
Some Critical Aspects of the PKIX TSP

Cristian Marinescu and Nicolae Tapus

University ”Politehnica” Bucharest, Romania
cristian.marinescu@omicron.at and ntapus@cs.pub.ro

Abstract. Authentication, non-repudiation, and digital signatures, re-
quire the ability to determine if a data token existed at a certain moment
in time when the creator’s credentials were valid. Time-stamps are to-
kens which contain a verifiable cryptographic link between a time value
and a data representation. The paper presents some critical aspects of
the X.509 Public Key Infrastructure Time Stamp Protocol, trying to
suggest some possible improvements to the protocol.
Keywords: PKI, security, time-stamp, TSA, PKIX TSP.

1 The PKIX Time Stamp Protocol

In an effort to solve some of the current security problems, many security so-
lutions and services require the ability to establish the existence of data at a
certain moment in time. Time-stamps (TSs) are a digital solution to this prob-
lem, providing the proof that the signed data existed prior to the indicated time.
The Time Stamping Authority (TSA) is the trusted third party (TTP) that gen-
erates the digital TS and guarantees that the time parameter is correct. TSs can
indicate weather or not an electronic signature was generated before the private
key expired or was compromised, non-repudiation and authenticity beeing guar-
anteed if this is the case [6]. The moment when the document was time-stamped
is also an important part of the requirement to present undeniable information
about who, what and when e-documents were issued, in order to be used in a
court of law [5].
RFC3161 specifies a simple time-stamp scheme based on digital signatures and
a typical client-server architecture. The PKIX TSP specifies the format of the
packets, along with some possible transport protocols and some verifications to
be done by the server and by the client. The communication mechanism consists
of a one-step transaction: the TSP client sends a request to the TSA; the server
has to check, upon receiving a packet, that it contains a valid TS request, and
to send a valid TS token back [1]. The requester has the responsibility to verify
that the received TS token is what it has requested. The verifier does not have
to be the same as the requester, any third party may check the TS. In case of a
dispute, the claimer has to provide the TS, to prove that the data existed at the
specified moment. It should also be noted that this does not prove sole posses-
sion or origination of the data, other mechanisms should be used in conjunction
with a TSA to accomplish this task.



2

2 Some Critical Aspects of the PKIX TSP

Like many PKI standards, the PKIX TSP does not consider real-life conditions,
such as incompatibility problems, software bugs, or the interconnection of soft-
ware modules. This rather optimistic approach can cause security problems, even
though a certain abstraction is quite unavoidable in a standardization process.
The resulting protocol has been designed to be a part of the PKI, and therefore
should not be regarded as a stand-alone solution [3].
RFC3161 suggests several transport protocols that can be used: e-mail, FTP,
HTTP, and raw sockets. Unfortunately, the standard specifies more options for
the raw sockets solution and disregards the basic rule of network protocols to
completely ignore the underlying transport layer. The raw socket polling support
is unlikely to simplify any implementation, and just adds unnecessary complex-
ity to the protocol. Under these circumstances, interfacing an HTTP solution to
a raw socket implementation is difficult to achieve because the protocol behaves
different depending on the transport layer. Since interoperability is in our opin-
ion an important issue, we argue that the next version of the standard should
dispense with the polling operations.
The standard contains some questionable features, like the ordering field or the
policy information, which can cause problems if implemented like the standard
suggests. The main benefit of the policy field, like defined by RFC3161, should
be the possibility to provide more information about the conditions under which
a TS may be used, the availability of a log, etc. Unfortunately, it is neither spec-
ified what policies must be provided, nor what the TSA should do under these
policies. Another unsolved problem is the procedure to be used for advertising
and parsing the supported policies. In order to be able to request a certain pol-
icy, the client has to find out the available policies, but at the moment, this
has to be solved outside the standard . We suggest to define a frame inside the
standard, so that the client could optionally start by parsing first the available
policies and other parameters of the TSA.
Another issue is generated by the usage of the ordering field in the TS token.
If the field is set to true, all TSs generated by the same TSA can be ordered
based on the time parameter. Otherwise, ordering the TSs is just possible if the
difference of the time parameters is greater than the sum of the accuracies. This
is rather a mistake, ordering TSs generated by the same TSA should always
be possible, any other approach is not acceptable. Establishing a timeline is an
important feature of TS schemes in general. We strongly suggest to avoid the
usage of the ordering field, any practical implementation should serialize the TS
generation process, in order to guarantee the timeline.
The several security considerations specified by RFC3161, are rather thin and
insufficient. In case that the key expires or gets compromised, the certificate has
to be revoked with a specified reason, but auditing, notarizing or even applying
a new signature to all existing TSs is difficult to achieve and a tremendous task
to accomplish [4], even if assuming that all the generated TSs have been stored
locally (which is normally not required). This still does not solve the problem in
case that the private key of the TSA gets compromised, because in most cases



3

it is difficult to find out the exact moment when this happened. In our opin-
ion, a much more simple approach, borrowed from the linking schemes, would
be to embed information from the previous generated token in the TS; another
solution, borrowed from the distributed schemes, would be to time-stamp the
same message digest at two or more different TSAs. A protocol improvement
should include this possibility, since this would not just increase the security of
the scheme, but also solve one of the biggest PKI problems [2].
In an effort to prevent the man-in-the-middle attack, RFC3161 makes an in-

teresting recommendation: to consider any response as suspect if it takes too
much time between request and reply. We argue that this approach is futile,
since the time necessary to process a request is not an indisputable argument for
an attack; it can be just the sign of a simple network congestion. The question
that also rises is how to define an acceptable period of time, since this parameter
would be different depending on the transport protocol [4]?
The TS is done on a message digest, having no constraints on the data format,
but this apparent simplicity hides another problem when time-stamping CMS
digital signatures. As defined, the TS token is placed inside a client’s CMS dig-
ital signature as an unsigned/unauthenticated attribute within the signer info,
with a special OID. Since two different CMS data structures are needed (the
one to be signed and the one to place the TS inside), the implementation can
be rather complex. RFC3126 tried to solve this problem by extending CMS to
include TSs, but we believe that it would have been better if the TSA would
have time-stamped not just a hash but also the signature of the requester, if
desired [4].
The virtual world of the PKIX TSP does not consider security threats, and inter-
operability issues. Unfortunately, it is impossible for practical implementations
to avoid all the problems presented, if an RFC3161 compliant version is the goal.
This is in our opinion the main reason why a second version should improve and
correct at least some of these mistakes. Failing to solve them will have negative
effects on the acceptance of RFC3161 as the de facto time-stamp standard of
the Internet.

References

1. Adams, C., et al: RFC3161 Internet X.509 Public Key Infrastructure Time-Stamp
Protocol (TSP), ftp://ftp.rfc-editor.org/in-notes/rfc3161.txt (2001)

2. Adams, C. and Lloyd S.: Understanding PKI, Addison-Wesley, NY, USA (2002)
3. Housley, R. and Polk, T.: Planning for PKI - Best Practices Guide for Deploying

Public Key Infrastructure, John Wiley & Sons, NY, USA (2001)
4. Marinescu, C., et al: A Case Study of the PKI Time Stamp Protocol Based On A

Practical Implementation, in: Proceedings of the CSCS15, Bucharest, (2005)
5. Merill, C.R.: Time is of the Essence, CIO Magazine,

http://www.cio.com/archive/031500 fine.html (2000)
6. Pinto, F. and Freitas, V.: Digital Time-stamping to Support Non Repudiation in

Electronic Communications, in: Proceedings of the SECURICOM’96, CNIT, Paris,
(1996) 397-406


