the mobile agent code, state, and
execution flow. This technique is based on cryptographic traces that are
collected during an agent’s execution at different platforms. Traces are logs
of the actions performed by a mobile agent during its lifetime. Execution
Tracing enables an agent’s owner to check the agent’s execution history and
see if it contains any unauthorized modifications done by a malicious
platform. Each trace contains identifiers of all the statements performed on a
particular platform. In the case that some of the statements require
information from the external execution environment, the trace must also
contain a digital signature of the platform. Such statements are known as
“black” statements. On the other hand, the statements that only use the
values of the agent’s internal variables are called “white” statements [31,32].

The Execution Tracing technique assumes that all the involved parties
own a public and private key that can be used for digital signatures, in order
to identify involved parties. Different parties, such as users and platform
owners, communicate by using signed messages. A platform that receives
the agent and agrees to execute it produces the associated trace during the
agent’s execution. The message that an execution platform attaches to the
mobile agent typically contains information such as the unique identifier of
the message, the identity of the sender, the timestamp, the fingerprint of the
trace, the final state and the trusted third party (which could later be used to
resolve disputes). Later, the owner of the agent may suspect that a certain
platform cheated while executing the agent. If this is the case, the owner will
ask the suspicious platform to reproduce the trace. Finally, the agent’s owner
validates the execution of the agent by comparing the fingerprint of the
reproduced trace against the fingerprint of the trace that is originally
supplied by the suspicious platform [31].

In addition to detection of any modification of the agent performed by a
malicious platform, Execution Tracing also provides a means to protect a
legitimate platform against a malicious agent by obtaining the related traces
from the involved parties. Execution Tracing has some limitations, such as
the potential large size and number of logs to be retained. Another limitation
of this technique is that the owner platform needs to wait until it obtains
suspicious results in order to run the verification process. Also, this
technique is considered to be too difficult to use in the case of multi-threaded
agents [31,32].

A new version of the Execution Tracing technique, proposed by Tan and
Moreau [32,33], modifies the original technique by assigning the trace

70 Mousa Alfalayleh and Ljiljana Brankovic

verification process to a trusted third party, the verification server, instead of
depending on the agent’s owner.

When a mobile agent travels to a new platform during its itinerary, a
copy of the agent is submitted to a corresponding verification server. The
visited platform receives the agent and produces the associated execution
trace. Before the agent’s migration from the current platform to a new one,
the current platform forwards the trace to a corresponding verification
server. The verification server simulates the execution of the agent on the
platform by using the corresponding execution trace and the agent’s copy.
The simulation process is repeated for every platform in the agent’s path by
the corresponding verification server, until the agent is sent back to its home
platform. Tan and Moreau [32] provided a detailed protocol of message
exchanges, as well as the formal modeling and verification of the protocol.

Execution Tracing with a verification server does not wait until a
suspicion is raised in order to run the verification process. The verification
here is compulsory and this is an advantage over the original Execution
Tracing technique where the verification process is triggered only by
suspicious results [32]. However, Execution Tracing with a verification
server still suffers from the same limitation as the original technique, that is,
the need to retain a potentially large size and number of logs. Additionally,
each platform chooses a verification server and that might encourage and
facilitate a possible malicious collaboration between a platform and the
server.

4.3 Environmental Key Generation

Riordan and Schneier [34] designed the Environmental Key Generation
technique to be used when a platform wants to communicate with another
platform by sending it a message, yet it only wants the receiving platform to
obtain the message if some environmental condition is satisfied. This can be
achieved by sending a mobile agent carrying an encrypted message. The
encrypted message may include some data and/or executable code. Neither
can the mobile agent precisely predict its own execution at the receiver
platform, nor can the platform foresee the incoming agent task. The agent
will wait at the receiving platform for some environmental condition to
occur. The environmental condition could be, for example, matching a
certain search string. When the environmental condition is met, an activation
key is generated in order to decrypt the enciphered message that the mobile
agent is carrying. Without meeting the environmental condition, the agent is
unable to decrypt its own message [34].

The activation key, which is used to decrypt the agent’s message, could
be hidden inside a fixed data channel. If this data channel is, for example,

An Overview of Security Issues and Techniques in Mobile Agents 71

a file system, then the activation key could be hidden in a file or could be the
hash of a certain file name. On the other hand, if the data channel is a mail
message, the activation key could be a string inside this message or a hash of
the message [34].

Environmental Key Generation may suit some applications other than
mobile agents (some of which may even be malicious) including blind
search engines, logic bombs, directed viruses, and remote alarms [34].
Tschudin [35] exploited the idea of Environmental Key Generation for the
purpose of the programmed death of a mobile service, that is, the self-
destruction of a mobile service when it is no longer required [35]. However,
this technique has some limitations. The receiving platform could act
maliciously against the incoming agent. When the environmental condition
is met and the activation key is generated, the platform could modify the
agent to perform a different function, for example, to print out the executable
code instead of running it [4]. Another limitation of the technique is that the
platform may consider it unsafe to execute an encrypted code that is attached
to a mobile agent, as it could be, for example, a virus.

4.4 Non-Interactive Computing with Encrypted
Functions

This technique represents a software solution for protecting a mobile
agent from a malicious executing platform during its itinerary. This is a
cryptographic solution to achieve integrity and privacy of the mobile agent.
Protecting integrity means that the mobile agent is made safe against
tampering by a malicious platform. Achieving privacy means that the mobile
agent can conceal its program (code) when it is executed remotely in an
untrusted environment. In addition to this, a mobile agent can safely
compute cryptographic primitives on a remote platform by using this
approach. An example of cryptographic primitives is a digital signature or
encryption.

This technique is based on executing a program embodying an encrypted
function on a mobile agent platform. It also ensures that the platform does
not learn anything substantial about the encrypted function. Abadi and
Feigenbaum [38] suggested the initial version of this technique. Their
solution was interactive and required several rounds of message exchange
with the agent’s home platform. However, the interactive solution does not
suit the mobile agent scenario, as agents operate autonomously without
much interaction with their home platform.

Sander and Tschudin [36,37] suggested a non-interactive solution, which
is suitable for the mobile agent paradigm. In their solution, the home
platform has an algorithm to compute a function f. The target platform has

72 Mousa Alfalayleh and Ljiljana Brankovic

an input x and can provide a service to the home platform by computing f{(x).
However, the home platform doesn’t want the target platform to learn
anything about the function £. The home platform launches the operation by
encrypting the function fto get E(f), and then it implements E(f) using the
program P(E(f)). The home platform embeds the program P(E(f)) within the
mobile agent and sends it to the target platform for execution. The target
platform receives the agent and runs it. This includes executing P(E(f)) at x
to produce P(E(f))(x). Then, the target platform sends the agent back to its
home platform. The home platform extracts the result from the agent and
then decrypts it to get f(x).

This solution enables the owner of the agent to execute encrypted
programs over untrusted platforms. The executing platforms do not need to
decrypt programs before running them. Assume that f is an encryption
algorithm or a signature algorithm that contains an embedded key within it.
That means that the agent has the ability to encrypt information or sign it
without revealing anything about the value of the key being used.

The main challenge in this technique is to find a way to apply it to an
arbitrary function . At the moment the only classes of functions for which a
suitable encryption is known are polynomial and rational functions [36,38].
Although this technique protects the mobile agent’s integrity and privacy, it
is vulnerable to certain attacks such as denial of service and replay attacks
[36].

4.5 Obfuscated Code

Obfuscation is a technique in which the mobile code producer enforces
the security policy by applying a behavior-preserving transformation to the
code before it sends it to run on different platforms that are trusted to various
degrees [39]. Obfuscation aims to protect the code from being analysed and
understood by the host. Consequently, the host should not be able to modify
the mobile code’s behavior or expose sensitive information that is hidden
inside the code such as a secret key, credit card number, or bidding limits
[39].

Typically, the transformation procedure that is used to generate the
obfuscated code aims to make the obfuscated code very hard to understand
or analyse by malicious parties. There are different useful obfuscating
transformations [40,43,44]. Layout Obfuscation tries to remove or modify
some information in the code, such as comments and debugging information,
without affecting the executable part of the code. Data Obfuscation
concentrates on obfuscating the data and data structures in the code without
modifying the code itself. Control Obfuscation tries to alter the control flow
in the code without modifying the computing part of the code. Preventive

An Overview of Security Issues and Techniques in Mobile Agents 73

Obfuscation concentrates on protecting the code from decompilators and
debuggers.

Hohl [41] suggested using the Obfuscation technique to obtain a time-
limited black box agent that can be executed safely on a malicious platform
for a certain period of time but not forever. D’Anna et al [39] pointed out
that Obfuscation could delay, but not prevent the attacks on agent via reverse
engineering. They also argue that an attacker with enough computational
resources, such as enough time, can always deobfuscate the code. Barak et al
[42] studied the theoretical limits of Obfuscation techniques and showed that
in general achieving completely secure Obfuscation is impossible.

In addition to protecting a mobile agent, Obfuscation can also be used for
other applications such as protecting digital watermarking, enforcement of
software licensing, and protecting protocols from spoofing [39,40]. As far as
the performance is concerned, some Obfuscation techniques reduce the size
of the code and thus speed up its execution (Layout and Data Obfuscation),
while others achieve the opposite (Control Obfuscation) [43]. Obfuscation is
considered resistant to impersonation and denial of service attacks [40]. The
main challenge in this technique is to make it easy to apply in practice.

4.6 Partial Result Encapsulation

Partial Result Encapsulation (PRE) is a detection technique that aims to
discover any possible security breaches on an agent during its execution at
different platforms. PRE is used to encapsulate the results of agent execution
at each visited platform in its travel path. The encapsulated information is
later used to verify that the agent was not attacked by a malicious platform.
The verification process can be done when the agent returns to its home
platform or at certain intermediate points in its itinerary.

The PRE technique has different implementations. In certain scenarios,
the agent itself performs the encapsulation, while in others the platform does
it. To meet certain security requirements such as integrity, accountability,
and privacy of the agent, PRE makes use of different cryptographic
primitives, such as encryption, digital signatures, authentication codes, and
hash functions.

To ensure the confidentiality of its results, the agent encrypts the results
by using the public key of its originator to produce small pieces of ciphertext
that are decrypted later at the agent’s home platform using the corresponding
private key. This is one scenario of PRE where the agent itself does the
encapsulation process. The agent uses a special implementation of
encryption called “Sliding Encryption” that was suggested by Young and
Yung [45]. Sliding Encryption encrypts small amounts of data within a
larger block and thus obtains small pieces of ciphertext. Sliding Encryption

74 Mousa Alfalayleh and Ljiljana Brankovic

is particularly suitable for certain application where storage space is valuable
such as smartcards [46].

Yee [47] suggested “Partial Result Authentication Code” (PRAC), where
again the agent does the encapsulation of the results. However, the agent’s
originator also takes part in this scenario by providing the agent with a list of
secret keys before launching it. For each visited platform in an agent’s
itinerary, there is an associated secret key. When an agent finishes an
execution at a certain platform in its itinerary, it summarizes the results of its
execution in a message for the home platform, which could be sent either
immediately or later. In order to produce the PRAC, the agent uses the
associated secret key for the current platform to compute a Message
Authentication Code (MAC), which is encapsulated together with the
message to produce PRAC. It is important to note that the agent erases the
used secret key of the current visited platform before its migration to the
next platform. Destroying the secret key ensures the “forward integrity” of
the encapsulation results. Forward integrity [47] guarantees that no platform
to be visited in the future is able to modify any results from the previously
visited platforms, as there is no secret key to compute the PRAC for these
results. Only the agent’s originator has a copy of all used secret keys and
thus can verify the encapsulated results. The result verification enables the
originator to detect any modification (tampering) of the agent’s results. Yee
[47] suggested that the results could also be encrypted using the originator’s
public key, in order to guarantee both privacy and integrity.

Karjoth et al [48] proposed a “strong forward integrity”, which, in
addition to forward integrity, also requires that the visited platform cannot
later modify its own results. Karjoth et al’s approach depends on the visited
platform doing the encapsulation process instead of the agent doing it. The
visited platform encrypts the agent’s results by using the originator’s public
key to ensure the confidentiality of the results. Then the visited platform uses
its private key to digitally sign the encrypted results together with a hash
chain. The hash chain links the results from the previous platform with the
identity of the next platform to be visited. This prevents the platform from
changing its results later and thus ensures strong forward integrity [48].

S. CONCLUSION

- The mobile agent system is a very promising paradigm that has already
established its presence in many applications including e-commerce and
distributed information search and retrieval. At the same time, this
technology has introduced some very serious security problems and
emphasized some existing security issues. It is more difficult to ensure

An Overview of Security Issues and Techniques in Mobile Agents 75

security in the mobile agent paradigm than in some other technologies where
hardware solutions are practical.

In this paper we surveyed the main issues in the security of mobile
agents. We considered both the mobile agent and the agent platform points
of view, and reconfirmed that it is much more difficult to ensure the security
of mobile agents than the security of agent platforms. We discussed the
security threats and requirements that need to be met in order to alleviate
those threats.

We presented the most important techniques for providing security in
mobile agent systems. Some of those techniques, for example Sandboxing,
have been used for a long time and are well understood. On the other hand,
some other techniques, such as Computing with Encrypted Function are still
at the theoretical level and are not yet widely used in practice. None of the
existing techniques provides an optimal solution for all scenarios. For
example, Sandboxing provides a high level of security but is overly
restrictive as only a very few applications can operate in such a constrained
environment. However, a combination of various techniques may yield
powerful solutions. For example, in Java 2 Sandboxing has been used in
combination with fine-grained access control and Code Signing. In any
case, more research is needed in order to warrant sufficient trust in mobile
agent technology by a wide range of users.

REFERENCES

[1] J. White, “Mobile Agents White Paper,” General Magic Inc., 1996.

[2] N. Karnik, “Security in Mobile Agent systems,” Ph.D. Dissertation, Department of
Computer Science, University of Minnesota, Oct. 1998.

[3] S. Fischmeister, "Building Secure Mobile Agents: The Supervisor-Worker
Framework," Diploma Thesis, Technical University of Vienna, Feb. 2000.

[4] W. Jansen and T. Karygiannis, “Mobile Agent Security,” NIST Special Publication
800-19, National Institute of Standard and Technology, 2000.

[B] S. McGrath, D. Chac n, and K. Whitebread, “Intelligent M obile Agents in Military
Command and Control,” Advanced Technology Laboratories, New Jersey.

[6] G. P. Picco, “Mobile Agents: An Introduction”, Journal of Microprocessors and
Microsystems, (25):65, 2001.

[71 R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software-based
fault isolation,” In Proceedings of the 14th ACM Symposium on Operating Systems
Principles, pages 203--216, Dec. 1993.

[8] D.Rubin and D. E. Geer, "Mobile code security," IEEE Internet Computing, 1998.

[9] D. Chess, J. Morar, “Is Java still secure?,” IBM T.J. Watson Research Center, NY,
1998.

[10] L. Gong, “Java Security Architecture (JDK1.2),” Technical Report, Sun
Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A, 1998.
[11] Li Gong,”Secure java class loading,” IEEE Internet Computing, pages 56-61, 1998.

76

[12]

[13]

[14]

[15]

[16]

(17}

(18]

[19]

[20]

(21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

Mousa Alfalayleh and Ljiljana Brankovic

M. Hauswirth, C. Kerer, and R. Kurmanowytsch, “A secure execution framework for
Java,” In Proceedings of the 7th ACM conference on computer and communications
security (CCS 2000), pages 43--52, Athens, Greece, Nov. 2000.

L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers, “Going Beyond the
Sandbox: An Overview of the New Security Architecture in the Java Development Kit
1.2,” In Proceedings of the USENIX Symposium on Internet Technologies and
Systems, Monterey, California, Dec. 1997.

“Signed Code,” (n.d.). Retrieved December 15, 2003, from James Madison
University, IT Technical Services Web site: http://www.jmu.edu/computing/info-
security/engineering/issues/signedcode.shtml

“Introduction to Code Signing,” (n.d.). Retrieved December 15, 2003, from Microsoft
Corporation, Microsoft Developer Network (MSDN) Web site: http://msdn.microsoft
.conV/library/default.asp?url=/workshop/security/authcode/intro_authenticode.asp
Gary McGraw and Edward Felten (1996-9). Securing JAVA [Electronic version].
John Wiley and Sons. http://www.securingjava.com/

M. Dageforde. (n.d.). “Security Features Overview,” Retrieved December 21, 2003,
from Sun Microsystems, Inc. The JavaTM Tutorial Web site: http:/java.sun.com
/docs/books/tutorial/security1.2 /overview/

R. Levin (1998). “Security Grows Up: The Java 2 Platform,” Retrieved December 21,
2003, from Sun Microsystems, Inc. Sun Developer Network (SDN) Web site:
http://java.sun.com/features/1998/11/jdk.security.html

P. Lee and G. Necula, “Research on Proof-Carrying Code on Mobile-Code Security,”
In Proceedings of the Workshop on Foundations of Mobile Code Security, 1997.

A. Appel, “Foundational proof-carrying code,” In Proceedings of the 16th Annual
Symposium on Logic in Computer Science, pages 247-256. IEEE Computer Society
Press, 2001.

S. Loureiro, R. Molva, and Y. Roudier, "Mobile Code Security," Institut Eurecom,
2001.

P. Lee. (n.d.), “Proof-carrying code,” Retrieved December 28, 2003, from Web site:
http://www-2.cs.cmu.edu/~petel/papers/pcc/pee.html

C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline, “A Certifying
Compiler for Java,” SIGPLAN Conference on Programming Language Design and
Implementation. Vancouver B.C., 2000.

V. Swarup, “Trust Appraisal and Secure Routing of Mobile Agents,” DARPA
Workshop on Foundations for Secure Mobile Code, Monterey, CA, USA, March
1997. Position Paper.

W. M. Farmer, J. D. Guttman, and V. Swarup, “Security for mobile agents:
Authentication and state appraisal,” In Proceedings of the European Symposium on
Research in Computer Security (ESORICS), pages 118--130, Sep. 1996.

D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris and G. Tsudik, “Itinerant
Agents for Mobile Computing,” Technical Report, Oct. 1995, IBM T.J. Watson
Research Center, NY.

J. J. Ordille, “When Agents Roam, who Can You Trust?,” Proceedings of the First

Conference on Emerging Technologies and Applications in Communications,
Portland, Oregon, May 1996.

V. Roth, “Secure Recording of Itineraries Through Cooperating Agents,” Proceedings
of the ECOOP Workshop on Distributed Object Security and 4th Workshop on
Mobile Object Systems: Secure Internet Mobile Computations, pages 147-154,
INRIA, France, 1998.

An Overview of Security Issues and Techniques in Mobile Agents 77

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

V. Roth, “Mutual protection of cooperating agents,” In Secure Internet Programming:
Security Issues for Mobile and Distributed Objects. J. Vitek and C. Jensen (Eds.),
Springer Verlag, 1999.

Y. Ye and X. Yi, “Coalition Signature Scheme in Multi-agent Systems,” 2002.

G. Vigna, “Cryptographic Traces for Mobile Agents,” in: Giovanni Vigna (Ed.),
Mobile Agent Security, LNCS 1419, 1998, Springer, pages 137-153.

H. K. Tan and L. Moreau, “Extending Execution Tracing for Mobile Code Security,”
In K. Fischer and D. Hutter (Eds.), Proceedings of Second International Workshop on
Security of Mobile MultiAgent Systems (SEMAS'2002), pages 51-59, Bologna,
Italy.2002.

H. K. Tan, L. Moreau, D. Cruickshank, and D. De Roure, “Certificates for Mobile
Code Security,” In Proceedings of The 17th ACM Symposium on Applied Computing
(SAC'2002) --- Track on Agents, Interactions, Mobility and Systems, pages 76. 2002.
J. Riordan and B. Schneier, "Environmental Key Generation Towards Clueless
Agents," G. Vinga (Ed.), Mobile Agents and Security, Springer-Verlag, Lecture Notes
in Computer Science No. 1419, 1998.

C. Tschudin, “Apoptosis - the programmed death of distributed services,” In Secure
Internet Programming [14].

T. Sander and C. Tschudin, "Protecting Mobile Agents Against Malicious Hosts," in
G. Vinga (Ed.), Mobile Agents and Security, SpringerVerlag, Lecture Notes in
Computer Science No. 1419, 1998.

T. Sander and C. Tschudin, “Towards Mobile Cryptography,” IEEE Symposium on
Security and Privacy, pages 215-224, May 1998.

M. Abadi and J. Feigenbau, “Secure circuit evaluation: a protocol based on hiding
information from an oracle,” Journal of Cryptology, vol. 2, 1990.

L. D'Anna, B. Matt, A. Reisse, T. Van Vleck, S. Schwab, and P. LeBlanc, “Self-
Protecting Mobile Agents Obfuscation Report,” Report #03-015, Network Associates
Laboratories, June 2003.

G. Wroblewski, “General Method of Program Code Obfuscation,” PhD Dissertation,
Wroclaw University of Technology, Institute of Engineering Cybernetics, 2002,
(under final revision).

F. Hohl, “Time Limited Blackbox Security: Protecting Mobile Agents from Malicious
Hosts,” To appear in Mobile Agents and Security Book edited by Giovanni Vigna,
published by Springer Verlag 1998.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang,
“On the (Im)possibility of Obfuscating Programs,” in Advances in Cryptology,
Proceedings of Crypto'2001, Lecture Notes in Computer Science, Vol. 2139,
pages 1-18.

G. Hachez, “A Comparative Study of Software Protection Tools Suited for E-
Commerce with Contributions to Software Watermarking and Smart Cards,”
Universite Catholique de Louvain, 2003.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Technical Report 148, Department of Computer Science, University
of Auckland, July 1997.

A. Young and M. Yung, “Encryption Tools for Mobile Agents: Sliding Encryption,”
In: E. BIHAM (ed), Fast Software Encryption. Lecture Notes in Computer Science,
no. 1267. Springer-Verlag, Germany, 1997.

G. Karjoth and J. Posegga, “Mobile Agents and Telcos' Nightmares,” Annales des
Télécommunications Vol. 55, No. 7/8, 29-41, 2000.

78 Mousa Alfalayleh and Ljiljana Brankovic

[47] B. Yee, “A Sanctuary for Mobile Agents,” DARPA Workshop on Foundations for
Secure Mobile Code, Feb. 1997.

[48] G. Karjoth, N. Asokan, and C. Glc, “Protecting the Computation Results of Free-
Roaming Agents,” Second International Workshop on Mobile Agents, Stuttgart,
Germany, Sep. 1998.

