
Information Modeling for Automated Risk Analysis

Howard Chivers

Department of Information Systems, Cranfield University,
Defence Academy of the United Kingdom, Shrivenham, Swindon, SN6 8LA, UK.

hrchivers@iee.org

Abstract. Systematic security risk analysis requires an information model
which integrates the system design, the security environment (the attackers,
security goals etc) and proposed security requirements. Such a model must be
scalable to accommodate large systems, and support the efficient discovery of
threat paths and the production of risk-based metrics; the modeling approach
must balance complexity, scalability and expressiveness. This paper describes
such a model; novel features include combining formal information modeling
with informal requirements traceability to support the specification of security
requirements on incompletely specified services, and the typing of information
flow to quantify path exploitability and model communications security.

Keywords: security, risk, model, information, threat, service-oriented,
communication.

1 Introduction

Security Risk analysis provides a criterion for the value of security in the business and
social context of a system. It is the only viable cost benefit justification for security
controls, and is the established basis for information security management standards
[1] and methods [2]. There are a range of problems in applying systematic risk
analysis to large distributed service-oriented systems, one of which is developing an
analytic model which is able to support automated threat analysis.

The SEDAN (Security Design Analysis) framework has been developed to support
the risk analysis and security design of large distributed systems. At the core of the
framework is an information model, which integrates a system design, usually
expressed in UML, with a specification of the security environment, including
attackers and security objectives. The primary function of this model is to support
automated threat path analysis - finding paths from attackers to critical assets - which
is at the heart of risk analysis.

The design of this information model is a compromise between the need for
efficiency and scalability, and the need to accurately model a diverse range of security
objectives and requirements. The information model described here efficiently
interprets the information flow in a system as a graph; however, the needs of risk
analysis and requirement modeling have resulted in novel features in how the graph is
constructed and used. These include combining a generic model of information-flow
with informal requirements traceability, allowing the specification of security

mailto:hrchivers@iee.org

requirements on incompletely specified sub-systems, or services, and typing of
information within the model, to distinguish threat path exploitability and allow the
specification of communications security requirements.

The contribution of this paper is that it describes an approach to information
modeling specifically designed to support risk analysis. In order to ensure scalability
and allow the specification of a wide range of security requirements the model has a
number of novel features, including combining formal modeling with informal
requirements traceability, and the typing of information flow to distinguish path
exploitability, and model communications security.

The information model described in this paper has already been applied in practice,
by the production of supporting tools, and their use in the analysis of a complex
industrial distributed system [3]. For reasons of space only the information model is
described here; the specification of security requirements in the SEDAN framework is
published separately [4], together with a worked example. A detailed account of the
framework and its application is also available [5], which includes a formal account
of the model described in this paper.

This paper is organized as follows: Following a brief description of related work,
section 3 describes the information model, how it is related to a system design, and
the motivation for combining formal information modeling with informal
requirements traceability. Section 4 describes an important extension to the basic
model: information typing. Section 5 discusses possible limitations in graph-based
modeling and how they are overcome, and section 6 concludes the paper.

Definitions
In this paper a security objective or protection objective is an unwanted outcome for a
particular asset, also known as an asset concern; such objectives are the goals of threat
path analysis. A security requirement, or control requirement is an operationalized
requirement (e.g. an access control), that is part of the specification for a system
component, usually in the form of a functional constraint.

This paper is concerned with system protection; security goals also require
functions, such as intrusion detection, but these are beyond the scope of the paper.

2 Related Work

Risk analysis approaches were reviewed by Baskerville [6] over a decade ago, and his
analysis is still relevant today. He characterizes current methods (including tools, such
as CRAMM [7]) as engineering based, but failing to integrate risk analysis with the
engineering models of the systems they support. He identifies the need to use abstract
models of systems, which allow a combination of security design and stakeholder
analysis, independent of physical implementation. This characterization of the
problem is one of the motivations for the SEDAN framework, since it identifies the
scope for abstract modeling to make a fundamental contribution to risk analysis.

Recent work on risk is typified by the European CORAS research project [8]; this
has sought to integrate risk and engineering models by providing process metamodels
and threat stereotypes for UML, and by investigating how various methods from the

safety and risk community (e.g. failure mode analysis, fault tree analysis) can be
utilized in e-commerce risk assessment. Essentially it provides a documentation base
for risk analysis, but no new modeling, and while there are many proponents of threat
modeling or analysis (e.g. [9]), these describe good practice and principles, but not
abstract models that allow systematic tool support.

Related work, such as UMLSec [10] builds on the formal semantics of UML to
allow the complete specification of security problems, which can then be subject to
formal proof, or exported to a model-checker. This work is typical of a wide range of
formal approaches to security; it is promising for small hard security problems, such
as protocol analysis, but there is little evidence that this approach will scale to large-
scale practical systems, or that it can accommodate risk as a criterion.

Security risk management is essentially a form of requirements engineering, and
the goal-refinement community are active in developing new requirements
management models [11], some of which are tool supported. However, this work has
yet to accommodate risk metrics, or threat analysis.

In summary, the creation of an effective analytic model for risk analysis is an
important open question; the approach described in this paper is unique, since it
systematically combines formal modeling and informal requirements traceability.

3 Modeling the Information in a System Design

The purpose of the information model described in this paper is to enable the
systematic, automated, discovery of threat paths, and the calculation of other risk-
based metrics, in a high-level service-oriented system design. The starting point for
the information model is therefore what is represented in such a design:
• the structure of the system: its services (or sub-systems) and data structures;
• interfaces to these services, including the messages that they support; and,
• communication between services: which services are invoked by others.

The following sections describe the basic information model, including how it is
mapped to a system, the need to represent security requirements, and resolving the
problem of incompletely specified system behavior by combining a generic model of
service behavior with traceability to informal security objectives.

3.1 Mapping the System to an Information Flow Graph

Threat path discovery is a form of model checking: it is necessary to expand the
information model into a graph, determine paths that correspond to threats, and relate
these results back to the system. Following paths in a graph also corresponds to an
intuitive model of threat analysis, so the information model is formulated as a graph
which represents the information flow in the system.

The system is divided into information carriers and behaviors, which are mapped
to graph vertices and directed edges, respectively. Information carriers are data,
messages, or events in the functional model; behaviors include system functions or
services. The graph is directed, and information paths in the graph may be cyclic.

Users (strictly, user roles) are modeled as sources or sinks of information. For
example, consider the simple system presented in the UML model in fig 1.

«client»

UserInterface

«service»

BusinessService

+ search(query) : String

+ update(RefData, id) : void

RefData
invokes manages

Fig. 1. An Illustrative System

In fig 1 there are two services, the first, stereotyped <<client>> is directly accessible
by users, and the second (BusinessService) provides operations to search and update
business data assets (RefData). In this system the information carriers are the
messages between the two services, that invoke or return data from their operations,
the data asset, and messages that flow directly to users.

The corresponding information graph is shown in fig 2, in which the services (s1,
s2) encapsulate graph edges (internal to the services and not shown), and the vertices
(va ... vg) represent information carriers that are identifiable in the system. The figure
is annotated to show how the graph is related to the system in fig 1.

s1
(UserInterface)

vd
(s1-s2.search.return)

va

vb

vc
(s1-s2.search.invoke)

vf
(s1-s2.update.return)

ve
(s1-s2.update.invoke)

s2
(BusinessService)

vg
(RefData)

Fig. 2. The Information Graph: vertices represent information carriers such as messages or
events; service behavior is characterized by edges that carry information between vertices.

Fig. 2 illustrates the mapping between a system and the information model:
• vertices represent information carriers, and have exactly one service as their input

and one service as their output;
• the edges of the graph are partitioned between the services of the system. The only

information flow between services is via vertices; and
• users are represented as active subjects, similar to services, in that they can invoke

operations in client services. However, unlike services, they are sources or sinks of
information, rather than graph edges.

Graph vertices are derived directly from information carriers identified in the system
model. For example, vc and vd model the call and return of the search operation in the

BusinessService service (s2), invoked by the UserInterface service (s1). Note that
from an information perspective there is usually no need to distinguish the fine grain
data structure within a message in information terms (e.g. multiple parameters in the
update()), but there is a need to represent events that carry no data, such as the void
return from update(); this is discussed further in section 4. This mapping does not
imply that messages to and from services are necessarily synchronous.

Vertices can equally represent information exchanged with system users (va, vb),
or data that is part of a service’s state (vf); from a threat path discovery perspective,
all assets of concern are mapped to graph vertices.

The edges of the graph capture system behavior or functionality, but as noted
above, the behavior of services in a system design may be unspecified. Unless a
service is constrained by a security requirement, it potentially routes information from
all its inputs to all its outputs. For example, in service s2 it is possible to distinguish
nine distinct behaviors (and hence, graph edges) that represent information flow
between {vc, ve, vg} and {vd, vf, vg}. In the absence of security requirements that
restrict this behavior, this generic model of a service is used to define the graph edges.

A consequence of this strict division between information carriers and behavior is
that a service is never mapped to a graph vertex, which suggests that it can never be
the target of a threat path. This is discussed further in section 5.3.

3.2 Modeling Security Requirements

This section describes how the information model supports security requirements; a
more detailed explanation of how requirements are specified is published separately
[4], together with a worked example.

An essential part of risk management is evaluating a proposed protection profile (a
set of security, or control, requirements) to identify residual threats. Some security
requirements can be represented in terms of a system design, and some are more
difficult. For example, access controls are, in principle, straightforward to specify and
model, since they constrain messages that can be identified in the system. However,
the specification of constraints on the behavior of services is not as straightforward.

For example, consider the system information graph shown in fig 3; the same
symbols are used to denote services and data as in fig 2, but vertices that are not
important for the discussion are unlabeled, solid arrowed lines show invocation,
dashed lines show other relevant information flow.

In fig. 3, an attacker has access to two services (sa, sb) that invoke further services
(sc,sd,se) to update a data asset (va). The security objective is to prevent
unauthorized modification of the data asset. There are several paths between the
attacker and the asset, so there are a number of options for how the resulting threats
can be defended. It is obvious by inspection that unless more is known about the
behavior of the services, a single security control is not sufficient to protect all the
possible threat paths; at least two are needed, for example ra and re.

sa sb

sc sd se

va

x

x

requirement ra

requirement re

objective: no unauthorized modification

Attacker

Fig. 3. Attacking a Data Asset via Services

These two control requirements are different in type. For example, service sa may be
a management interface which normal users (including this attacker) do not need to
access: ra is an access control. Requirement re is unlikely to be as straightforward,
since given the system configuration, it is unlikely that all accesses between sb and se
can be prohibited. The requirement re must constrain the operation invoked by sb,
rather than prevent it; perhaps by allowing read-only access to va.

This example highlights the difference between requirements that constrain
specific elements of the system model (e.g. access controls, to restrict possible
messages) and constraints on elements of the system that are not fully specified1: the
behavior of services. This also underlines the difference between security and
functional requirements: it may have been the intention of the designer that service se
provides read-only access to va, but a systematic analysis will ensure that this is
identified and documented as an essential security requirement.

One approach to specifying control requirements on service behavior is to first
fully specify the behavior of each service, but this anticipates the design process,
reduces the options available to an implementer, and may suffer from the scalability
difficulties associated with the use of formal methods in large systems [12]. This
paper describes an alternative: the use of generic information-flow constraints,
complimented by traceability to informal security objectives. This is the approach
described in the next section.

3.3 Deferred Requirements

In fig. 3, requirement re has three main components:

service se ... must protect va from sb ... to prevent unauthorized modification

The function of service se is not specified, so this requirement cannot be formalized
within the domain of discourse provided by the system design. A generalized

1 In a system design the interface to a service (i.e. the messages it receives) is specified, but this

is distinct from its behavior (i.e. what it actually does).

information flow constraint captures the first two parts of the requirement (constrain
information flow between sb and va in service se); however, the security objective
(prevent modification) is an important clarification of the requirement.

This type of requirement is described as deferred, because the semantics of the
protection objective are informal, and can be properly interpreted only in terms of a
detailed functional design or implementation. Deferred requirements have three parts:
• the service which must implement the requirement;
• the information context: which messages at the interface to the service, or which

assets within the service’s state, are constrained; and
• informal semantics, which are specified by reference to the security objective for

the associated asset2.

This approach is a compromise between a formal model of security, and informal
requirements management. The former requires a system to be modeled in sufficient
detail to allow the specification of any functional constraints, the latter does not
benefit from a fully systematic analysis. Essentially, the formal information model
defines where requirements are placed in the system, but traceability to informal
security objectives are used to clarify what the requirements must achieve.

3.4 Graph Sets

The semantics of deferred requirements are not fully defined in the information
model, since part of their specification is informal. As a result, deferred requirements
associated with different security objectives are not necessarily comparable. In other
words, an information flow constraint traceable to one security objective does not
necessarily protect another. For this reason the SEDAN information model is not a
single information graph, but a set of graphs, one for each security objective.

This feature is a technical issue for the implementation of the associated model-
checker, but does not essentially change the underlying efficiency of the graph-based
modeling approach.

3.5 Diverse Security Objectives

The combination of information modeling and informal semantics is able to
accommodate a wide range of security objectives. Confidentiality can be interpreted
directly in information-flow terms, but most other security objectives are not as easily
expressed; for example, integrity has a wide range of different interpretations [13],
including no unauthorized changes, or maintaining provenance, or consistency.

These different types of integrity can be treated in a uniform way: the information
model allows the discovery of threat paths from attackers to related assets, and
security requirements can be placed on these threat paths to protect the security
objective; this resolves the problem in information terms, but does not distinguish

2 This does not imply that each asset has distinct security objective; security objectives may

apply to groups of assets, or be traceable to higher level goals that specify their purpose.

between different integrity objectives. The implementer is able to determine the
detailed protection requirement by traceability to the informal security objective.

This pattern of formal path discovery, and informal requirements traceability,
therefore supports a wide range of different security objectives. (See also section 5.2)

4 Information Typing and Communications Security

One security requirement that could be used to preserve integrity (see previous
section) is authentication: the source of data is accredited, preventing an attacker from
injecting or substituting false data. However, if the objective were availability, then
data authenticity would not protect against a denial of service attack involving high
volumes of invalid data.

This is an example of a threat which can be transmitted via system events, or traffic
flow; in risk analysis it is necessary to distinguish traffic flow from information
carried by data, since they support different threats. Vertices in the information model
are therefore typed to characterize the threat paths that may be supported by the
vertex. The base types are data or void3, corresponding to information carriers that
support data or traffic, respectively.

However, the value of information typing extends beyond the need to characterize
threat paths; it also allows communications security requirements to be represented in
the information model, and this is described in the remainder of this section.

Modeling Communications Security
Attacks via implementation mechanisms (e.g. buffer overflow, or direct access) are
common and important, and one purpose of communications security4 is to protect
against such attacks. The associated threat paths can be determined by evaluating the
impact of an attacker with direct access to a graph vertex. This requires the type of a
vertex to be further qualified by its accessibility to an external attacker. Three
additional types are needed: Confidentiality, Integrity, and Virtual. Fig. 4 shows how
they are used to model confidentiality; data flow is shown dashed, and traffic flow
dotted.

In fig.4, vertex Vx represents an encrypted message, resulting in traffic flow from
service s1 to Vx (1). An attacker with direct access to the message, for example by
wiretapping, is able to extract only traffic information (2). However, if the attacker
injects data (3) then this may be inadvertently accepted by service s2 (4). A
Confidentiality vertex therefore supports a traffic flow from its source to an external
attacker, and a data flow from the attacker to the destination service. The reverse
pattern applies to an Integrity vertex: an external attacker is able to obtain data, but
not misrepresent it.

3 Void is named because many related system events are messages with void parameter sets.

For example, vertex vf in fig 2.
4 Communications security is also used to protect end-to-end messages from intermediate

services; this is also accommodated by the model described here.

External
Attacker

Confidentiality Vertex

Vx
1

2 3

4
s1 s2

Virtual Vertex

Vy
5 6

Encrypt messages
for s2

Decrypt incoming
messages

Fig. 4. Vertex Types used to Model Confidentiality

The Confidentiality type characterizes the communication level message from s1 to
s2; however, s2 obtains data from this message by decryption, unlike an external
attacker or intermediate service (not shown), so it is also necessary to add a direct
auxiliary information path (5-6 via Vy) to model the recovery of message content.
This vertex has a special type, Virtual, which corresponds to the message layer in the
system model, conveys data, and is inaccessible by an external observer.

This describes the main features of information typing: it allows the information
model to distinguish between traffic and data flow in the system, and hence allows the
modeling of communications and message security in an information graph.

5 Potential Limitations

The interpretation of a system as a set of information graphs provides an efficient
basis for threat path analysis on large systems; however, it makes some explicit
assumptions about the implementation, and is less expressive that other possible
formal expressions of information flow (e.g. as a set of traces). The following sections
review the key assumptions and possible limitations.

5.1 Critical Modeling Assumptions

The structure of the information model embodies critical assumptions that must be
maintained in an implementation if the risk analysis is to remain valid; these are that:
• a system can be decomposed into services;
• the only information flow between services is via identified information carriers;

and
• the structure of services and information carriers is consistent between the system

design and its implementation.

These assumptions are appropriate to service-oriented systems that comprise services
communicating via messages; individual services may be deployed to physically
separate servers, but however they are deployed the implementation is likely to
preserve the isolation between services. However, if deployed services are able to

communicate via a mechanism that is not present in the design, then this introduces a
behavior that was not anticipated in the analysis, with undefined consequences for
security.

This is a special case of the general principle that information flow in an
implementation must be a subset of that analyzed [14]. These implementation
constraints are therefore normal for security analysis and modeling generally, and the
system structure described here is well adapted to service-oriented systems.

5.2 Information Representation Limitations

The information model is a graph which is mapped to information carriers in the
system design. Such a graph can be made as expressive as necessary, by expanding
the number of vertices to enumerate properties of interest; however, in practice there
is a need to balance scalability and expressiveness, so the properties enumerated are
limited: vertices are distinguished by source, destination or ownership. As a
consequence the information graph does not directly model sequence or time, and this
potentially limits the security objectives that can be analyzed.

Consider such an objective: two different users are required to perform an action in
sequence; one originates a purchase order, and the second must approve it. The
security objective is to avoid an incorrect transaction sequence, because the
organization wishes to prevent an approver writing ‘blank cheques’.

One or more security requirements are needed in the paths between these users and
the payment. The information model can be used to show that a security requirement
is correctly placed, because threat paths can be identified between the users and the
payment; the system implementer is able to determine that this requires ‘correct
sequence’, because the requirement is traceable to the informal security objective.

The essence of this example is that the information model is able to solve the
critical problem in systematic design – the placement of security requirements –
without necessarily needing to fully interpret the requirement. This approach is just as
effective for temporal constraints as for other constraints on behavior, and mitigates
the absence of formal temporal modeling.

5.3 The Representation of Services

A service is modeled as pure behavior: a set graph edges that convey information
flow (see section 3.1). It is the vertices of the graph that represent identifiable data
items in the system, and are the potential targets of attack. This strict division between
information carriers and behavior seems to suggest that a service can never be the
target of a threat path.

This potential issue can simply be avoided by explicitly modeling a service’s state
as data, and identifying that data as a security-critical asset. This approach is
occasionally necessary in practice; for example, if the algorithm or software used to
perform a service is itself confidential. However, experience suggests that security
objectives that system stakeholders wish to assign to services are often misplaced.
The most common example is availability: intuitively ‘availability of a service’ is an

appealing security objective; however, what is usually required is availability of the
results of the service to the user. From a modeling perspective it is preferable to
identify the result as the asset of concern, since the whole information path, including
the service, is then the subject of analysis. An abstract model should clarify important
aspects of the target system, and this strict mapping of services to behavior prompts
the user to identify unambiguously the targets of protection.

6 Conclusions

This paper describes an information model that has been developed to support
security risk analysis. The essential structure of the model is an information graph, in
which vertices correspond to identifiable information carriers in the system (e.g.
messages) and edges represent service behavior. This approach supports a direct
mapping between the system design and the information model, and allows the
efficient and intuitive analysis of threat paths.

Compared to fully formal system modeling, this approach offers considerable
scalability and efficiency, but is potentially less expressive; this problem is overcome
by two novel features: the use of informal objectives to clarify security requirements,
and information typing.

The need for informal semantics arises because the behavior of services is not
defined in a high-level system model. Security requirements on the behavior of such
services are specified by a combination of a generic information-flow constraints, and
are traceable to the security objective which they support. In effect, the information
model determines threat paths and specifies the position of security requirements,
while the specific form of protection is clarified by the informal security objective.

This mixture of formal and informal requirements management accommodates a
wide range of different security objectives, and also has technical consequences: the
information model is a set of graphs, one for each security objective.

Information typing distinguishes between data and traffic flow in the system; this
characterizes the exploitability of different threat paths, and allows the modeling of
communications, and message-based security.

The information model described in this paper has been used to support practical
risk-analysis tooling, and the analysis of a substantial industrial system [3]. The
remaining open questions are not concerned with the underlying model, as described
here, but with suitable models for established security requirements (similar to fig 3),
which are often patterns within the information model.

Acknowledgements

This work was carried out as part of a Royal Academy of Engineering Senior
Research Fellowship. We are also grateful to the anonymous referees for their
perceptive and constructive contribution to this paper.

References

1. Information Security Management Part 2 Specification for information security
management systems, British Standards Institution, BS 7799-2:1999.

2. Risk Management Guide for Information Technology Systems, National Institute of
Standards and Technology (NIST), SP 800-30. January 2002.
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf (accessed January 2006)

3. Chivers, H. and Fletcher, M., Applying Security Design Analysis to a Service Based
System. Software Practice and Experience: Special Issue on Grid Security, 2005. 35(9). 873-
897.

4. Chivers, H. and Jacob, J. Specifying Information-Flow Controls, Proceedings of the Second
International Workshop on Security in Distributed Computing Systems (SDCS)
(ICDCSW'05), Columbus, Ohio, USA. IEEE Computer Society, 2005; 114-120.

5. Chivers, H., Security Design Analysis, Thesis at Department of Computer Science, The
University of York, York, UK, available on-line at
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2006-06.pdf, (accessed July 2006). p. 484.
2006

6. Baskerville, R., Information Systems Security Design Methods: Implications for
Information Systems Development. ACM Computing Surveys, 1993. 25(4). 375-414.

7. CRAMM Risk Assessment Tool Overview, Insight Consulting Limited, available at
http://www.cramm.com/riskassesment.htm (accessed May 2005)

8. Dimitrakos, T., Raptis, D., Ritchie, B., and Stølen, K. Model-Based Security Risk Analysis
for Web Applications: The CORAS approach, Proceedings of the EuroWeb 2002, St
Anne's College, Oxford, UK. (Electronic Workshops in Computing). British Computer
Society, available on-line at http://ewic.bcs.org/conferences/2002/euroweb/index.htm
(accessed January 2006), 2002.

9. Swiderski, F. and Snyder, W., Threat Modelling. Microsoft Professional. 2004: Microsoft
Press.

10. Jürjens, J. Towards Development of Secure Systems Using UMLsec, Proceedings of the
Fundamental Approaches to Software Engineering : 4th International Conference, FASE
2001 : Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2001, Genova, Italy. (Lecture Notes in Computer Science vol 2029). Springer-
Verlag, 2001.

11. Kalloniatis, C. Security Requirements Engineering for e-Government Applications: Analysis
of Current Frameworks, Proceedings of the Electronic Government: Third International
Conference, EGOV 2004, Zaragoza, Spain. (Lecture Notes in Computer Science vol 3183 /
2004). Springer-Verlag, 2004; 66-71.

12. Schaefer, M. Symbol Security Condition Considered Harmful, Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA. IEEE Computer Society, 1989; 20-46.

13. Mayfield, T., Roskos, J. E., Welke, S. R., and Boone, J. M., Integrity in Automated
Information Systems, National Computer Security Center (NCSC), Technical Report 79-91.
http://www.radium.ncsc.mil/tpep/library/rainbow/C-TR-79-91.txt (accessed January 2006)

14. Jacob, J. L. On The Derivation of Secure Components, Proceedings of the 1989 IEEE
Symposium on Security and Privacy. IEEE Computer Society, 1989; 242-247.

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2006-06.pdf
http://www.cramm.com/riskassesment.htm
http://ewic.bcs.org/conferences/2002/euroweb/index.htm
http://www.radium.ncsc.mil/tpep/library/rainbow/C-TR-79-91.txt

