
Detecting Hidden Encrypted Volumes

Christopher Hargreaves1 and Howard Chivers1,

1 Centre for Forensic Computing, Cranfield Univeristy, Shrivenham, SN6 8LA, UK
{c.j.hargreaves, h.chivers}@cranfield.ac.uk

Abstract. Hidden encrypted volumes can cause problems in digital investigations
since they provide criminal suspects with a range of opportunities for deceptive anti-
forensics and a countermeasure to legislation written to force suspects to reveal
decryption keys. This paper describes how hidden encrypted volumes can be detected,
and their size estimated. The paper shows how multiple copies of an encrypted
container can be obtained from a single disk image of Windows Vista and Windows 7
systems using the Volume Shadow Copy feature, and how the changes between
shadow copies can be visualised to detect hidden volumes. The visualisation assists in
the presentation of this information to a court, and exposes patterns of change which
allows the size and file system of the hidden volume to be determined.

Keywords: Forensic Computing, Encryption, Hidden Volumes, RIPA, TrueCrypt

1 Introduction

This paper examines the problem of hidden encrypted volumes during digital forensic
investigations. A hidden encrypted volume is a feature of certain encryption systems
that allows two keys to be created for a volume; one key decrypts the true contents
(hidden volume) and the other key (the ‘duress key’) decrypts some pre-arranged
innocent content (cover volume). This could pose a challenge in digital investigations
since one of the approaches to gaining access to encrypted evidence is the use of
legislation to force a suspect to provide decryption keys. If the suspect provides the
‘duress key’ and the data is decrypted, since it is not possible to tell if there is any
additional hidden content, the effectiveness of this legislative approach is reduced. It
is also possible that a password is provided more subtly with the intent to deceive the
forensic analyst; e.g. the password to the cover volume is written on a post-it-note
stuck to the bottom of a keyboard, making the investigator believe that they have
access to the all the encrypted data.

This paper provides a practical solution to the problem of identifying the existence
of hidden encrypted volumes and furthermore places it in a forensic computing
context, which includes the difficulty of demonstrating the existence of such a hidden
volume to a court. In addition the paper also shows how information about the hidden
volume (such as its size) can be inferred through an examination of the changes in the
free space of the cover volume.

The paper is organised as follows: the remainder of this section details the
problem of encrypted evidence and possible means of gaining access. It discusses the
legislative approach in the UK, i.e. making the failure to provide decryption keys on

request an offense (Part 3 of the UK Regulation of Investigatory Powers Act).
Limitations of this legislation are also discussed in terms of technical measures, such
as hidden volumes, that can be used to frustrate this approach. A particular
implementation of hidden volumes is discussed (TrueCrypt), which is used
throughout the later examples. Section 2 provides a summary of related work, and
Section 3 describes the methodology for the research, including how multiple copies
of an encrypted container can be obtained from a single disk image using the Volume
Shadow Copy feature of Windows Vista and Windows 7. Section 3 also shows how
the changes that occur between multiple versions of the container can be visualised
and how information about the hidden volume can be extracted. Section 4 evaluates
the approach and Sections 5 and 6 provide a discussion of future work and the
conclusions.

1.1 Encrypted Digital Evidence

In a digital investigation there are a number of approaches that can be used to attempt
to gain access to encrypted evidence. These are discussed in [1], [2], [3] and [4], and
can be summarised as:

• Persuading/forcing suspect to provide the decryption key
• Locating copies of unencrypted data
• Locating keys or passphrases
• Intelligent password attacks
• Exhaustive key search
• Exploiting implementation vulnerabilities
• Hardware or software surveillance

While any of these approaches can be used, legislation has been passed in the UK to
make it an offence for a suspect to fail to provide means to access the encrypted
information. This makes the option of forcing the suspect to provide decryption keys
more viable. This legislation is contained in Part 3 of the Regulation of Investigatory
Powers Act 2000 (RIPA) [5] and the requirements of responding to a RIPA notice are
explained in detail in [6]. On receiving a RIPA Part 3 notice, the person concerned is
required to either provide the electronic information in intelligible form or to disclose
the key to enable the data to be put into intelligible form. While this legislative
approach can be used to prosecute those who do not provide decryption keys, there
are technical solutions that can be used as a countermeasure to this approach. One
such countermeasure is the use of hidden volumes.

Hidden volumes employ the principles of steganography, meaning that the
existence of data is hidden in addition to the content. Steganography implementations
often involve hiding some secret data within a ‘cover file’, for example hiding text in
redundant elements of a jpeg. In the case of hidden encrypted volumes the
steganography is implemented as part of the encryption system, where one password
decrypts the real content, and a second password decrypts some prearranged innocent
content. This is done in such a way that it is not possible to tell if there is also

additional hidden content. An example implementation is detailed in the following
section and discusses the popular open source product TrueCrypt.

1.2 TrueCrypt and Hidden Encrypted Volumes

TrueCrypt is a “software system for establishing and maintaining an on-the-fly-
encrypted volume” meaning that “data are automatically encrypted or decrypted right
before they are loaded or saved, without any user intervention” [7]. TrueCrypt has
become a popular tool for encrypting data with over 12 million downloads as of
December 2009. TrueCrypt can create encrypted containers and can encrypt full
volumes or disks. TrueCrypt also offers hidden volume functionality so that one
password decrypts the true content and another password (a ‘duress’ password)
decrypts some prearranged innocent content. The structures of a standard TrueCrypt
volume and a ‘cover volume’ containing a hidden volume are shown in Figure 1.

Header Header

Standard volume data

Cover volume data

 Cover volume free space

Free space

Hidden volume data

 Hidden volume free space
 Footer

Fig. 1. The structure of a standard TrueCrypt volume (left) and one containing a hidden volume
(right).

While the structures of the volumes are shown above, to an analyst encountering an
encrypted volume, all that is visible is random data since the header, footer, volume
data and volume free space are all encrypted. Furthermore, in a standard TrueCrypt
volume the free space is filled with random data [8]. The process by which a
TrueCrypt volume that contains a hidden volume is decrypted is as follows:

• The user enters a password and a key is derived from it
• That key used to attempt to decrypt the footer
• If the footer decryption is successful then the volume key is obtained from

the footer and used to decrypt the hidden volume
• If the footer is not successfully decrypted then the key is used to attempt to

decrypt the header
• If the header decryption is successful then the volume key is obtained from

the header and used to decrypt the cover volume

The suspect can therefore use one of two passwords to access the volume. If the ‘true’
password is provided then it successfully decrypts the footer and access is provided to

the hidden volume; if the ‘duress’ password is provided then it fails to decrypt the
footer but decrypts the header and accesses the cover volume data.

In the second case (using the ‘duress’ key), the process cannot be distinguished
from decrypting a standard volume that does not contain a hidden volume, since in
both cases the footer will fail to decrypt and the process moves on to attempt
decryption of the header. In addition, since free space on a volume is filled with
random data, free space on a standard volume is indistinguishable from a hidden
container embedded in the free space of a cover volume. Therefore if a suspect is
forced to provide a key, if the provided key decrypts a standard volume it is not
possible to determine if there is a secondary, hidden volume that would be accessible
if a second password was provided.

1.4 Summary

While there are a number of options for gaining access to encrypted data, the simplest
is often to ask for the password [10]. While the suspect may choose not to cooperate,
in the UK there is now legislation in place to encourage the production of decryption
keys (RIPA Part 3). However, technical measures are available to counter this and can
take the form of systems that use multiple keys -- one to decrypt the true content and
another to decrypt some pre-arranged innocent content.

2 Related Work

Despite the careful design of TrueCrypt, in practice it may still be possible to infer the
presence of a hidden volume. This is discussed in both [9] and in the TrueCrypt
documentation [8].

Three threat models are described in [9] to which a hidden volume system could
be subjected. These are: one time access, where the attacker has a single snapshot of
the volume; intermittent access, where several versions of the volume are available
over time; and regular access, where many versions of the volume are available taken
at short intervals.

Several opportunities to infer the presence of a hidden volume are presented in [9],
assuming the most restrictive model (one time access). These include data leakage
through the operating system, e.g. shortcut files that are created automatically and
point to data on the hidden volume; data leakage through ‘primary applications’, e.g.
Microsoft Word auto-saving copies of a file from a hidden volume in an unencrypted
area of the disk; and data leakage through ‘non-primary applications’ e.g. Google
Desktop indexing data on hidden volumes.

In addition to these opportunities, [9] also highlights that if disk snapshots are
available at close enough intervals then it is possible to detect the existence of hidden
data since “seemingly random bytes on the hard drive will change”. However, no
practical demonstration of this is provided and it is implied that intermittent or regular
access is required to the disk.

The work described here shows how hidden volumes can be detected given only a
single copy of a suspect’s disk, how information about the size and file system of the

hidden volume can be deduced, and demonstrates a visualisation of the results in the
context of forensic computing, to allow such inferences to be explained to a court.

3 Methodology

3.1 General Methodology

Previous research has suggested that if multiple copies of an encrypted volume are
available then detection of hidden volumes is possible [9], but at least intermittent
access is needed to the disk. This paper provides a practical demonstration of how this
is also possible from a single disk image by exploiting the Volume Shadow Copy
functionality of Windows Vista and Windows 7. This feature is used to obtain
multiple copies of encrypted containers produced using TrueCrypt version 6.3a. The
term ‘encrypted container’ is used when referring to the use of Volume Shadow Copy
since the technique cannot be used to obtain multiple versions of full volume or full
disk encrypted data since Shadow Copies are created for files only. However, all other
aspects of this research apply equally to full volume or disk encryption as long as
intermittent access is available (this includes obtaining back-up copies), and in these
aspects of the research the term ‘volume’ is used.

Once multiple copies of a volume are obtained, the paper shows how the changes
can be visualised, making the presence of a hidden volume apparent in a form that is
useful not only to an investigator but also to any non-expert decision makers to which
the evidence needs to be presented.

Furthermore, the visualisation of changes that occur in the free space of a
decrypted cover volume reveals patterns in the hidden volume which when combined
with an understanding of file systems, can be used to infer information about the
hidden volume. This is demonstrated by estimating the type and size of the hidden
volume assuming a FAT based file system.

3.2 Obtaining Multiple Copies of an Encrypted Container

This section discusses how multiple versions of an encrypted container can be
obtained by exploiting the Volume Shadow Copy feature of Windows Vista and
Windows 7. This functionality extends the Restore Point feature of Windows XP so
that backups are now created not just of important system files but also of user created
files [11]. Shadow copies are not created every time a file is changed but when a
Restore Point is created. In Windows Vista “restore points are created automatically
every day, and just before significant system events such as the installation of a
program or device driver” [12]. This means that previous versions of users’ files may
be available in addition to the current instance.

Forensic acquisition of data from Windows Vista Restore Points is discussed in detail
in [13], but the process can be summarised as:

• Booting the suspect system as a clone or virtual machine
• Listing available Restore Points using the command line
• Mounting the restore points using symbolic links at the command line
• Copying out the mounted restore points to blank media

This creates copies of all files from a particular Restore Point. However, once a

clone or virtualised version of the suspect system is booted, it is also possible to use
the system’s user interface to access previous versions of particular files of interest.

Experiments have shown that TrueCrypt encrypted containers are included in these
automatic backups, but are not available through the GUI in the usual manner (shown
in Figure 2). However, previous versions are available by examining previous
versions of the folder in which the containers are stored (also shown in Figure 2).
These folders can be restored and the multiple versions of the encrypted containers
extracted.

Fig. 2. While there are no Previous Versions visible for a TrueCrypt container (left), they can
be accessed by examining previous versions of the containing folder (right).

Therefore, using this technique it may be possible to recover older copies of an
encrypted container from a single disk image through the Previous Version
functionality of Windows Vista and Windows 7. These multiple versions can then be
examined further.

3.3 Visualising Changes

The previous section showed how multiple copies of an encrypted volume can be
recovered from a single disk image due to the Volume Shadow Copy feature of
Windows Vista and Windows 7. This section describes the further examination of
these extracted encrypted volumes.

Multiple extracted encrypted volumes can be viewed using hex editors such as
WinHex which offer synchronise and compare functionality. This allows multiple
volumes to be compared and the differences highlighted. However, even if differences
between two encrypted volumes are seen towards the end of the volumes, from this
alone it is not possible to determine if these changes are due to a hidden volume or
simply data being written near the end of a standard encrypted volume. However,
assuming that some keys are available – either discovered during an investigation or
provided as a result of an order placed under disclosure legislation - then decrypted
versions of these volumes will be available, albeit they may not be the ‘true’ contents
of the volume. If the volumes are decrypted and then examined in WinHex, since the
file system can be interpreted it can be determined if random data is changing in the
free space of the volume (Figure 3). As discussed in [9], if multiple versions of a
volume can be examined then existence of the hidden volume is undeniable since
“seemingly random bytes in the hard drive will change”.

Fig. 3. WinHex highlighting the differences in the free space of two decrypted volumes.

While WinHex reports that the changes are occurring in free space of the volume, the
nature of the changes is clearer if the volume is examined from a broader perspective;
therefore the entire volume is visualised within a fixed space (a 100 x 100 grid).
Blocks that are different between versions are highlighted. This is implemented in
Python using the standard TkInter graphics library. Free space on the volume is
identified using a simple entropy based test for randomness and is differently
coloured; also, changes between the versions of the volume, and any changes since
the first volume are highlighted. These are shown in Figure 5 and it can be clearly
seen that changes are occurring in the free space of the volume.

The visualisation allows the changes to be clearly identified as being in the free
space of the volume which indicates the presence of a hidden volume. This
visualisation is useful not only for the analyst but also if this information needs to be
presented to a court. Visualising changes between different versions of decrypted
cover volumes in this way also reveals patterns in the changes to the hidden volume,
from which additional information can be inferred.

3.4 Identifying the Size of the Hidden Container

Through visualisation of the decrypted volumes it is possible to infer additional
information about the hidden volume. However, it is first necessary to discuss file
system structures.

A FAT based file system stores data in clusters, which are the smallest unit of
space on a volume which can be allocated to store data, typically 4096 bytes on a
modern system. There are a number of variations of the FAT file system including
FAT16 and FAT32 [14][15]. FAT file systems store data in a hierarchical structure
consisting of directories that contain files and other directories, as are commonly
viewed through operating systems. However, the directory entry contains only
information about the file; the file content is saved elsewhere on the volume; although
the directory entry does contain a pointer to the first cluster in which the file is stored.

Since a saved file may be larger than the size of a cluster, a file may occupy
multiple clusters, which may not be contiguous. The file system therefore maintains a
record of the ‘cluster chains’, i.e. given a start cluster it is possible to look up its entry
and determine which cluster (if any) should be read next. These records of cluster
chains are stored in a File Allocation Table (FAT), which contains an entry for every
cluster on the volume. Since the FAT is essential to reading data from the volume,
two copies of it are stored, both near the beginning of the volume, one after each
other. The size of each entry in the FAT depends on the file system in use; in FAT16
each entry is 16 bits (2 bytes) and in FAT32 each entry is 32 bits (4 bytes).

Therefore, when a file is written to a volume, the FATs are updated to indicate
that the cluster(s) in which the file is stored are no longer free. It is this property that
is used to extract additional information from the hidden volume.

Since the FATs contain an entry for every cluster in the volume, the size of a FAT
is proportional to the size of the volume. Therefore, if the size of the FAT can be
determined, so can the size of the volume. Since the FATs are located near the
beginning of a volume and follow each other, and since data written to a volume
causes both FATs to be updated, it is possible to visually identify candidates for the
two FATs; the two FATs are separated by a consistent value and change when data is
written to the disk. This is can be seen in Figure 5.

Since the two FATs follow each other, the size of the FAT can be estimated from
the difference between the two FATs. A simple example is shown in Figure 4.

Fig. 4. A simple example highlighting the differences between two volumes.

In this example each block represents two bytes. If we assume that the two
changes are in FAT 1 and FAT 2 then the size of the FAT is the difference between
them (32 blocks = 64 bytes).
from the size of the FAT it is possible to estimate the size of the volume.
only to estimate the size of the FAT since the end of the
a cluster boundary and is
sector sized blocks, changing a single bit in a sector results in the entire block
changing and it is therefore not possible to determine the exact position of data
changed within a block.

This idea is demonstrated
both created using TrueCrypt.
bytes) hidden volume is created within a 100 Megabyte
written to the hidden volume and a copy of the volume is made with each change. The
visualisation of the changes

Fig. 5. A visualisation of the changes made to the test volume

highlighted. The later contiguous blocks of changing data are the actual file contents being

The visualisation software
marked and the size of the hidden volume to be estimated, as described above.
However, in order to calculate the size of the hidden volume
necessary.

Remembering that the FAT is an index of all the clusters on th
up changes in the FAT with changes they represent in the data area of the hidden
volume, it is possible to calculate the ratio between the size of the FAT entries and the
size of the data that they index. For example in Figure 6, F
FAT1 and using the visualisation tool it is possible to see the corresponding changes
in the data area, marked D1 and D2. The visualisation tool can be used to identify the
offsets of these:

F1 = 60556267
D1 = 60743662

In this example each block represents two bytes. If we assume that the two
changes are in FAT 1 and FAT 2 then the size of the FAT is the difference between
them (32 blocks = 64 bytes). Since the FAT represents all the clusters on the volume,
from the size of the FAT it is possible to estimate the size of the volume. It is possib
only to estimate the size of the FAT since the end of the first FAT may not align with
a cluster boundary and is therefore padded. Also, since encryption is performed in

blocks, changing a single bit in a sector results in the entire block
t is therefore not possible to determine the exact position of data

within a block.
demonstrated by analysing a hidden volume within a cover volume,

both created using TrueCrypt. In the following example a 42 Megabyte (43
hidden volume is created within a 100 Megabyte cover volume. Data

written to the hidden volume and a copy of the volume is made with each change. The
visualisation of the changes is shown in Figure 5.

A visualisation of the changes made to the test volume with the two FATs
The later contiguous blocks of changing data are the actual file contents being

written to the volume.

The visualisation software allows the hypothesised positions of the two FATs to be
the size of the hidden volume to be estimated, as described above.

However, in order to calculate the size of the hidden volume additional information is

Remembering that the FAT is an index of all the clusters on the disk, by matching
up changes in the FAT with changes they represent in the data area of the hidden
volume, it is possible to calculate the ratio between the size of the FAT entries and the
size of the data that they index. For example in Figure 6, F1 and F2 represent points in
FAT1 and using the visualisation tool it is possible to see the corresponding changes
in the data area, marked D1 and D2. The visualisation tool can be used to identify the

F2 = 60557047 Fdiff = 780
D2 = 61147117 Ddiff = 403455

In this example each block represents two bytes. If we assume that the two identified
changes are in FAT 1 and FAT 2 then the size of the FAT is the difference between

Since the FAT represents all the clusters on the volume,
It is possible

FAT may not align with
Also, since encryption is performed in

blocks, changing a single bit in a sector results in the entire block
t is therefore not possible to determine the exact position of data

by analysing a hidden volume within a cover volume,
(43909120

volume. Data are
written to the hidden volume and a copy of the volume is made with each change. The

with the two FATs
The later contiguous blocks of changing data are the actual file contents being

he two FATs to be
the size of the hidden volume to be estimated, as described above.

additional information is

e disk, by matching
up changes in the FAT with changes they represent in the data area of the hidden
volume, it is possible to calculate the ratio between the size of the FAT entries and the

represent points in
FAT1 and using the visualisation tool it is possible to see the corresponding changes
in the data area, marked D1 and D2. The visualisation tool can be used to identify the

Therefore, 780 bytes in the FAT represents 403455 bytes of data, meaning 1 byte in
the FAT represents approximately 517.25 bytes of data. Since
represents one cluster and the
2048... bytes) [16], the actual ratio of FAT bytes to

Fig. 6. A visualisation of the changes made to the test volume

The size of the FAT can be estimated using the visualisation; in this case the
difference between the
below). The size of the volu
by the ratio of FAT bytes to data bytes (85514 * 512 = 43783168 bytes).

In addition to the size
version (FAT16 or FAT
2 and 4 bytes per FAT entry
size/2) or 21378.5 (FAT size/4) FAT entries.

Since there are the same number of FAT entries
cluster sizes can be calculated as volume size divided by the possible
clusters, giving either 1024 (43783168/42757) or 204
[16] it is possible to determine which of these
volume size identified;

Fig. 7. Successful
decrypted

F1

Therefore, 780 bytes in the FAT represents 403455 bytes of data, meaning 1 byte in
the FAT represents approximately 517.25 bytes of data. Since each entry in the FAT
represents one cluster and the default cluster sizes are powers of 2 (e.g. 512, 1024,

, the actual ratio of FAT bytes to data bytes is 512.

A visualisation of the changes made to the test volume with points in the hidden
volume’s FAT and data area marked.

he size of the FAT can be estimated using the visualisation; in this case the
difference between the entries in the two FATs is approximately 85kB (see

size of the volume can be calculated by multiplying the size of the FAT
by the ratio of FAT bytes to data bytes (85514 * 512 = 43783168 bytes).

In addition to the size of the volume it is also possible to determine the FAT
FAT32) and the cluster size in use. Since FAT16 and FAT32

bytes per FAT entry respectively, there are therefore either 42757 (FAT
size/2) or 21378.5 (FAT size/4) FAT entries.

re are the same number of FAT entries as there are clusters, the possible
n be calculated as volume size divided by the possible number of

clusters, giving either 1024 (43783168/42757) or 2048 (43783168/21378.5). From
it is possible to determine which of these two possibilities are valid

volume size identified; in this case it is FAT16 with a cluster size of 1024 bytes.

Successful calculation estimating the size of the hidden volume embedded in a
decrypted cover volume (actual size is 43909120 bytes)

F2 D1

D2

Therefore, 780 bytes in the FAT represents 403455 bytes of data, meaning 1 byte in
each entry in the FAT

lt cluster sizes are powers of 2 (e.g. 512, 1024,

with points in the hidden

he size of the FAT can be estimated using the visualisation; in this case the
is approximately 85kB (see Figure 7,

the size of the FAT

it is also possible to determine the FAT
and FAT32 have

therefore either 42757 (FAT

, the possible
number of

8 (43783168/21378.5). From
are valid for the

4 bytes.

size of the hidden volume embedded in a

4 Evaluation

While the previous section has shown that the existence and the size of the hidden
volume can be determined there are limitations to this approach.

In this paper, the multiple copies of volumes have been obtained using the Volume
Shadow Copy feature of Windows Vista and Windows 7. Firstly this is only an option
for encrypted containers and cannot be used for encrypted volumes or disks. Also, if
the System Restore feature is turned off then these will not be available; although this
obviously removes all the benefits that System Restore provides. However, the
developed visualisation technique does not necessarily require Shadow Copies of
encrypted volumes and multiple versions of the volumes from any source can be used
e.g. from external backups. Therefore, if external backups are available then the
visualisation technique could also be used with full volume or full disk encryption.

By visualising the changes that occur in the free space of a decrypted cover volume
and using knowledge of file system structures is has been possible to identify the
FATs, estimate the size of the hidden volume and derive the FAT version in use and
the cluster size. In future it should also be possible to identify hidden volumes
formatted using NTFS although the patterns of changes are different due to the use of
a Master File Table rather than FATs.

It should be emphasised that this technique is dependent on identifying patterns in
the underlying file system. While this is possible for the current version of TrueCrypt
there are other steganography encryption systems where this would not be possible,
e.g. Rubberhose [17] which does not store the file system in a linear manner.

The value of this work to a forensic investigation is that this technique allows
investigators who believe they have recovered encryption keys to assess the
likelihood of deliberate deception. In the UK there is legislation in place to encourage
suspects to provide decryption keys; therefore demonstrating the existence of a hidden
container is sufficient to allow non-technical measures to be used to further an
investigation. Also, the estimation of the size of a volume can be used to give an idea
of how much data could be hidden; while this not essential for a RIPA prosecution, it
may add weight to a case against a defendant for refusing to supply decryption keys.

5 Future Work

In addition to estimating the size of the volume, since the Shadow Copies have
associated dates and times, it may be possible to determine the amount of data written
to a hidden volume between two dates. This may then be correlated with other sources
of digital evidence, for example records from Internet Service Providers.

This visualisation technique can be extended to examine other file systems
including NTFS, EXT3 and HFS+ and it may be possible to identify other
information about the hidden volume in addition to determining the size of the hidden
volume.

It is also desirable to determine additional information on FAT file systems, for
example the position of the boot sector. This is particularly useful since it is used in
known-plaintext-based decryption key recovery approaches such as [18].

6 Conclusions

There are several approaches to addressing the problem of encrypted evidence, and in
the UK, legislation has been passed to encourage decryption keys to be provided by
the suspect. However, there are technical measures that can be employed to counter
this legislative approach, including the use of hidden volumes. This paper has
demonstrated how these technical measures can be overcome by acquiring multiple
copies of an encrypted container from a single disk image using the Volume Shadow
Copy feature of Windows Vista and Windows 7. It has also shown how these multiple
copies can be used to detect the presence of hidden volumes within a standard
encrypted volume. A visualisation of the volume and the changes to that volume can
be used to infer additional information about the hidden volume, for example to
estimate its size. Demonstrating the existence of hidden volumes is useful in an
investigation since it allows investigators who believe they have recovered encryption
keys to assess the likelihood of deliberate deception, potentially motivating further
non-technical investigative measures.

References

1. Casey, E.: Practical Approaches to Recovering Encrypted Digital Evidence. International
Journal for Digital Evidence 1 (2002)
2. Wolfe, H.B.: Encountering Encrypted Evidence (Potential). Proceedings of the 4th
Conference on Information Technology Curriculum (2002)
3. Wolfe, H.: Encountering Encryption. Computers and Security 22 (2003) 388-391
4. Wolfe, H.: Penetrating Encrypted Evidence. Digital Investigation 1 (2004) 102-105
5. United Kingdom: Regulation of Investigatory Powers Act 2000. HMSO (2000)
6. Home Office: Investigation of Protected Electronic Information: Code of Practice. (2007)
7. TrueCrypt: TrueCrypt Documentation. http://www.truecrypt.org/docs/ (2009)
8. TrueCrypt: TrueCrypt Documentation: Hidden Volume. (2009)
9. Czeskis, A., Hilaire, D.J.S., Koscher, K., Gribble, S.D., Kohno, T., Schneier, B.: Defeating
encrypted and deniable file systems: TrueCrypt v5. 1a and the case of the tattling OS and
applications. (2008)
10. Craiger, J.P., Pollitt, M., Swauger, J.: Law Enforcement and Digital Evidence.
http://ncfs.org/craiger.delf.revision.pdf (2005)
11.Microsoft: Learn about the features: Shadow Copy.
http://www.microsoft.com/windows/products/windowsvista/features/details/shadowcopy.mspx
(2007)
12. Microsoft: System Restore: frequently asked questions. (2008)
13. Titheridge, D.: Microsoft Windows Vista Registry. MSc. Cranfield University (2009)
14. Carrier, B.: File System Forensic Analysis. Addison Wesley (2005)
15. Sammes, T., Jenkinson, B.: Forensic Computing: A Practitioners Guide, Second Edition.
Springer (2007)
16.Microsoft: Default cluster size for NTFS, FAT, and exFAT
http://support.microsoft.com/kb/140365 (2009)
17. Assange, J., Weinmann, R.P., Dreyfus, S.: Rubberhose. http://iq.org/~proff/marutukku.org/
(Undated)
18. Hargreaves, C., Chivers, H.: Recovery of Encryption Keys from Memory Using a Linear
Scan. The International Workshop on Digital Forensics, Barcelona, Spain (2008)

