
Security in OpenSocial-instrumented
Social Networking Services

Matthias Häsel1 and Luigi Lo Iacono2,?

1 XING AG, Hamburg (Germany)
matthias.haesel@xing.com

2 Europäische Fachhochschule (EUFH), Brühl (Germany)
l.lo iacono@eufh.de

Abstract. Securing social networking services is challenging and becomes
even more complex when third-party applications are able to access user
data. Still, adequate security and privacy solutions are imperative in or-
der to build and maintain trust in such extensible social platforms. This
paper discusses security issues in the context of OpenSocial-instrumented
social networking services. It shows that the OpenSocial specification is far
from being comprehensive in respect to security. Resulting weaknesses and
shortcomings are emphasized and discussed. Finally, the paper attempts to
fill these gaps by proposing extensions to the OpenSocial specification and
recommendations for social networks that implement OpenSocial.

1 Introduction

Social networking services (SNS) such as Facebook, mixi or XING aim at build-
ing online communities of people who share interests and/or activities. They are
technically accomplished through networking software that maps a social graph [1].
Most SNS are Web-based and build on proprietary solutions and data formats. An
emerging trend is that SNS can be enriched by third-party applications that access
their social graph. Interoperability is therefore an issue if these applications should
reach more than a single SNS only. OpenSocial is a set of programming interfaces
for developing applications that are interoperable within the context of different
SNS [2].

When third-party applications are able to access user data, adequate security
and privacy solutions are imperative. This paper provides an analysis of the secu-
rity mechanisms integrated into OpenSocial and shows that protection is focused
on data exchange between SNS and third-party applications only with protection
mechanisms related to the integrity and authenticity of requests. The paper wants
to raise awareness for security issues in an OpenSocial context. It gives recom-
mendations on how to avoid flaws in implementing OpenSocial and integrating
applications into an SNS by making use of standard security mechanisms which
are not included in the OpenSocial specification. Finally, the paper considers more

? This work was performed while Luigi Lo Iacono was with NEC Laboratories Europe,
NEC Europe Ltd.



advanced security techniques such as making the access to sensitive social data
transparent to the user and integrating OpenSocial applications into a platform’s
access control system.

2 OpenSocial-instrumented Social Networking Services

OpenSocial provides a means to extend or enrich SNS with third-party applications
[2]. Using standard Web technologies, developers can create applications that run
on SNS that have implemented OpenSocial. Until it was made public in November
2007, OpenSocial was driven primarily by Google, but is now managed by the
non-profit OpenSocial Foundation. The Foundation consists of representatives of
all major enterprises active in the social networking domain (except Facebook,
which has developed a proprietary platform)3 and specifies the APIs required for
enhancing an SNS with third-party applications. The list of SNS which support
OpenSocial (referred to as “containers” in OpenSocial jargon), can be accessed
from the OpenSocial Website.4 Prominent examples include iGoogle, LinkedIn,
mixi, MySpace, orkut, Yahoo!, and XING.

Fig. 1. OpenSocial Reference Architecture

The OpenSocial reference architecture is shown in Figure 1 and gives an overview
of the involved technologies and components, as well as the relations and interac-
tions between these components. OpenSocial applications are commonly based on
the Gadget architecture5 originally developed by Google, which has been expanded
upon by interfaces enabling the access to the social data within the context of any
given container. Gadgets are XML documents containing HTML and JavaScript
code along with metadata. The XML specification of a Gadget is rendered by the

3 http://developers.facebook.com/
4 http://www.opensocial.org/
5 http://code.google.com/intl/en/apis/gadgets/index.html



container and integrated into its own website. Communication between the Gad-
get and the container operates in such instances via standardized Ajax requests
[3], which are defined in the opensocial.* and gadgets.* namespaces of the
JavaScript-based OpenSocial [4] and Gadget [5] API respectively.

2.1 OpenSocial Compliance and Basic Services

Containers must implement all of the components shown in Figure 1 to be compli-
ant with OpenSocial. Apache Shindig6 is a reference implementation of the entire
OpenSocial stack that operators of social network sites can refer back to. Shindig
is open source and developed in both Java and PHP. The interconnection between
the existing social networking software and Shindig takes place via the so-called
OpenSocial Service Provider Interface (SPI), whose classes are extended in such a
way that they access the networking software.

OpenSocial applications and the SNS software exchange three kinds of data
which correspond to the three basic services that OpenSocial-instrumented plat-
forms offer to their applications:

1. People/Relationships: The OpenSocial API enables direct access to the so-
cial graph of the container in the form of individual user objects. Two user
instances that are made directly available to an application are the viewer and
the owner. The viewer object refers to the current user, while the owner object
is associated with the user in whose profile context the application is executed.
Moreover, social applications have access to the targeted connections within
the social network to be able to support the exchange of information and the
interaction between users.

2. Activities/Notifications: Activities represent interactions between the user
and the Gadget. Containers usually display a user’s activities to all friends of
that user within their update feeds. With Notifications, applications can make
use of a container’s messaging system by passing one-to-one messages to the
container that will be sent on behalf of the current user.

3. Persistence: Data is often created during the course of user interaction that
has to be saved on a persistent basis. For this purpose OpenSocial includes a
persistence layer, allowing developers to store simple name/value pairs for each
application or for each application and user. The container is responsible for
the actual implementation of this persistence layer, which remains hidden from
the social application developer.

Shindig makes available these services in its implementation of the OpenSocial
JavaScript API. It also implements the Gadget JavaScript API which is used for
security, communication and the user interface, and includes a Gadget rendering
server that transforms the XML specification of an application into JavaScript
and HTML code and makes this available via HTTP. Finally, with the OpenSocial
gateway server component, Shindig provides an implementation of an additional
server-side, RESTful API.

6 http://incubator.apache.org/shindig/



2.2 OpenSocial Application Types

Three main types of OpenSocial applications can be destinguished (see Figure 2):
Social mashups, social applications, and external applications.

Fig. 2. OpenSocial Application Types and Associated Communication Patterns

A social mashup is a lightweight OpenSocial Gadget which runs inside a con-
tainer. Since such applications do not rely on external third-party servers, they are
extremely scalable, and the social data does not leave the protection sphere of the
container. However, social mashups are limited in terms of data storage and/or
processing capabilities and do not support interaction scenarios without user in-
tervention. An example is an enhanced visualization mechanism to give users a
view of all direct connections of the own social graph. A social mashup is typically
created using client-side technologies only, such as HTML, JavaScript, and CSS.

A social application, while also being a Gadget, relies on an external third-
party server for processing, storing and/or rendering data. Social applications use
server-side technologies such as PHP, Python, Java, Perl, .NET, or Ruby on Rails.
They provide advanced functionality and support interaction scenarios without
user intervention. This comes, however, with the cost of being less scalable, and
may require the processing and storage of social data by third parties outside of
the protection and control sphere of the container. As an example, consider an
application that allows the user to create polls, letting their friends within the
container vote for different alternatives. To enable the user to choose which of their
contacts should participate in the poll, the application would retrieve the owner and



his/her friends via the OpenSocial API (step 1 in the upper part of Figure 2). In the
background, the user data is requested from the container’s networking software via
the appropriate SPI call. The application would then send the poll data and a list
of the participants’ user IDs to its server using a gadgets.io.makeRequest() call
to the Gadget API (step 2), with the container proxying the data to the application
server (step 3). Subsequently, the application would send out a notification to each
invited friend via the OpenSocial API, which could be translated by the container
into site messages containing a link to the poll. Participants clicking on that link
would be identified by requesting the owner object (again, step 1), and would then
be asked to vote. The application would pass the vote to its application server
using another makeRequest() call (steps 2 and 3). Note that in this realisation,
the application server does not process personal data. For the application’s logic
to work, it is sufficient to associate in the application server the container’s user
identifiers with the polls and votes created.

An alternative version of the polls example is depicted in lower part of Figure 2.
As a first step, instead of utilizing the JavaScript API, the Gadget sets off a prox-
ied makeRequest() call, transferring the owner’s user identifier to the application
server (steps 1 and 2). The application server requests the container’s RESTful
API (step 3) which responds with the owner and/or a list of their friends. The
people data is combined with the application data, producing fragments of HTML
and JavaScript that form the response to the container’s request started in step 2
and the gadget’s request started in step 1, respectively. Note that in this scenario,
the application server processes (and may store) personal data retrieved via the
RESTful API. In fact, the polls application does not require personal data to be
transfered to the application server. However, there are use cases that cannot be
realized with client-side APIs only. As an example, consider that polls would be
limited to a certain period of time, and the application would be required to send a
message (with a link to the results) to all participants after expiry. As the creator
would not be interacting with the application at the time of expiry, the message
needs to be triggered by the application server, rendering a client-side API useless.

Finally, an external application such as a website or mobile application runs
outside a container, but still consumes social data through the RESTful API. Users
can grant access to their personal data without needing to add the application on
the SNS Website. Note that external applications are not necessarily based on
the Gadget architecture. An example is an application that feeds or synchronizes
the contacts database of a mobile phone with the data available from the social
graph. This application type grants the most flexibility—almost all languages and
platforms can take advantage of the social data—but also includes the highest risks
of unauthorized access.

2.3 OpenSocial Application Lifecycle

From a developer’s perspective (see left side of Figure 3), deploying a social mashup
or application is equivalent to passing its XML specification to a container. Most
containers require that developers submit their application to be reviewed before it
is made available in their directory. Containers have different processes for granting



developers access to their sandbox environments and reviewing applications. On
Orkut, for example, developers can sign up for a developer sandbox and submit
their application online, while on XING developers have to hand in a product
concept before they are granted access to the sandbox.

Fig. 3. OpenSocial Application Lifecycle

From a user’s perspective (see right side of Figure 3), first-time usage of an
OpenSocial application usually involves some kind of installation process whereby
the user explicitly permits the application to access the data in their personal user
profile. Events such as installation or deinstallation are desirable yet difficult for
developers to track. The OpenSocial specification therefore allows developers to
specify URLs that the container will POST event data to when these events are
triggered. Besides installation and deinstallation, such events include rate limiting,
directory listing changes, and blacklist/whitelist notifications. By tracking the data
sent to the specified URL, application providers can accurately track the number
of installs, remove database entries upon uninstall, and get automatic notifications
if their application exceeds a quota or is marked as spam by the container.

3 Analysis of the OpenSocial Security Specifications

Security is a crucial aspect in SNS due to the sensitive and personal nature of the so-
cial data exchanged via these platforms. In the context of OpenSocial-instrumented
SNS, security becomes even more important because third-party applications (pos-
sibly) access the social data. This section will introduce and analyse the built-in
security mechanisms in the OpenSocial specification.

The focus of this analysis is on OpenSocial-specific issues. More general secu-
rity problems related to Rich Internet Applications (RIA) and Web applications
in general such as Cross-Site Scripting (XSS) or issues related to the execution
of client-side JavaScript code are not included. Such aspects are not unique to
OpenSocial and subject of other initiatives such as the Open Web Application
Security Project (OWASP) [6].



3.1 Focus of the OpenSocial Specification regarding Security

Taking the application types and their communication patterns introduced in Sec-
tion 2 into account, it becomes clear that OpenSocial primarily introduces the
communication path between the container and the third-party application server.
The communication link between the container and the client is the SNS pro-
prietary channel. Security considerations within the OpenSocial specification are
therefore not targeted to the SNS proprietary link as it is seen as a container-
specific implementation detail and assumed to be protected by appropriate policies
and means. In the case of a social mashup or application e.g., the content of the
Gadget XML—which contains HTML and JavaScript code—is rendered into the
container’s Website. To prevent DOM manipulations, the Gadget is usually em-
bedded into an <iframe> served from an alternate domain.

The container is involved in all communications and in some cases it is mediating
from the client-side application to the application server. Thus, the container plays
a decisive role in terms of security and privacy especially in the presence of external
application servers and should therefore carefully inspect all communications and
strictly enforce its policies. This is manifested in the OpenSocial specification which
recommends that the container should always validate the transferred parameters
before passing them to the application server.

3.2 Message Integrity and Authentication

The communication between the container and the application server will most
commonly include at least the IDs of the users currently interacting with an
OpenSocial application on the container (see Section 2). Since makeRequest()

calls are just JavaScript transmitted via HTTP GET or POST, it is possible for
any user to create makeRequest() calls with whatever arguments they wish [7].

To protect IDs from manipulations by malicious users and to ensure that pa-
rameters truly originate from the container, OpenSocial contains a method to com-
municate IDs to the application server in a verifiable manner by using the OAuth
API authorization protocol [8]. More specifically, requests are signed based upon
OAuth’s parameter signing mechanism. Through the method of parameter signing,
it is possible for an application to request the container to send IDs along with
a digital signature that allows third-party servers to verify that the parameters
passed are legitimate. Note, however, that the response flow from the application
server back to the client-side application is not protected by any OpenSocial-specific
security mechanisms.

When a request is signed by the container, it adds additional data before for-
warding it to the remote application server. This data contains information such as
the IDs of the application making the request, the owner and viewer, and informa-
tion that the application server can use to verify that the information added was
not tampered with since the container sent the request. Two signature algorithms
are specified: the secret-key based HMAC-SHA1 [9] and the public-key based RSA-
SHA1 [9] method. To generate the signature, a so-called Signature Base String is



generated first, which is a consistent reproducible concatenation of the request ele-
ments into a single string. The parameters contained in the POST or GET request
(oauth signature excluded) are ordered and concatenated into a normalized string
which finally forms the input to the digital signature algorithm. An example for
the required steps to generate the signature base string and the signature is shown
in Figure 4.

Fig. 4. Signature Generation based on the OAuth Parameter Signing Mechanism

Note that the OAuth parameter signing algorithm is applied to the HTTP pa-
rameters, but not to the application data (here JSON-encoded) included in the
POST as depicted in Figure 4. Assume that the owner ID in the application data
is altered by the user and that the container sets the owner ID to the HTTP pa-
rameters according to some context information established for the session with the
user. If the container in this scenario does not cross-check whether the same owner
ID appears in the application data as the one stored in the HTTP parameters,
the parameter signing might get meaningless. If this happens, the owner ID is sent
twice to the application server (once signed in the HTTP parameters and once un-
signed in the application data). In this case the developer needs to compare these
IDs carefully in his verification code. If this is not performed and the application
server code verifies the signed parameters and executes the business logic based on
the application data without cross-checking the consistency of IDs, the forgery of
IDs and henceforth the unauthorized retrieval of social data is still feasible. Such
an attack is very similar to the XML Signature Wrapping attack which was first
described by Fournet at the DIMACS workshop in 2005 [10] and first published by
McIntosh and Austel at SWS workshop in 2005 [11]. This threat renders a large set
of applications that rely on the use of XML Signature [12] as a security enforcement
technology critically insecure in cases in which the validation procedure does not



carefully perform other security-related checks in addition to the pure verification
of the digital signature. The real-world impact of this threat was first shown by
Gruschka and Lo Iacono at the ICWS conference in 2009 [13] when they described
a similar vulnerability in the Amazon EC2 Cloud services.

3.3 Message Confidentiality

In order to protect the data flow against unauthorized access during the transmis-
sion and to maintain it confidential in the presence of passive attacks performed by
eavesdroppers, communication needs to be encrypted. As in the case of the integra-
tion and authentication of requests, container-specific mechanisms are deployed for
the communication between the client-side application and the container. For the
communication between the container and the application server the OpenSocial
specification does not state how to protect messages against eavesdropping, not
even in terms of guidelines or recommendations. It is up to the container to define,
implement and enforce an appropriate security policy.

3.4 Identity Management and Access Control

To ensure that the requestor identity cannot be spoofed in a client initiated data
flow, OpenSocial containers usually expect a short lived security token that is
made up by the owner ID, viewer ID, and application ID, among others. As far as
a rendered application is concerned, the token should be entirely opaque; it should
only be interpretable by the container’s Gadget renderer and APIs. However, the
OpenSocial specification itself does not state any details on how this token should
be encoded. Neither does it give a recommendation on the token lifetime or its
encryption.

Similarly, security tokens can be applied in an application server initiated data
flow. In this scenario, the client retrieves the token via the JavaScript API and
sends it to the application server via a proxied makeRequest() call. The application
server using the security token can then make calls to the container’s RESTful API,
passing the security token as a URL parameter or within the HTTP request header.
Again, OpenSocial does not provide any recommendations on identity management
in a RESTful scenario. E.g., containers could use OAuth to validate whether a
request has been initiated by a certain application server. Note that in such as
scenario, the application server is able to arbitrarily set the identity of the user for
whom the data is requested.

4 Recommended Security Improvements and Extensions

This section takes up the identified security issues of OpenSocial and provides sug-
gestions on how to improve the current situation. The following proposals include
both enhancements to the OpenSocial specification and recommendations to SNS
that implement OpenSocial.



4.1 Application Type Selection

In Section 2.2 and 3.1 it became clear that social mashups have advantages in
respect to security and privacy in comparison to the two other application types,
since no social data is transmitted to an external server, but the personal data
remains inside the protection sphere of the container. Thus, it is recommended
that the container as well as the user should carefully examine the underlying
communication pattern of each application before deciding to integrate or make
use of it, respectively. For the container, this means that an acceptable procedure
needs to be in place which controls and governs the integration of applications,
i.e., the container needs to ensure during the review phase that an OpenSocial
applications does not access more user data than required in order to protect its
users against unauthorized data gathering.

4.2 Data Minimisation and Pseudonymisation

An important aspect SNS operators and users should check before deploying or
installing an application respectively, is the kind of social data that is going to be
used by the application outside the container’s premises (if any). It needs to be
controlled and ensured that the released data items are the minimum required to
perform the task. Minimising the data amount exchanged with external entities is
a measure to reduce the risk of unauthorized data gathering and data aggregation.
This should be included in the specifications as a recommendation to make SNS
operators aware of this risk.

To further increase privacy protection, the following additional aspect must
be considered by the OpenSocial specification and the container. In most cases,
applications require some form of ID in order to perform their tasks (see the polls
example in Section 2.2). The OpenSocial specification does not define how this ID
should look like. It is therefore possible that a container simply uses its internal
user IDs, opening the door for coalition or multi-application attacks in which a
single entity (by using a set of applications or a set of entities forming a coalition)
will be able to correlate the obtained data using these IDs. To prevent such kind of
attacks and to protect the users’ privacy more effectively, the specification should
recommend not to use internal IDs since these are personal identifiable information,
but to replace them with application-specific pseudonyms instead.

4.3 Application Integration and Code Signing

As introduced in Section 3.1, <iframe> elements are a common means to integrate
social mashups and applications into the container’s Website without allowing client
side scripts to perform attacks. Since this is not explicitly stated in the specification,
an according recommendation should be added to raise the awareness and point
SNS operators to additional resources on this topic.

Another issue is that the JavaScript code is often not stored at the container, but
loaded from the Web. The JavaScript code within the Gadget XML specification
is commonly reduced to a URL referencing the actual source. This renders the



review process of the SNS operator meaningless if the application code can easily
be altered after it has been reviewed and added to the container. The adoption of
code signing technology are required here, so that the source code can be verified by
the container and in case of a dispute, the developer can not deny having released
the code providing the necessary evidence for liability cases.

4.4 Communication Security

As discussed before, the specified means to protect the communication in an OpenSo-
cial setting are limited to parameter signing of HTTP requests. No means to protect
the HTTP responses are included, which might open doors for new attacks.

Moreover, OAuth targets security service integrity and authentication, but does
not provide a guideline how to protect the confidentiality of user data. Since com-
munication between the client-side application and the container is protected by
container-specific means, OpenSocial does not interfere here. Still, for communi-
cation between the container and the application server, the specification should
provide a guideline how to encrypt data. This is not only required to raise the aware-
ness in confidentiality issues among SNS operators and application developers, but
also in order to reduce the variety of different approaches that will be taken by
distinct containers, which is contradicting one of the goals of OpenSocial, to create
a write-once-run-everywhere (or at least learn-once-write-anywhere) environment
since application developers need to adapt to container-specific demands.

The OpenSocial specification must be enhanced to additionally sign responses
to enable the container to verify integrity and authenticity. Further means are out of
scope of the OpenSocial specification, but still required in order to reach a certain
level of security as well as compatibility among containers. Thus, the following
recommendations should be carefully considered by SNS operators:

– Use HTTPS for Gadget rendering, Gadget JavScript API, OpenSocial Java-
Script API, and RESTful API

– Make HTTPS and signed messages (including event messages) mandatory for
application providers’ APIs (especially for social and external applications)

– Compare IDs in the signed parameters with the ones used in the unsigned
application data and advise application providers to so as well

– Make sure that security tokens are implemented in a safe way

Some of these recommendations are out of the control sphere of the container.
Still, containers have means to check and enforce such rules by analyzing the Gad-
get’s XML specification.

4.5 Access Control and Delegation

Access to social data by external entities via the RESTful API is an aspect to
be carefully considered. Unfortunately, the OpenSocial specification does not give
much guidance here. Authentication of external entities such as application servers
or mobile applications is handled by mechanisms established by the container and



initiated during the application deployment process. Further aspects should be
defined within the specification to form a basis for effective and cross-platform
access control systems. This includes mechanisms to check whether a user granted
access to his/her personal data to a specific application. The specification should
recommend that in any case, a container should make personal data only available
to external entities of such users who have explicitly provided their consent (opt-in).

For more fine-grained access policies that limit the access to particular data
items, appropriate mechanisms still need to be defined and specified. An initial
approach for a more fine-grain access to user data by OpenSocial applications has
been developed by StudiVZ.7 The basic idea is that the user can pass “configurable”
user profiles (so-called ID cards) to the application and by this means control the
disclosure of their profile data (also a means to minimize the exposed data as stated
in Section 4.2). Although this approach gives the user a maximum of control,
it increases complexity for the user and may decrease the value provided by an
application or might even effect its functioning due to the lack of relevant data.
Practice will show how this approach will be accepted by users and application
providers.

Delegation of access rights to external entities is another point which requires
a more indepth analysis and appropriate specification. In case of external applica-
tions, standard three-legged OAuth mechanisms can be used [8]. In cases where an
external entity needs to access social data without a user interaction, the definition
of delegation tokens which can be used in conjunction with the two-legged OAuth
protocol is still an open issue.

4.6 Transparency Enhancements

Crucial questions regarding privacy are whether, why and how an application pro-
cesses and/or stores what kinds of personal data. Unfortunately, a procedure which
empowers the user to make an informed decision whether to install an application
is not in the scope of the OpenSocial specification. As a result, applications make
warning statements (if at all) in an proprietary manner, requiring the user to care-
fully read and understand their privacy policies. In the case that the data leaving
the control sphere of the container is made explicit to the user at the time of in-
stallation, it is often not possible for the user to reassess the privacy policy during
application lifetime. The extension of the Gadget XML specification to include such
information would provide a standardized way of describing whether user data will
be processed or stored by a third party. The container would be able to extract this
information and present it in a container-specific and consistent manner, providing
decision support to the user.

5 Conclusions

Securing SNS is challenging and becomes even more complex when third-party
applications are able to access a user’s data. This paper analyzed and discussed

7 http://www.vzlog.de/2009/10/neue-details-zu-opensocial-bei-studivz/ (German)



security implications in the context of OpenSocial-instrumented SNS. It showed
that the OpenSocial specification is far from being comprehensive in respect to se-
curity. The paper introduced issues and depicted possible vulnerabilities resulting
from these shortcomings. It presented different approaches to fill these gaps and
proposed additions to the OpenSocial specification as well as a set of recommen-
dations for containers that implement OpenSocial.

Although some of the proposals are still in an early stage and certainly require
further research and development efforts, the paper contributes findings to raise
awareness for existing security issues and provides suggestions and recommenda-
tions for resolving these issues. The results and suggestions will be brought to the
attention of the OpenSocial Foundation with the goal to enhance upcoming ver-
sions of the specification and encourage the creation of guidelines for non-normative
aspects.

References

1. Boyd, D., Ellison, N.: Social network sites: History, and scholarship. Journal of
Computer-Mediated Communication 13(1) (2007) 210–230

2. Häsel, M.: Opensocial: An enabler for social applications on the web. Communications
of the ACM nn(n) (2010) nn–nn

3. Garrett, J.: Ajax: A new approach to web applications. Technical report, Adaptive
Path Inc. (2005)

4. OpenSocial and Gadgets Specification Group: Opensocial specification v0.9. Technical
report, OpenSocial Foundation (April 2009)

5. OpenSocial and Gadgets Specification Group: Opensocial gadgets api specification
v0.9. Technical report, OpenSocial Foundation (April 2009)

6. Wiesmann, A., van der Stock, A., Curphey, M., Stirbei, R., eds.: A Guide to Building
Secure Web Applications and Web Services. The Open Web Application Security
Project (2005)

7. Arrington, M.: First opensocial application hacked within 45 minutes Available on-
line at: http://www.techcrunch.com/2007/11/02/first-opensocial-application-hacked-
within-45-minutes/ (last accessed on Nov. 27, 2009).

8. Hammer-Lahav, E., ed.: OAuth Core 1.0 Revision A. (2009)
9. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-

raphy. CRC Press (2001)
10. Fournet, C.: Verification tools for web services security. In: DIMACS Workshop on

Security of Web Services and E-Commerce. (2005)
11. McIntosh, M., Austel, P.: XML signature element wrapping attacks and countermea-

sures. In: SWS ’05: Proceedings of the 2005 Workshop on Secure Web Services, New
York, NY, USA, ACM Press (2005) 20–27

12. Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E.: XML-Signature Syntax and
Processing. W3C Recommendation (2002)

13. Gruschka, N., Lo Iacono, L.: Vulnerable cloud: Soap message security validation
revisited. In: Proceedings of the IEEE International Conference on Web Services
(ICWS). (2009)


