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Abstract. We suggest a graph-theoretic approach to steganography
based on the idea of exchanging rather than overwriting pixels. We con-
struct a graph from the cover data and the secret message. Pixels that
need to be modified are represented as vertices and possible partners
of an exchange are connected by edges. An embedding is constructed
by solving the combinatorial problem of calculating a maximum cardi-
nality matching. The secret message is then embedded by exchanging
those samples given by the matched edges. This embedding preserves
first-order statistics. Additionally, the visual changes can be minimized
by introducing edge weights.

We have implemented an algorithm based on this approach with support
for several types of image and audio files and we have conducted com-
putational studies to evaluate the performance of the algorithm.
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1 Introduction

The purpose of steganography is to conceal the fact that some communication
is taking place. This is achieved by embedding a secret message in some cover
data. This process — the embedding algorithm — produces stego data which must
not raise suspicion that the secret message exists. The intended receiver extracts
the secret message from the stego data. Typically, the sender and the receiver
must share a common secret, like a secret key in cryptography.

This paper presents a new graph-theoretic approach to steganography based
on the idea of exchanging rather than overwriting samples. By exchanging sam-
ples, the secret message can be embedded while preserving the color frequencies,
thus automatically avoiding detection by tests based on first-order statistics. We
construct a graph from the cover data and the secret message. A vertex in this
graph will correspond to the necessity of making a change to the cover data.
Two vertices that are potential partners for an exchange will be connected by
an edge. This approach has the following advantages:



1. Tt does not depend on the type of the cover data (e.g. image, audio,...).

2. It is easily extendable concerning the question which exchanges are allowed
by defining additional restrictions on the set of edges. This allows for modular
addition of visual and statistical criteria to the embedding algorithm.

3. It reduces the problem of finding a steganographic embedding to the well
investigated combinatorial problem of finding a maximum matching in a
graph (see e.g. [9, 8]).

We have implemented an algorithm based on this approach in the system
steghide [7]. Our computational experiments have shown that sufficiently large
matchings can be found, so that first-order statistics are not changed substan-
tially. Additionally, the visual differences can be minimized by introducing edge
weights and minimizing the weights of all matched edges.

This paper is organized as follows. Section 2 contains a theoretical description
of our new approach. In Section 3 we describe the implementation of an algorithm
based on this approach. Section 4 contains a discussion of the steganographic
security of our algorithm in comparison to other methods.

2 A Graph-Theoretic Approach

2.1 Terminology

The central concept for abstracting the embedding process from the underlying
data format is that of a sample. A sample is the smallest data unit of a certain
data format, e.g., the data making up a pixel in an image (a R/G/B triple in
true-color bitmaps). The set of values a sample (of a certain data format) can
have, is denoted as S. A cover (or stego) file is an array of samples.

For cover (or stego) data D = (s1,...,sn) and a set P C {1,..., N} the
frequency of the sample value x € S in the set P is [{i € P | s; = 2}|. We define
a function v : S — {0,...,m — 1} assigning an embedded value to every sample
value, where m can be varied for different data formats. For a traditional least
significant bit (LSB) embedding, m would be 2 and v(s) = LSB(s). Additionally
we use a construction mentioned in [1]: We do not embed a value in a single
sample, but instead in a set of k samples, more precisely, as modulo m sum
of their embedded values. This has the advantage that we have the freedom
to choose one of these k samples for modification. Let D = (s1,...,sn) be
some cover (or stego) data. We define the value that is embedded in the i-
th k-tuple of samples as: Vi(D) = v(sk.(i—1)+1) ©m - - - B V(Sk.(i=1)+k), Where
1< < L%J The secret message will be denoted as E,, = {e1,...,e,) where
e; €{0,...,m —1} for i € {1,...,n}. The purpose of this notation is to make
clear that the data that will be embedded is encoded in digits modulo m which
is assumed for the construction of the graph. For m = 2, the values e; are the
bits of the secret message.

A graph G is a structure (V, E') where V is the set of vertices and E C V xV
is the set of edges. We will only consider undirected graphs, so (z,y) € E and
(y,z) € E are the same edge. Every edge can be assigned a weight which will be



denoted by c(e) for e € E. A matching M C E is a set vertex-disjoint edges, i.e.
there do not exists two edges e1,es € M and a v € V such that both e; and ey
are connected to v. A mazimum cardinality matching on a given graph G is one
largest (w.r.t. its cardinality) matching on G. A mazimum cardinality minimum
weight matching M is a maximum cardinality matching where ., c(e) is
minimal among all maximum cardinality matchings. An edge e € E is called
matched with respect to some matching M if e € M. A vertex v € V is called
matched (in M) if there is an edge in M that is incident to v. We will sometimes
write v € M for a vertex v € V to indicate that this vertex is matched in M,
respectively v ¢ M to indicate that it is not matched. A perfect matching is a
matching such that all vertices of the graph are matched.

2.2 Construction of the Graph

In this section we will describe the construction of the graph.

Definition 1 Let C = (s1,...,8n) be the cover data, k > 1. A vertex is a
structure (P, T) where P = (p1,...,pr) € {1,...,N}¥ is a k-tuple of positions
in the cover file, and T = (t1,...,tx) € {0,...,m — 1}* is a k-tuple of target
values.

The precise meaning of a vertex is as follows: Exactly one of the samples s,,,,
i € {1,...,k} needs to be changed to a sample value s} for which v(s}) = t;
holds to embed a certain part of the secret message. The number k is fixed for
a graph and will in the following also be called the samples per vertex ratio.

V(C): 1 0 2
e 2 0 1

((p, PPt )| ((1,2,3),(3,3,2))

| (nk-2nke1,0K0,(1,0.2)

Fig. 1. Example for the vertex construction with k =3 and m =4

After having defined the structure of a single vertex it remains to describe the
construction of the set of vertices: Basically we have to create a vertex for every
k-tuple of samples of which one needs to be changed. Fig. 1 shows an example of
our construction for cover data C = (s1,...,sy) with k = 3, m = 4 and secret



message Ey = (e1,...,e,). The first row contains the samples of the cover data.
The second row contains the values that are embedded in the (unmodified) cover
data. Three (in general k) of these values are combined using addition modulo
four (in general m) to form the value V;(C') which is compared to the I-th part
of the secret message (e;). If these two values are not equal (as in the first and
last case but not in the second case) a vertex is created in the last line. The
target values are computed by adding the difference d = e; ©,, V;(C) to each
v(s;). This has the effect that replacing one of the v(s;) with its corresponding
target value t1,to or t3 yields e; as value of the vertex. This operation is called
embedding a vertex.

Definition 2 Let v and w be two vertices with v = ((p1,...,pk), (t1,---,tk))
and w = ({q1,..-,qx), (u1,...,uk)) and let i,j € {1,...,k}. There is an edge
connecting the i-ith sample value of v with the j-th sample value of w, written
as (v,w);; € E if

v(8p;) = uj and v(sy;) = t;

An edge connects two vertices and is labeled with the index of one sample value
from each vertex. An exchange of these two sample values results in embedding
both vertices. Note that it is possible that two vertices are connected by more
than one edge. In this case a matching can contain only one of these edges.

The above definition alone does not prohibit exchanges that create visible
distortions such as for example exchanging a black and a cyan pixel. We need to
define a restriction on this set of edges that takes visual similarity into account.
We define a distance function d : S X S — R meant to capture the notion of
visual distance. We define a relation of visual similarity ~ for si,s2 € S as:
$1 ~ 82 < d(s1,82) < r for some neighborhood radius 7. Now we can give the
refined definition of the set of edges restricted by ~:

E~ = {(an)i,j Sy | Sp; ™~ qu}

where v = ({p1,...,0k), (t1,...,tx)) and w = ({q1,...,qx), (u1,...,ux)). The
cost ¢ : I/ — R of an edge is the distance of the two sample values d(s,,, 5, )-

2.3 Finding an Embedding

The goal of the embedding process is to find a way to modify the cover file such
that all vertices are embedded. For this purpose we try to calculate a perfect
matching on the graph defined in the previous section. Every matching on this
graph corresponds to a set of (disjoint) exchanges of sample values in the cover
file. Conducting these exchanges has the effect that all matched vertices will be
embedded. Of course we cannot except to reach a perfect matching for every
cover file. To embed those vertices that can not be matched it is necessary to
overwrite one sample per vertex. An operation like this will change the sample
value frequencies, but this operation needs to be done only on the unmatched
vertices and in Sec. 3.2 we show that for natural cover data we can find matchings
of sufficient cardinality.



As an additional feature one can bias the algorithm towards choosing short
(w.r.t. their cost) edges to minimize the overall visual impact by trying to find
a minimal weight maximum matching.

3 Implementation

We have implemented an algorithm based on our new graph-theoretic approach
in the system steghide [7]. Our implementation supports palette images, true-
color images, jpeg images, waveform audio data and p-law audio data. As ad-
ditional security measure we permute the samples before embedding in a way
determined by the secret key to guarantee a uniform distribution of stego samples
in the stego file (as recommended e.g. in [12]).

3.1 Data Structures and Algorithms

The number of vertices in our graphs grows in O(n), where n is the size of the
secret message. The number of edges grows in O(n?). For example, a graph for a
true-color image and embedding data of size 1KB has about 3,200 vertices and
98,000 edges (on average). If the size of the embedded data raises to 4KB, then
the size of the graph gets up to 12,500 vertices and 1,470,000 edges. However,
our aim is to embed an even greater amount of data. This huge size of the
graphs has two important implications: First, it is impossible to store a graph
using an adjacency list, because the number of edges simply becomes too high.
And second, even if there are fast algorithms to solve the matching problem
running in time O(y/]V] - |E|) (see [8]) it is necessary to use simple heuristics
that are even faster. Note that this does not result in a decrease of the quality
of the obtained matchings because it is compensated by choosing data format
specific values for the parameters m, k and r that result in graphs such that
heuristics can find matchings of sufficient quality (see Sect. 3.2).

In our implementation, we have not stored the graph using an adjacency list,
instead we use data structures that allow an on-the-fly construction of the edges:
The sample value adjacency list is an array indexed by the sample values that for
each sample value s contains a list of those sample values that have a distance
< r to s. These lists are sorted by distance in ascending order. We also need a
data structure called sample value occurrences that is an array indexed by the
sample values that for each sample value s contains a list of pointers to those
vertices that contain s. Using these two data structures we can iterate through
the edges of a given vertex in order of ascending distance without the need to
store an adjacency list.

As mentioned above, we use heuristics to speed up the calculation of the
maximum cardinality minimum weight matching. We use the greedy construc-
tion heuristic formally described in Algorithm 1 (see, e.g., [9]).

This heuristic adds vertices ordered by their degree® and - for equal degrees -
with their shortest edge to the matching. Sorting by degree significantly increases

3 The degree of a vertex is the number of edges incident to this vertex.



Input : Graph G = (V, E)
Output: Matching M on G
Sort all vertices by degree in ascending order into (v1,...,vn);
Initialize M = 0;
Mark all vertices as active;
fori=1,...,n do
if v; is active and degree(v;) > 0 then
Set e = (vs, w) = shortest edge of v;;
Set M = M U {e};
Mark v; and w as inactive and delete all of their edges from FE;
end

end

return M,
Algorithm 1: The static minimum degree construction heuristic (SMD)

the cardinality in comparison to a random selection because vertices that have a
lower number of possible partners are matched first. Additionally sorting vertices
with equal degrees by shortest edge biases the non-determinism in the algorithm
towards choosing shorter edges.

After this construction heuristic, for some data formats we use a heuris-
tic depth-first search for augmenting paths as postprocessing step. Augmenting
paths then can be used to increase the cardinality of the matching. The interested
reader is referred to [9] for details.

3.2 Computational Studies

To evaluate the performance of the implementation empirically, we created a test
set of cover files for every data format. The image test sets have been created
by digitizing 50 images showing natural scenes with an Epson flatbed scanner,
which then have been converted to the appropriate file format: to bitmaps using
256 color palettes, to uncompressed true-color bitmaps (16.7 million colors) and
to color jpeg images. The audio data has been taken from different CDs and then
stored as 16 bit waveform data and converted to the p-law format. The tests
have been conducted with different amounts of random data as secret messages.

These test sets have been very useful to determine good values for the data
format specific parameters: the samples per vertex ratio k, the modulus m and
the radius r. As distance function we use the euclidean distance in the RGB
cube for palette and true-color images, for the other formats we use the absolute
distance between the sample values. Table 1 shows values for the parameters
s.t. an embedding rate as high as possible is reached while still allowing nearly
perfect matchings and thus preservation of first-order statistics. The embedding
rate is the rate of the size of the secret message to the size of the cover file and
can be calculated as r = %ks where s is the size of a sample in bits. A sample

in a jpeg file is a coefficient of the discrete cosine transform. Coefficients with
the value 0 are not used to embed data, because setting a coefficient that is 0



palette[true-color| jpeg |waveform | p-law

radius r 20 10 1 20 1
samples/vertex k| 3 2 3 2 2
modulus m 4 4 2 2 2

embedding rate | 8.33% | 4.16% [5.86%| 3.13% 6.25%
algorithms SMD SMD SMD [SMD,DFS|SMD,DFS

Table 1. Data format specific definitions

in the cover file to 1 in the stego file can result in visually detectable distortion
of the image. For this reason, the embedding rate of a jpeg file can be given
only empirically, so the exact value given in the table is only valid for our image
database, however for other natural images the value will be similar. The last
row shows which algorithms are used on a specific file format. SMD refers to the
static minimum degree construction heuristic (as described in Algorithm 1) and
DFS refers to the heuristic depth first search for augmenting paths presented
in [9]. For the audio data formats it is useful to apply the DFS postprocessing
step, because the SMD heuristic already produced high quality solutions (98.2%—
99.7% matched vertices for waveform data and 99.8%-99.9% for u-law data) and
the DFS postprocessing step is rather fast when applied to such high quality
solutions but still yields even better solutions.
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Fig. 2. Matching cardinality

Fig. 2 shows the cardinalities of the calculated matchings. The cardinality
of the obtained matchings is very high (more than 97% of the vertices have
been matched). This is due to the high density of the graphs obtained using
our parameter settings. For the audio data formats almost 100% of the vertices
have been matched. In contrast to the audio data formats, for jpeg files only



97% can be reached. This data format is more difficult to handle, because the
coefficients of the discrete cosine transform do not have a uniform distribution,
instead sample values with smaller absolute values occur more often (see, e.g.
[12]). These results show that embeddings can be found that do not modify
first-order statistics substantially.

T T T T T T
50 T
+ +
g
5 40 | T
< X
k]
g
=2 30 K .
[=2)
S x
= X
@ o
g 20rm "4
fin} .
S
z 10 Tem T
P = - - ]
palette images -+
true-color images -~
waveform audio data ---#
0 | L L L L

1 2 3 4 5 6
Size of Embedded Data [KB]

Fig. 3. Average edge weight

Fig. 3 shows the average weight in % of the radius. An unbiased algorithm
would choose edges with random weight with the result of an average edge weight
of 50% of the radius. Biasing the algorithms towards choosing shorter edges has
a significant effect for true-color images and waveform audio data.

We have observed that true-color images need considerable more running
time than the other data formats, e.g. for embedding 6KB data the construction
heuristic takes approximatly 12 seconds to complete compared to less than one
second for the other data formats. This is due to the high number of different
sample values. The problem is that, in general, creating the sample value adja-
cency list needs O(|S'|?) time (where S’ is the number of sample values actually
occurring in the graph).

4 Steganalysis

The number of unmatched vertices is an upper bound on the number of changes
to first-order statistics. Our experiments have shown that sufficiently good match-
ings (< 3% unmatched) can be reached for natural cover data. This makes our
approach practically undetectable by tests that look only at first-order statis-
tics such as the yZ-attack [14]. Furthermore it is not possible to specify a set
of groups partitioning S s.t. exchanges occur only inside a group making our
approach also undetecable by the generalized y2-attacks in [10, 4, 13].



It would be interesting to run the blind steganalysis scheme [5] against our
implementation to compare its detectability to the other tested algorithms [12,
10,11], in particular to Salle’s model-based approach. His algorithm does not
only preserve the global histogram of jpeg files but also the frequencies of each
individual DCT coefficent. Note that our approach could easily be extended by
adding a restriction to the set of edges which allows only exchanges of sample
within one DCT coefficient. This would have the effect that also the frequencies
of the individual coefficients will be preserved. In fact, any restriction that can
be expressed by allowing or disallowing single sample value exchanges can be
added. It remains to be investigated how powerful this really is.

For a targeted steganalysis of our approach for jpeg files the blockiness mea-
sure seems to be a candidate. The blockiness measure gives an indication of the
discontinuities at the 8x8 boundaries of jpeg blocks and was used in [6] to break
outguess [10].

5 Summary and Outlook

We have presented a graph-theoretic approach to steganography that is based on
exchanging rather than overwriting samples. Thus it preserves first-order statis-
tics without the need for additional changes as in [10]. A graph is constructed
from the cover data and the secret message where each vertex corresponds to the
necessity of making a certain change and each edge represents a possible sample
exchange. The embedding is found by solving the well-investigated combinato-
rial problem of finding a maximum cardinality minimum weight matching in this
graph. The maximality of the cardinality ensures that a maximal amount of data
is embedded by exchanges. The unmatched vertices need to be embedded in a
way that does not preserve first-order statistics. However, as demonstrated in
our computational studies, the number of unmatched vertices is negligibly low
(0% —3%) for natural cover data. Additionally the minimality of the edge weights
ensures that the visual changes introduced by the embedding are as small as pos-
sible. We have implemented the algorithm with support for true-color images,
palette image and jpeg images as well as waveform and p-law audio data.

Our approach can easily be extended by adding further restrictions on the
set of edges (beyond the simple visual restriction s, ~ s,;). An example would
be a restriction for jpeg files to preserve also the frequencies for each individual
DCT coefficient. Another example is the method described in [3] (and recently
broken in [2]) to determine all pairs of stochastically independent sample values.
Any restriction that can be expressed by allowing or disallowing single sample
value exchanges can be added.

From the point of view of combinatorics the following two extension seem in-
teresting: 1) to allow exchanging more than one sample per vertex and 2) to allow
not only (disjoint) exchanges but arbitrary permutations. Both would provide
more flexibility but would amount to more difficult combinatorial problems.
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