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Abstract. Networking researchers and engineers rely on network packet
traces for understanding network behavior, developing models, and eval-
uating network performance. Although the bulk of published packet
traces implement a form of address anonymization to hide sensitive in-
formation, it has been unclear if such anonymization techniques are suf-
ficient to address the privacy concerns of users and organizations.

In this paper we attempt to quantify the risks of publishing anonymized
packet traces. In particular, we examine whether statistical identifica-
tion techniques can be used to uncover the identities of users and their
surfing activities from anonymized packet traces. Our results show that
such techniques can be used by any Web server that is itself present
in the packet trace and has sufficient resources to map out and keep
track of the content of popular Web sites to obtain information on the
network-wide browsing behavior of its clients. Furthermore, we discuss
how scan sequences identified in the trace can easily reveal the mapping
from anonymized to real IP addresses.

1 Introduction

Packet-level traces of Internet traffic are widely used in experimental networking
research, and have been proved valuable towards understanding network perfor-
mance and improving network protocols (c.f. [18, 13, 11, 12]). Since raw packet
traces contain sensitive information such as emails, chat conversations, and Web
browsing habits, organizations publishing packet traces employ techniques that
remove sensitive information before making the traces available.

The most common process of “anonymizing” a packet trace involves removing
packet payloads and replacing source and destination IP addresses with anony-
mous identifiers [14]. Several repositories of trace datasets have been made avail-
able that employ this technique and they have served the research community
extremely well for many years[2, 3]. Without payloads and host TP addresses,
it is widely assumed that it is hard, if not impossible, to elicit any sensitive
information from a packet trace. However, several researchers have recently ex-
pressed concerns, albeit without further investigation, that there may be ways
of indirectly inferring sensitive information from sanitized traces[20, 16]. This
kind of information on individual users and organizations could be used in many



ways that may be illegal or simply in a bad way (e.g., for marketing, surveillance,
censorship, industrial espionage, etc.).

In this paper, we attempt to experimentally assess the risk of publishing
“anonymized” packet traces. In particular, we examine whether it is possible
to break the address anonymization scheme and identify specific host addresses
in the network traffic packet trace. We focus on two potential statistical iden-
tification attacks: one using known web site footprints, and one using known
patterns of port-scanning activity. The first attack has the potential of discov-
ering the anonymized identifiers of known Web servers, which can be linked to
(still anonymous) client IPs. The second attack is not restricted to a specific
type of host or protocol, and is therefore “ideal” for recovering client IPs which
cannot be recovered using the first technique alone.

2 Related Work

Although our work is not the first to raise questions about the risks of publishing
anonymized packet traces, to the best of our knowledge it is the first report
that tries to provide some answers. The issue was first raised by Ylonen[20],
who discussed several ways of breaching the privacy of traces that have been
anonymized using tcpdpriv[14]. This report also mentions matching known web-
site footprints to the packet trace. The same attack is also imagined by Pang
and Paxson in [16]. In both cases, the authors did not further examine the
technical details of the attack and did not experimentally quantify its potential
effectiveness.

Launching a “known-plaintext” attack on web-site footprints found in packet
traces is similar in many ways to launching such an attack on footprints found
in encrypted Web traffic, as seen by a Web proxy. For the case of the proxy
server, Sun et al.[19] developed a technique that monitors a link between proxy
and clients, gathers HT'TP requests and responses, and compares them against
a database of signatures. The authors show that most of the Web pages in their
database can be identified and that false positives are rare. Similar results are
presented by Hintz in [10]. Moreover, Pang et al. in [17] mention the problem of
sequential scans found in traces that could lead to a potential disclosure of the
anonymized IP addresses.

Although the basic idea of launching a known-plaintext attack on encrypted
Web proxy traffic is similar to attacking a packet trace, there are two major dif-
ferences that justify further investigation. First, attacking packet traces instead
of proxy traffic seems a lot easier and thus more threatening, as anonymized
packet traces are widely available through organizations such as NLANR[4] In
contrast, web proxy logs are usually not shared outside an organization. Thus,
the technique examined in this paper is an existent threat to the privacy of users.

Second, it seems difficult to directly apply the proxy technique to packet
traces. We have identified several issues that need to be addressed in attacking
a packet trace that were not explored in the proxy attack. For instance, caching
schemes, the use of cookies, the type of browser used to make the request and
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Fig. 1. Extracting elements from a packet trace. The responses between two successive
requests belong to a single element (Element 1) and the element size is the sum of
response packets. The connection termination also indicates the end of an element
(Element 2)

various HTTP options and protocol details alter the underlying input and may
influence the effectiveness of the method. Another problem that we faced in our
analysis is the reconstruction of the HT'TP data from the TCP/IP traces. This
was not the case in Web proxy traffic where there is no need for HTTP-level
reconstruction as the complete request sequence for a page is available. This
issue affects the matching process and should be taken into account.

3 Identification of Anonymized Web Server Addresses

3.1 Extracting Web Signatures

Before describing the process for extracting HTTP requests from packet traces,
it is important to understand exactly how the protocol under attack is imple-
mented. For HTTP protocol version 1.0[7], a new connection should be created
with the web server in order to retrieve a new element. The term element defines
every item that contitutes a web page, which may include html pages, images, css
and script files and in general everything that can be referenced in a web page.
To reduce the delay perceived by the client during web browsing and additionally
the traffic produced, HTTP version 1.1[9] introduced persistent connections. A
persistent connection does not need to be terminated after retrieval of an ele-
ment but can be reused to process further requests to the same server. Current
browsers use HTTP /1.1 by default, although the user can specify to use HTTP
1.0. Typically, when a browser requests an HTML page, the retrieved page is
parsed in order to find its embedded objects. Afterwards, an HTTP request is
issued for each one of these objects. Responses sent by the server consist of the
HTTP headers along the actual data that were requested.

The first step for signature extraction is to identify web traffic from traces.
This is is relatively easy by taking packets to and from port 80. Packets with
zero payload size are considered as acknowledgments. The second step is to an-
alyze HTTP responses. In case of HTTP/1.0, a request is made, the response
follows and then connection terminates. Thus, the size of the element is the
sum of payload sizes of packets with source port 80 (for this flow). In case of



HTTP/1.1 (default for most browsers), we may have multiple requests on the
same connection. All the packets from server to client that are found between
two requests belong to the same response and this response belongs to the first
request. The process is illustrated in Figure 1. In this study we do not consider
“HTTP pipelining” — this would somewhat complicate our analysis, but is out-
side the scope of this work, since it is still an experimental feature, disabled by
default in all browsers, and rarely used.

Having collected a set of elements, we need to assign them to the web page
they belong. Elements are grouped on a per-client basis. It is necessary to dis-
tinguish successive Web page requests and assign the identified elements to the
right page. A web page may contain elements from multiple web servers. Often,
HTML files reside on the main web server, while images or embedded objects
(like ads or banners) are loaded from another server. This behavior does not
allow us to rely on IP address for assigning elements. Another problem arises
when there are two requests for the same web server, e.g., when a user clicks a
hyperlink for a page on the same domain as the original web page. Given that we
have no HTTP-level information, we have to rely on a heuristically determined
timeout value. After a user downloads a page, we assume that there is an “idle”
period until the user clicks a link to another page. Figure 2 shows the process of
assignment.
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Fig. 2. Assigning elements into page requests. The timeout value is used to separate
requests for two different pages.

After the assignment of elements to Web pages, a signature for that page
can be created. As we have no payload from traces, the element size is the most
promising piece of information that we can extract. Note that the size of each
element is computed including the HTTP response headers, which causes vari-
ation of element size even for subsequent requests (due to variable length fields
like cookies and date). Consequently, the signature for a web page is the set of
element sizes that is consisted of. This definition for web page signature creation
has several advantages but also limitations. As the number of elements forming
a page increases, signatures become more accurate. However, it is possible for
a web page to generate more than one signature for three main reasons. First,
the web page may be dynamic or changing periodically. Dynamic pages may
alter the actual content of the page (HTML file) and the embedded objects,
for example, to present different ads each time. Second, due to HTTP headers



length variation, even for static pages we may get different signatures. Finally,
caching may affect the creation of the signature and provide different results for
the same page.

3.2 Web Server Fingerprinting Methodology

A fingerprint attack can be formed as follows. The first step is to obtain a
signature for each target page that is to be identified. As mentioned before, a
signature for a page may not be constant and thus, using information just from
one signature may reduce the probability of a successful match. It is possible to
obtain many signatures for the same page and extract all the elements into a
unified set. The members of this set are most likely to be found in the trace as
a subset of a complete request. Additionally, in order to compensate for minor
HTTP header variations that may occur, a minor padding (ranging from 8 to
32 bytes) could be applied to the size of the elements. We should note here
that signatures should have been created at approximately the same time as the
trace packets because even static web pages may change over time. Moreover, if
a target site is dynamic, multiple signatures should be created in order to match
all possible appearances of the page.

After the signature database has been created, HT'TP elements should be
extracted from the packet trace and grouped into page requests. Since the ad-
versary has no way to find out whether HT'TP reconstruction was successful and
up to which degree, this step can be done multiple times using different timeout
values.

The next step is the matching process. Information extracted from the trace
should be compared against the signatures contained in the database. The el-
ements extracted from the trace are compared against the elements of each
signature and a similarity score is computed. The similarity score is the percent-
age of common elements between the request on the trace and the signature. If
the score is above a threshold then we have a potential match. As each web site
has multiple signatures, if we have more than one matche for a site, our guess is
more confident. If the request on the trace matches multiple web sites, then the
site that gives the highest scores is selected as a possible match. The complete
fingerprinting methodology is shown in Figure 3.

3.3 Experimental Results

A key parameter of the fingerprinting process is how signatures change over
time. Initially, ten thousand different pages were collected from Google’s web
directory [1], which was choosed due to the large number of indexed pages. Pages
were chosen randomly from various categories and only a few of them belong to
popular web servers. For each page, its signature was generated multiple times
in different time periods.

In our first experiment, we examined whether collected signatures remain
constant over time. For each target site, we created its signature every half
an hour. We target to calculate the percentage of static pages in the web, as
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an indication of whether the fingerprinting method can be applied succesfully.
Previous works [8] show that about 56% of the total pages appear to be static.
In Figure 4, the similarity percentage for different signatures of the same page
is shown. It can be observed that 67% of page signatures remain constant, while
90% of them have more than 60% similarity. It is clear that there still exist a
large portion of static pages that give potential for our method to work.

In our second experiment, requests found in a trace collected at a local subnet
of our institute were compared against the signature of the main page for a
popular web server. The signature contained 27 elements and we had in our
disposal both the anonymized and non-anonymized form of the trace to verify our
results and identify true matches. In Figure 5, the number of requests that match
the signature as a function of the number of common elements is presented. As we
increase the number of common elements, the number of requests that match the
signature decreases. Furthermore, near the maximum value of common elements
(27) false positive ratio, e.g. potential matches against true matches, drops to
ZEro.
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It is possible that the algorithm does not always succeed to come up with
one result for a signature. Instead, two or more matches may contain the same
number of common elements with multiple signatures. In this case the true match
can be decided based on the number of times that each match has been found.
This way, we try to find many matches to the target signature that each one has
a few common elements. The first step of this process is to group requests into
sets based on the number of common elements with the target signature and
count distinct IP addresses found in these requests. Figure 6 shows the number
of TP addresses in each of these sets. When the number of common elements
reaches its maximum value the number of IP addresses remains almost constant
so there is a precise guess.

In Figure 7, the histogram of the fifteen most popular IP addresses in the
matches is shown. The IP address IP1 is by far the most frequently appearing
address (considering that the number of web requests in the trace is limited to
few). After evaluating this experiment with the non-anonymized trace, we have
found that this IP was the right mapping for the target site.

In order to improve confidence of the guess, we could correlate the results of
the previous methods. If both methods end up to the same result, that means
identifying the IP address which has more common elements than all other
requests and also is the most popular, our guess can be more confident.

As the techniques described previously depend on the information extracted
from traces, we evaluated the HT'TP reconstruction process. More precisely, we
measured the correctness of assigning elements into Web pages. We analyzed
the non-anonymized trace using HTTP level information and extracted the Web
page along with their elements. Then the algorithm of assignment was applied
to the anonymized trace for multiple timeout values. In Figure 8, we present the
percentage of requests found in trace that have been reconstructed correctly, for
timeout values 1, 3, 5 and 7 seconds. The similarity score of the reconstruction is
computed as the percentage of elements of the request that have been identified
using our technique compared to the number of real elements. As we can see
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about 8% of the requests can be correctly reconstructed and this is common
for all timeout values. Although this is a rather low percentage, the existence
of these requests is an evidence that matching can be partially successful. Also,
requests that remain constant regardless the timeout value are more probable
to have been correctly reconstructed and matching should be based on these.

4 Passive Scan-Based Identification

It is trivial for an attacker to discover the real IP addresses from an anonymized
trace if he can inject a scan to a specific IP address range. Given that the attacker
knows the range that is scanned, and assuming he is able to identify his own
packets in the trace, obtaining the mapping of any anonymized IP address to
the real address is straightforward. However, such attempts may also be easy
to detect, hereby exposing the attacker. In some cases, the attacker may not be
willing to take such a risk. In this Section we present a more stealthy attack that
does not require the attacker to inject any traffic in the trace.

Instead of relying on injected scans, our algorithm relies on passive identi-
fication and analysis of existing scans performed by others, using tools such as
nmap[5]. Scans found in packet traces have different forms: some are linear scans
targeting specific subnets, others are random scans within the same subnet, oth-
ers are completely randomly generated IP addresses throughout the Internet.
The number of elements in a scanning sequence may also vary, although it is not
uncommon for such tools to map whole subnets.

To illustrate the basic operation of our algorithm we first describe a simple
scenario. Assume a target /24 subnet a.b.c.X/24 for which the anonymized IPs
need to be mapped to real IPs, and a trace that contains only full scans across
the subnet. The scans are either linear or random. If there are at least two scan
sequences that are identical, we know that with very high probability these scans
are sequential. The sequential scans then directly provide us with the mapping
of the /24 subnet, as the sequence identified in the anonymized trace can be
mapped to addresses a.b.c.1 through a.b.c.254.



This observation can be generalized to any set of scan sequences. We assume
that some of the sequences are in random order and some of the sequences are
linear. Our goal is to identify maximum common subsequences between different
scans. The longer the common subsequence, the more likely it is that it repre-
sents a linear scan. Since short sequences are more likely to be coincidental, we
cannot simply consider every pairwise match as legitimate. Instead, we itera-
tively construct the complete map of a subnet from pairwise matches in order of
confidence, and look for the maximum consistent set of pairwise matches that
cover the whole subnet.

To evaluate our approach, we used a network trace collected from two /24
subnets, locally at our institution. The duration of the trace was 4 days and it
contained header-only information. We had at our disposal both the anonymized
and non-anonymized version. The first step is to recognize the source IP ad-
dresses that perform scanning. A simple heuristic is to select only these hosts
that send a large number of SYN packets. We measured the cumulative distri-
bution function of SYN packets sent by hosts in both our trace and a network
trace from Bell Labs which had the same duration with our trace. The results are
summarized in Figure 10. It can be observed that only 1% of the hosts generate
more than 80 SYN packets in the whole duration of the trace, thus leaving us
only a small percentage of hosts to be investigated. For our next experiment, we
used 80 as the threshold for selecting hosts that are considered as scanners.

After having selected the set of source IP addresses to check, we try to find
the longest subsequence of destination hosts that they sent SYN packets to. We
found on the trace two IP addresses that shared a subsequence of 512 destination
hosts. After looking at the non-anonymized traces we verified that these two IP
addresses were scanning linearly a local subnet, sending two SYN packets per
host, apparently using the nmap tool. Although this is a specific example with
a large common subsequence, it demonstrates the effectiveness of our technique
as it is indicative of how our approach would work on real traffic. In lack of
a reasonably large trace with both anonymized and real addresses, we were
unable to evaluate in more detal the identification of linear scans through smaller
common subsequences where the probability of false matches is higher. However,
we believe that long linear scans are very likely to occur even within shorter
timescales, thus enabling the straightforward application of our algorithm with
high confidence.

5 Concluding Remarks

In this paper we have examined whether an adversary can break the privacy of
anonymized network packet traces. Such a threat is significant, as there are or-
ganizations that publish packet traces from their networks for research purposes.

We have examined two attacks: one that identifies web servers in the trace
through known web site fingerprints, and one that attempts to recover the orig-
inal IP addresses in the trace from well-structured port-scanning activity. Asso-
ciating the inferred information with other sources, such as web server’s log files,



could lead to significant privacy problems. Our results show that these attacks
are reasonably effective, despite being inexact and error-prone.

Although our results are not particularly surprising, they provide solid ex-
perimental evidence confirming the concerns previously expressed by other re-
searchers. One interesting observation is that the attack may be more complex
and error-prone than previously thought. However, it is not unlikely that careful
engineering can lead to higher identification accuracy compared to our results.

Since real-world datasets are essential for research, our results also reinforce
the need for alternatives to publishing sanitized packet traces. One possible
direction is the use of systems that have access to the raw traces but only allow
access to them through a query interface[6, 15]. Since the system controls the
queries, it may be possible to control their privacy implications, or at least retain
an audit trail in case a privacy violation is discovered at a later point.
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