
Chosen-Ciphertext Secure Certificateless
Proxy Re-Encryption

Chul Sur1, Chae Duk Jung2, Youngho Park2, and Kyung Hyune Rhee3

1 Department of Computer Science, Pukyong National University,
599-1, Daeyeon3-Dong, Nam-Gu, Busan 608-737, Republic of Korea

kahlil@pknu.ac.kr
2 Department of Information Security, Pukyong National University

{jcd0205, pyhoya}@pknu.ac.kr
3 Department of IT Convergence and Application Engineering,

Pukyong National University
khrhee@pknu.ac.kr

Abstract. In this paper we introduce the notion of certificateless proxy
re-encryption and also give precise definitions for secure certificateless
proxy re-encryption schemes. We present a concrete scheme based on
bilinear pairing, which enjoys the advantages of certificateless public key
cryptography while providing the functionalities of proxy re-encryption.
Moreover, the proposed scheme is unidirectional and compatible with
current certificateless encryption deployments. Finally, we show that our
scheme has chosen ciphertext security in the random oracle model.

Keywords : Certificateless Public Key Encryption, Proxy Re-Encryption,
Chosen Ciphertext Security, Bilinear Pairing

1 Introduction

In a proxy re-encryption (PRE) scheme, a semi-trusted proxy is allowed to trans-
form a ciphertext under Alice’s public key into a new ciphertext under Bob’s
public key on the same message. However, the proxy cannot learn any infor-
mation about the messages encrypted under the public key of either Alice or
Bob. PRE has received plenty of attention from the research community as fun-
damental cryptographic function to solve key management problems in various
practical applications such as distributed file systems, secure email forwarding,
and interoperable DRM systems in recent years [3, 4, 10].

In [7], Blaze et al. introduced the notion of PRE and proposed a concrete
PRE scheme, where the message and secret keys are kept hidden from the proxy.
However, their scheme is bidirectional. That is, the information released to divert
ciphertexts from Alice to Bob can also be used to transform ciphertexts in the
opposite direction [3, 10]. Note that, it is obvious that unidirectional PRE is more
powerful than bidirectional one since any unidirectional scheme can be easily
transformed to a bidirectional one. Moreover, their scheme suffers from collusion
attack that Alice (Bob) can collude with the proxy to reveal Bob’s (Alice’s) secret

key. Ateniese et al. [3] presented the first constructions of unidirectional proxy
re-encryption based on bilinear pairing. The schemes prevent the proxy from
colluding with Bob to expose Alice’s secret key. However, their schemes only
achieve chosen plaintext attack (CPA) security.

As pointed out in [10], chosen plaintext security is clearly not enough for
many applications that require security against chosen ciphertext attack (CCA).
Canetti and Hohenberger [10] addressed the problem of obtaining a PRE scheme
that is secure against chosen ciphertext attack. They then provided a formal se-
curity model for secure PRE schemes and presented a construction that has
chosen ciphertext security in the standard model. However, their construction is
still bidirectional and vulnerable to collusion attack like previous bidirectional
PRE schemes. Recently, Libert and Vergnaud [15] presented the first construc-
tion of unidirectional proxy re-encryption that has chosen ciphertext security
in the standard model. In [13], Green and Ateniese addressed the problem of
identity-based PRE and presented a unidirectional scheme that has chosen ci-
phertext security in the random oracle model [6]. However, the scheme suffers
from the collusion attack owing to the key sharing technique employed in the
scheme. That is, Bob can collude with the proxy to reveal Alice’s secret key.

Even though a number of PRE schemes have been proposed in the litera-
ture, all prior PRE schemes are constructed based on either traditional public
key encryption (PKE) [3, 7, 10, 15, 16] or identity-based encryption (IBE) [13].
However, it is well recognized that traditional PKE suffers from the issues as-
sociated with certificate management such as revocation and IBE has inherent
key escrow problem. To alleviate the aforementioned problems in traditional
PKE and IBE, the concept of certificateless public key cryptography (CL-PKC),
which combines the best aspects of traditional PKE (i.e., key escrow free) and
of IBE (i.e., implicit certification), was introduced in [1]. The topic of CL-PKC
has undergone quite rapid development with many schemes being proposed for
encryption, signature, authenticated key agreement, and so on.

Our Contribution. In this paper, we introduce the notion of certificateless
proxy re-encryption that enjoys the best aspects of traditional PKE and of
IBE while providing the functionalities of proxy re-encryption. Upon taking into
consideration of both security notions of certificateless encryption and proxy
re-encryption, we provide a formal security model for constructing secure cer-
tificateless proxy re-encryption schemes and present a concrete scheme based on
bilinear pairing. The proposed scheme is unidirectional and compatible with ex-
isting certificateless encryption deployments. Finally, we show that our scheme
is secure against adaptive chosen ciphertext attack in the random oracle model.

The rest of the paper is organized as follows. The next section gives precise
definition and security model for certificateless proxy re-encryption schemes. In
Section 3, we present the first construction of certificateless proxy re-encryption
based on bilinear pairing and then prove that the proposed scheme has chosen
ciphertext security in the random oracle model under reasonable complexity
assumption. Finally, we conclude the paper in Section 4.

2 Certificateless Proxy Re-Encryption

In this section, we present a definition of a certificateless proxy re-encryption
(CL-PRE) scheme and provide a formal security model so as to construct secure
CL-PRE schemes.

2.1 Definition

We incorporate certificateless encryption (CLE) [1, 2] into proxy re-encryption
(PRE) [10, 13] for constructing a new certificateless proxy re-encryption scheme.
A model for certificateless proxy re-encryption is specified as follows:

Definition 1 (CL-PRE). A unidirectional certificateless proxy re-encryption
scheme is a 9-tuple of algorithms which are the following :

– Setup(k): takes a security parameter k and returns a randomly chosen
master key mk and a list of public parameters params.

– Partial-Private-Key-Extract(params,mk,IDA): takes a list of public pa-
rameters params, an identifier for user A, IDA ∈ {0, 1}∗ and the master key
mk as inputs, returns a partial private key dA.

– Set-Secret-Value(params,IDA): given a list of public parameters params
and an identifier for user A, returns a randomly chosen secret value xA for
that user.

– Set-Private-Key(params,dA,xA): given a list of public parameters params,
a user’s partial private key dA and secret value xA, outputs a private key
skA.

– Set-Public-Key(params,xA): takes a list of public parameters params and
a user’s secret value xA as inputs, outputs a corresponding public key pkA.

– Encrypt(m,params,IDA,pkA): takes a message m, a list of public parame-
ters params, an identifier IDA of the receiver, and a corresponding public key
pkA as inputs. It outputs a ciphertext CA or a distinguished symbol ⊥.

– Set-Proxy-Re-Encryption-Key(params,IDA,pkA,skA,IDB,pkB): takes a
list of public parameters params, a user A’s identifier IDA and a public/private
key pair (pkA, skA), a user B’s identifier IDB and a public key pkB as inputs.
It outputs a unidirectional re-encryption key rkA→B .

– Re-Encrypt(params,rkA→B,CA): takes a list of public parameters params,
a re-encryption key rkA→B , and a ciphertext CA as inputs. It outputs a
re-encrypted ciphertext CB or a distinguished symbol ⊥.

– Decrypt(params,skID,CID): given a list of public parameters params, a
ciphertext CID, and the receiver ID’s private key skID, it outputs a message
m or a distinguished symbol ⊥.

For completeness, it is obviously required that the following two propositions
must hold for any message m in the message space M:

– Decrypt(params,skA,Encrypt(m,params, IDA, pkA)) = m.
– Decrypt(params,skB, Re-Encrypt(params,rkA→B,CA)) = m.

where skID ← Set-Private-Key(params,dID,xID) and rkA→B ← Set-Proxy-
Re-Encryption-Key(params,IDA,pkA,skA,IDB,pkB).

2.2 Security Model

Here we provide a security model to prove the adaptive chosen ciphertext security
of our CL-PRE scheme. To give a precise security notion for the proposed scheme,
we take into account both security notions of certificateless encryption [1, 2] and
proxy re-encryption [10, 16]. Following the security model in [1, 2], there are two
kinds of adversaries, named Type I and Type II adversaries, that represent a
malicious third party and an honest-but-curious key generation center (KGC) in
our security model, respectively. In addition, we consider the notion of derivative
ciphertexts [10, 16] to prevent the adversaries from breaking our CL-PRE scheme
by means of re-encryption queries and re-encryption key queries corresponding
to the challenge identity ID∗ and the challenge ciphertext C∗.

We then define two different types of “indistinguishability of encryptions
under chosen ciphertext attack” (IND-CCA) games against the Type I and the
Type II adversaries, respectively. The first game between the Type I adversary
(denoted by AI) and the challenger is defined as follows:

Setup: The challenger takes a security parameter k and runs the Setup algo-
rithm. It gives the resulting public parameters params to AI and keeps the
master key mk to itself.

Phase 1: AI issues queries q1, . . . , qm adaptively where query qi is one of:
– Extraction query on IDi. The challenger responds by running algo-

rithm Partial-Private-Key-Extraction to generate the partial private key
dIDi for IDi.

– Private Key query on IDi. If the public key for IDi has not been
replaced, the challenger responds by running algorithm Set-Private-Key
to generate the private key skIDi for IDi.

– Public Key query on IDi. The challenger responds by running algo-
rithm Set-Public-Key to generate the public key pkIDi for IDi.

– Replace Public Key query on the public key for IDi. AI can repeat-
edly replace the public key pkIDi for IDi with any value pk′IDi

of its
choice.

– Re-Encryption Key query on (IDi,IDj). The challenger responds by
running algorithm Set-Proxy-Re-Encryption-Key to generate the re-encryption
key rki→j .

– Re-Encryption query on (IDi,IDj ,CIDi). The challenger responds by
running algorithm Re-Encrypt to transform the ciphertext CIDi into the
re-encrypted ciphertext CIDj using the re-encryption key rki→j .

– Decryption query on (IDi,CIDi). The challenger responds by running
algorithm Decrypt to decrypt the ciphertext CIDi using the private key
skIDi . Even though the public key for IDi may be replaced, the challenger
is forced to respond with a correct answer as in [1, 2].

Challenge: Once AI decides that Phase 1 is over, it outputs two equal length
plaintexts m0,m1 ∈ M and an identity ID∗ of uncorrupted private key, on
which it wishes to be challenged. In particular, ID∗ may not have been sub-
mitted to both Replace Public Key and Extraction queries. Moreover, AI is
restricted to the choice of ID∗ such that trivial decryption is not possible

using keys extracted in Phase 1, e.g., by using re-encryption keys to trans-
form CID∗ into CIDi for which AI holds a decryption key. The challenger
picks a random bit b ∈ {0, 1} and computes the challenge ciphertext C∗

= Encrypt(mb,params,ID∗,pkID∗), where pkID∗ is the public key currently
associated with ID∗. It sends C∗ as the challenge to AI .

Phase 2: AI issues more queries qm+1, . . . , qn adaptively where qi is one of:
– Decryption query on (IDi,CIDi

). If (IDi,CIDi
) is not a challenge deriva-

tive, the challenger responds as in Phase 1. The definition of challenge
derivative is as follows [10, 16]:
1. (ID∗,C∗) is a challenge derivative of itself.
2. If (IDi,CIDi) is a challenge derivative,AI has issued the Re-Encryption

query on (IDi,IDj ,CIDi
) to receive a new ciphertext CIDj

, then (IDj ,
CIDj) is a challenge derivative.

3. If (IDi,CIDi
) is a challenge derivative,AI has issued the Re-Encryption

Key query on (IDi,IDj) to obtain a re-encryption key rki→j , and
CIDj

= Re-Encrypt(params,rki→j ,CIDi
), then (IDj ,CIDj

) is a chal-
lenge derivative.

– Extraction query on IDi. The challenger responds as in Phase 1 except
that AI has issued the Replace Public Key query on IDi and a challenge
derivative (IDi,CIDi) exists.

– Private Key query on IDi 6= ID∗ where a challenge derivative (IDi,CIDi)
does not exist. The challenger responds as in Phase 1.

– Public Key query on IDi. The challenger responds as in Phase 1.
– Replace Public Key query on the public key for IDi. The challenger

responds as in Phase 1.
– Re-Encryption Key query on (IDi,IDj). The challenger responds as

in Phase 1 except that IDi = ID∗ and AI has issued the Private Key
query on IDj .

– Re-Encryption query on (IDi,IDj ,CIDi). The challenger responds as
in Phase 1 except that AI has issued the Private Key query on IDj and
(IDi,CIDi) is a challenge derivative.

Guess: Finally, AI outputs a guess b′ ∈ {0, 1}. AI wins if b′ = b.

We define the advantage of AI in breaking the CL-PRE scheme as

Adv(AI) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣

Definition 2. We say that a unidirectional CL-PRE scheme is (t, ε)-adaptive
chosen ciphertext (IND-CCA) secure against the Type I adversary if for any t-
time adversary AI we have that Adv(AI) < ε.

We now define the second game between the Type II adversary (denoted by
AII) and the challenger as follows:

Setup: The challenger takes a security parameter k and runs the Setup algo-
rithm. It gives the resulting public parameters params and the master key
mk to AII .

Phase 1: AII issues queries q1, . . . , qm adaptively where query qi is one of:

– Private Key query on IDi. The challenger responds by running algo-
rithm Set-Private-Key to generate the private key skIDi for IDi.

– Public Key query on IDi. The challenger responds by running algo-
rithm Set-Public-Key to generate the public key pkIDi for IDi.

– Re-Encryption Key query on (IDi,IDj). The challenger responds by
running algorithm Set-Proxy-Re-Encryption-Key to generate the re-encryption
key rki→j .

– Re-Encryption query on (IDi,IDj ,CIDi
). The challenger responds by

running algorithm Re-Encrypt to transform the ciphertext CIDi into the
re-encrypted ciphertext CIDj

using the re-encryption key rki→j .
– Decryption query on (IDi,CIDi). The challenger responds by running

algorithm Decrypt to decrypt the ciphertext CIDi
using the private key

skIDi .

Challenge: Once AII decides that Phase 1 is over, it outputs two equal length
plaintexts m0,m1 ∈ M and an identity ID∗ of uncorrupted private key,
on which it wishes to be challenged. In particular, AII is restricted to the
choice of ID∗ such that trivial decryption is not possible using keys ex-
tracted in Phase 1, e.g., by using re-encryption keys to transform CID∗

into CIDi for which AII holds a decryption key. The challenger picks a
random bit b ∈ {0, 1} and computes the challenge ciphertext C∗ = En-
crypt(mb,params,ID∗,pkID∗). It sends C∗ as the challenge to AII .

Phase 2: AII issues more queries qm+1, . . . , qn adaptively where qi is one of:

– Decryption query on (IDi,CIDi). If (IDi,CIDi) is not a challenge deriva-
tive, the challenger responds as in Phase 1.

– Private Key query on IDi 6= ID∗. If a challenge derivative (IDi,CIDi)
does not exist. The challenger responds as in Phase 1.

– Public Key query on IDi. The challenger responds as in Phase 1.
– Re-Encryption Key query on (IDi,IDj). The challenger responds as

in Phase 1 except that IDi = ID∗ and AII has issued the Private Key
query on IDj .

– Re-Encryption query on (IDi,IDj ,CIDi). The challenger responds as
in Phase 1 except that AII has issued the Private Key query on IDj and
(IDi,CIDi) is a challenge derivative.

Guess: Finally, AII outputs a guess b′ ∈ {0, 1}. AII wins if b′ = b.

We define the advantage of AII in breaking the CL-PRE scheme as

Adv(AII) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣

Definition 3. We say that a unidirectional CL-PRE scheme is (t, ε)-adaptive
chosen ciphertext (IND-CCA) secure against the Type II adversary if for any
t-time adversary AII we have that Adv(AII) < ε.

3 Chosen-Ciphertext Secure CL-PRE Scheme

In this section, we present the first construction of CL-PRE based on bilin-
ear pairing, which gets rid of key escrow problem inherent in identity-based
PRE schemes as well as the certificate revocation problem in traditional pub-
lic key based PRE ones. We apply the transformation technique of Libert and
Quisquater [14], which is a modification of Fujisaki-Okamoto conversion [12] by
hashing the recipient’s identity and public key along with the message and the
random string in the encryption algorithm, to our construction. As pointed out
in [14], Fujisaki-Okamoto conversion is not enough to prevent an attacker from
breaking the scheme by using public key replacement oracles in the certificateless
setting. We then prove that the proposed scheme is secure against an adaptive
chosen ciphertext attack (IND-CCA) in the random oracle model.

3.1 Bilinear Pairing and Complexity Assumption

We start by providing a brief overview of bilinear pairing and related compu-
tational problems on which our CL-PRE scheme is based. We use the following
standard notation [8, 9] to describe bilinear pairing:

1. G1 and G2 are two (multiplicative) cyclic groups of prime order q.
2. g is a generator of G1.
3. e : G1 ×G1 → G2 is a bilinear map.

Let G1 and G2 be two groups as above. A bilinear map is a map e : G1×G1 → G2

with the following properties:

1. Bilinear : for all u, v ∈ G1 and a, b ∈ Z∗q , we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate : e(g, g) 6= 1G2 .

Note that e(,) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

The security of our scheme relies on the intractability of the following prob-
lem [8]. The p-Bilinear Diffie Hellman Inversion (p-BDHI) problem is defined as
follows: given a tuple (g, gα, . . . , gαp

) ∈ Gp+1
1 as input, compute e(g, g)1/α ∈ G2.

An algorithm B has advantage ε in solving the p-BDHI problem if

Pr
[B(g, gα, . . . , gαp

) = e(g, g)1/α
] ≥ ε

Where the probability is over the random choice of generator g ∈ G1, the ran-
dom choice of α ∈ Z∗q , and the random bits of B.

Definition 4. We say that the (t, p, ε)-BDHI assumption holds in G1 if no t-time
algorithm has advantage at least ε in solving the p-BDHI problem in G1.

3.2 Construction

The detailed description of the scheme is as follows:

Setup: Given security parameters k and k0, this algorithm performs as follows:

1. Choose a k-bit prime number q, bilinear map groups (G1,G2) of order q,
and random generators g, h ∈ G1.

2. Pick a KGC’s master secret key α ∈ Z∗q uniformly at random and compute
a public key g1 = gα ∈ G1.

3. Choose cryptographic hash functions H1 : {0, 1}∗ → Z∗q , H2 : G2
2 → {0, 1}n+k0 ,

H3 : {0, 1}∗ → Z∗q , H4 : {0, 1}∗ → Z∗q , H5 : {0, 1}∗ → G1, and compute the
group elements g2 = e(g, g), g3 = e(g, h) ∈ G2.

The public parameters are

params := {G1,G2, e, g, h, g1, g2, g3,H1, H2,H3,H4,H5}
where message space is M := {0, 1}n.

Partial-Private-Key-Extract: This algorithm takes params and an identifier
IDA for a user A as inputs, computes hA = H1(IDA) ∈ Z∗q and extracts A’s
partial private key dA = g1/(α+hA) ∈ G1.

Set-Secret-Value: Given params and IDA as inputs, this algorithm selects
a1, a2 ∈ Z∗q uniformly at random and sets xA = (a1, a2) ∈ Z∗2q which is re-
turned as user A’s secret value.

Set-Private-Key: Given params, user A’s partial private key dA and secret
value xA, this algorithm returns the pair skA = (dA, xA) ∈ G1×Z∗2q as a private
key.

Set-Public-Key: This algorithm takes params and user A’s secret value xA

as inputs, and produces user A’s public key pkA = (ga1
3 , ga2) ∈ G2 ×G1.

Encrypt: To encrypt a message m ∈M using the identifier IDA and the public
key pkA = (ga1

3 , ga2), the sender performs the following steps:

1. Check that pkA is in G1 and G2, if not output ⊥.
2. Compute hA = H1(IDA) ∈ Z∗q .
3. Choose a random σ ∈ {0, 1}k0 and compute r = H4(m||σ||IDA||pkA) ∈ Z∗q .
4. Compute the ciphertext C = (C1, C2, C3, C4):

C = ((ghA · g1)r, hr, (m||σ)⊕H2(gr
2||(ga1

3)r), ur)

where u = H5(IDA||pkA||C1||C2||C3).

Set-Proxy-Re-Encryption-Key: Given user B’s identifier IDB and public
key pkB = (gb1

3 , gb2), and user A’s identifier IDA and public/private key pair
(pkA,skA), this algorithm performs as follows:

1. Choose a random s ∈ Z∗q and compute µ = H3(gs
2||IDA||pkA||IDB ||pkB) ∈ Z∗q .

2. Compute hA = H1(IDA) ∈ Z∗q and hB = H1(IDB) ∈ Z∗q .
3. Set the proxy re-encryption key rkA→B = (rk(1)

A→B , rk
(2)
A→B , rk

(3)
A→B) =

(gµ/(α+hA), (ghB · g1)s, (gb2)a1).

Re-Encrypt: Given a re-encryption key rkA→B and a ciphertext C = (C1, C2,
C3, C4) under the identifier IDA and the public key pkA, the proxy performs the
following steps:

1. Set u = H5(IDA||pkA||C1||C2||C3) and compute hA = H1(IDA) ∈ Z∗q .
2. Check that e(C1, u) ?= e((ghA ·g1), C4) and e(C2, u) ?= e(h,C4), if not output
⊥.

3. Compute C ′1 = e(C1, rk
(1)
A→B) and set C ′′1 = rk

(2)
A→B .

4. Compute C ′2 = e(C2, rk
(3)
A→B).

5. Set the new ciphertext C ′ = (C ′1, C
′′
1 , C ′2, C3, IDA, pkA).

Decrypt:

– To decrypt non re-encrypted ciphertext C, the receiver A performs as follows:
1. Parse C as (C1, C2, C3, C4).
2. Compute hA = H1(IDA) ∈ Z∗q .
3. Compute ω = e(C1, dA)||e(g, C2)a1 and then (m||σ) = C3 ⊕H2(ω).
4. If C1 = (ghA · g1)r and C2 = hr, where r = H4(m||σ||IDA||pkA), return

m as the message. Otherwise, output ⊥.

– To decrypt re-encrypted ciphertext C ′, the receiver B performs as follows:
1. Parse C ′ as (C ′1, C

′′
1 , C ′2, C3, IDA, pkA).

2. Compute κ = e(C ′′1 , dB) and µ = H3(κ||IDA||pkA||IDB ||pkB).
3. Compute ω = C

′1/µ
1 ||C ′21/b2 and then (m||σ) = C3 ⊕H2(ω).

4. If C ′1 = gµ·r
2 and C ′2 = (ga1

3)b2·r, where r = H4(m||σ||IDA||pkA), return
m as the message. Otherwise, output ⊥.

The consistency of the construction is easy to check as follows:

– For the receiver A, we have

e(C1, dA)||e(g, C2)a1 = e((ghA · gα)r, g1/(α+hA))||e(g, hr)a1

= e(g(hA+α)·r, g1/(α+hA))||e(g, h)a1·r

= e(g, g)r||e(g, h)a1·r

= gr
2||(ga1

3)r

– For the receiver B, we have

C
′1/µ
1 ||C ′21/b2 = e(g, g)µ·r/µ||e(g, h)a1·b2·r/b2

= e(g, g)r||e(g, h)a1·r

= gr
2||(ga1

3)r

3.3 Security Analysis

We prove the security of our CL-PRE scheme under the p-BDHI assumption
described in Section 3.1.

Theorem 1. Suppose the hash functions Hi (i = 1, 2, 3, 4, 5) are modeled as
random oracles, the above CL-PRE scheme is secure in the sense of IND-CCA
described in Section 2.2 under the p-BDHI assumption.

To prove the theorem, the proof separately considers both kinds of adversaries
to establish the chosen ciphertext security of the above CL-PRE scheme. We
now prove Theorem 1 by combining the following two lemmas.

Lemma 1. Suppose that a Type I IND-CCA adversary AI has advantage ε
over our CL-PRE scheme when running time in a time τ , asking at most qHi

queries (Hi: i=1,2,3,4,5), at most qEX extraction queries, at most qSK private
key queries, at most qPK public key queries, at most qR replace queries, at most
qRK re-encryption key queries, at most qRE re-encryption queries, and at most
qD decryption queries. There exists an algorithm B to solve the p-BDHI problem
with advantage

ε′ ≥ 1
qH2

(ε

2qH1

− qH4 + (qH2 + qH4)qD

2k0
− qRE + 2qD

q

)

The proof of Lemma 1 is found in Appendix A.

Lemma 2. Suppose that a Type II IND-CCA adversary AII has advantage ε
over our CL-PRE scheme when running time in a time τ , asking at most qHi

queries (Hi: i=1,2,3,4,5), at most qSK private key queries, at most qPK public
key queries, at most qRK re-encryption key queries, at most qRE re-encryption
queries, and at most qD decryption queries. There exists an algorithm B to solve
the p-BDHI problem with advantage

ε′ ≥ 1
qH2

(ε

qH1

− qH4 + (qH2 + qH4)qD

2k0
− qRE + 2qD

q

)

The proof of Lemma 2 will be found in the full version of the paper due to the
space limitation.

4 Conclusion

In this paper, we have introduced the notion of certificateless proxy re-encryption
and also provided precise definitions for constructing secure certificateless proxy
re-encryption schemes. We have presented a concrete scheme based on bilinear
pairing, which enjoys the advantages of certificateless public key cryptography
while providing the functionalities of proxy re-encryption. The proposed scheme
is unidirectional and compatible with existing certificateless encryption deploy-
ments.

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by
the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-
2008-521-D00454).

References

1. S. S. Al-Riyami and K. Paterson, “Certificateless public key cryptography,” Ad-
vances in Cryptology - Asiacrypt 2003, LNCS 2894, pp.452-473, 2003.

2. S. S. Al-Riyami and K. Paterson, “CBE from CL-PKE: A generic construction and
efficient scheme,” Public Key Cryptography - PKC 2005, LNCS 3386, pp.398-415,
2005.

3. G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-encryption
schemes with applications to secure distributed storage,” ACM Transactions on
Information and System Security (TISSEC), 9(1):1-30, 2006.

4. G. Ateniese, K. Benson, and S. Hohenberger, “Key-Private Proxy Re-Encryption,”
Cryptography ePrint Archive, Report 2008/463, 2008.

5. J. Baek, R. Safavi-Naini, and W. Susilo, “Certificateless public key encryption
without pairing,” ISC 2005, LNCS 3650, pp.134-148, 2005.

6. M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for de-
signing efficient protocols,” ACM CCS’ 93, pp.62-73, 1993.

7. M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy
cryptography,” Advances in Cryptology - Eurocrypt’ 98, LNCS 1403, pp.127-144,
1998.

8. D. Boneh and X. Boyen, “Efficient selective-id secure identity based encryption
without random oracles,” Advances in Cryptology - Eurocrypt 2004, LNCS 3027,
pp.223-238, 2004.

9. D. Boneh and M. Franklin, “Identity-based encryption from the weil paring,” Ad-
vances in Cryptology - Crypto 2001, LNCS 2139, pp.213-229, 2001.

10. R. Canetti and S. Hohenberger, “Chosen-ciphertext secure proxy re-encryption,”
Cryptography ePrint Archive, Report 2007/171, 2007.

11. R. H. Deng, J. Weng, S. Liu, and K. Chen, “Chosen-ciphertext secure proxy re-
encryption without pairings,” CANS 2008, LNCS 5339, pp.1-17, 2008.

12. E. Fujisaki and T. Okamoto, “How to enhance the security of public-key encryption
at minimum cost,” Public Key Cryptography - PKC’ 99, LNCS 1560, pp.53-68,
1999.

13. M. Green and G. Ateniese, “Identity-based proxy re-encryption,” Cryptography
ePrint Archive, Report 2006/473, 2006.

14. B. Libert and J. Quisquater, “On constructing certificateless cryptosystem from
identity based encryption,” Public Key Cryptography - PKC 2006, LNCS 3958,
pp.474-490, 2006.

15. B. Libert and D. Vergnaud, “Unidirectional chosen-ciphertext secure proxy re-
encryption,” Public Key Cryptography - PKC 2008, LNCS 4939, pp.360-379, 2008.

16. J. Shao and Z. Cao, “CCA-secure proxy re-encryption without pairings,” Public
Key Cryptography - PKC 2009, LNCS 5443, pp.357-376, 2009.

A Proof of Lemma 1

Proof. Let AI be an adversary which has advantage ε in attacking the IND-CCA
security of our CL-PRE scheme. We show how to build an algorithm B that
uses AI to solve the p-BDHI problem in G1. Given as input a random tuple
(g, gα, . . . , gαp

) ∈ Gp+1
1 , B’s goal is to extract e(g, g)1/α for some unknown α. As

in [1, 14], we start by distinguishing two kinds of Type I adversaries:

– Type I-A adversary : may replace the public key for the challenge identity
ID∗ as some point, but cannot ask for the corresponding partial private key.

– Type I-B adversary : may ask for the partial private key of the challenge
identity ID∗ at some point, but cannot replace the corresponding public key.

Therefore, since B should guess which kind of Type I adversary will be, it chooses
a random bit c ∈ {0, 1}. If c = 0, B bets on a Type I-A adversary. Otherwise, bets
on a Type I-B adversary. B selects an index ` with 1 ≤ ` ≤ qH1 and an element
ψ` ∈ Z∗q uniformly at random. B also chooses w1, . . . , w`−1, w`+1, . . . , wqH1

∈ Z∗q
and computes ψi = ψ` − wi for i = 1, . . . , `− 1, ` + 1, . . . , qH1 .

Depending on the value of c, B now works by interacting with AI as follows:

Setup: To generate public parameters params, B does the followings:
– Case c = 0. B builds a generator h ∈ G1 for which it knows p−1 pairs of

the form (ψi, h
1/(ψi+β)) for random i 6= `. This work is done as follows:

1. Let f(z) be the polynomial f(z) =
∏p

i=1,i6=`(z + wi). Expand the
terms of f(z) to get f(z) =

∑p−1
j=0 cjz

j . The constant term c0 is
non-zero.

2. Compute h =
∏p−1

j=0(g(αj))cj = gf(α) and u =
∏p

j=1(g
(α)j

)cj−1 =
gαf(α). Note that u = hα.

3. Construct p−1 pairs (wi, hi = h1/(α+wi)) for any i ∈ {1, . . . , p}\{`}.
To see this, write fi(z) = f(z)/(z + wi) =

∑p−2
i=0 diz

i. Then hi =
h1/(α+wi) = gfi(α) =

∏p−2
i=0 (g(α)i

)di .
4. Compute the public key of the KGC as g1 = u−1 · h−ψ` = h−α−ψ`

for unknown master key mk := β = −α − ψ` ∈ Z∗q , and set v = gα

as another generator.
5. Set (ψi, h

1/(ψi+β)) = (ψi, h
−1
i) for all i ∈ {1, . . . , p} \ {`}.

– Case c = 1. B builds generators h = gαp−1
, v = gα ∈ G1. Then, it

chooses a random β ∈ Z∗q as the KGC’s master key and computes the
corresponding public key g1 = hβ ∈ Z∗q .

Finally, B generates public parameters params = (G1,G2, e, h, v, g1, e(h, h),
e(h, v), H1,H2,H3,H4,H5) and gives params to AI . Here Hi(i = 1, 2, 3, 4, 5)
are random oracles controlled by B as described below:

H1-queries: For query on input IDi, B responds with ψi and increments an
index i.

H2-queries: For query on input γi ∈ G2
2 of the form (γi,1||γi,2), B maintains a

H2-list of tuples (γi, ζi) as below:
1. If γi appears in the H2-list, then B responds with ζi.

2. Otherwise, B chooses ζi ∈ {0, 1}n+k0 uniformly at random and adds
(γi, ζi) to the H2-list and returns ζi to AI .

H3-queries: For query on input τi,j ∈ {0, 1}∗ of the form (κi,j ||IDi||pki||IDj ||pkj),
B maintains a H3-list of tuples (τi,j , µi,j) as below:
1. If τi,j appears in the H3-list, then B responds with µi,j .
2. Otherwise, B chooses µi,j ∈ Z∗q uniformly at random and adds (τi,j , µi,j)

to the H3-list and returns µi,j to AI .
H4-queries: For query on input λi ∈ {0, 1}∗ of the form (mi||σi||IDi||pki), B

maintains a H4-list of tuples (mi, σi, IDi, pki, ri) as below:
1. If λi appears in the H4-list, then B responds with ri.
2. Otherwise, B chooses ri ∈ Z∗q uniformly at random and adds (mi, σi, IDi,

pki, ri) to the H4-list and returns ri to AI .
H5-queries: For query on input ηi ∈ {0, 1}∗ of the form (ID||pk||C1||C2||C3), B

maintains a H5-list of tuples (ηi, yi, ρi) as below:
1. If ηi appears in the H5-list, then B responds with ρi.
2. Otherwise, B chooses a random yi ∈ Z∗q and adds (ηi, yi, ρi = vyi) to the

H5-list and returns ρi to AI .
Phase 1: AI issues queries q1, . . . , qm where query qi is one of:

– Extraction queries. B responds to AI ’s query on IDi as follows:
• Case c = 0. If i = `, B stops the simulation and outputs ”failure”.

Otherwise, it responds with h1/(ψi+β) corresponding to H1(IDi) =
ψi.

• Case c = 1. B responds with di by running the Partial-Private-Key-
Extract algorithm as it knows the master key.

– Public key queries. For a public key query on IDi, B checks whether the
pk-list contains a tuple (IDi, xi = (xi,1, xi,2), pki) for this input.
1. If it does, the previously defined value is returned.
2. Otherwise, B does the followings:

• Case c = 0. B picks random xi,1, xi,2 ∈ Z∗q and computes pki =
(e(h, v)xi,1 , hxi,2), then returns it to AI .

• Case c = 1. If i = `, B picks a random δ ∈ G1 and responds with
pki = (e(g, g), δ) which is equal to (e(h, v)1/αp

, hx) for unknown
(1/αp, x). Otherwise, B responds with pki as in the simulation
c = 0.

3. B then adds (IDi, xi, pki) to the pk-list (If i = ` and c = 1, xi is ⊥
as an unknown value).

– Private key queries. For query on input IDi, B performs as follows:
1. If i = `, B stops the simulation and outputs ”failure”.
2. If i 6= `, B recovers the corresponding tuple from the pk-list. If the

pk-list contain the tuple (IDi, xi, pki),
• Case c = 0. B sets ski = (di, xi) as it knows the partial private

key and sends it to AI .
• Case c = 1. B extracts the partial private key itself using the

master key and returns ski = (di, xi) to AI .
3. Otherwise, B makes a public key query on IDi, then simulates as the

above process.

– Replace public key queries. When AI queries on input (IDi, pk′i), B does
the followings:
1. If i = ` and c = 1, B stops the simulation and outputs ”failure”.
2. Otherwise, B checks that pk′i is in G1 and G2. If does, replaces the

corresponding tuple in the pk-list with (IDi,⊥, pk′i).
– Re-encryption key queries. B responds to AI ’s query on (IDi,IDj) as

follows:
1. If i = `, B stops the simulation and outputs ”failure”.
2. If i 6= `, B checks whether the rk-list contains a tuple (IDi,IDj , rki→j , si,j)

for this input.
• If it does, the previously defined value is returned.
• Otherwise, B does followings:
(a) Recover the corresponding tuples (IDi, xi = (xi,1, xi,2), pki)

and (IDj , xj = (xj,1, xj,2), pkj) from the pk-list.
(b) Choose a random si,j ∈ Z∗q and evaluate H3(e(h, h)si,j ||IDi||pki||

IDj ||pkj) to obtain µi,j .
(c) Simulate an extraction query on IDi to obtain the correspond-

ing partial private key di = h1/(β+ψi).
(d) If j = ` and c = 1, set the re-encryption key rki→j = (rk(1)

i→j ,

rk
(2)
i→j , rk

(3)
i→j) = (hµi,j/(β+ψi), (hψj · g1)si,j , δxi,1). Otherwise,

set the re-encryption key rki→j = (rk(1)
i→j , rk

(2)
i→j , rk

(3)
i→j) =

(hµi,j/(β+ψi), (hψj · g1)si,j , (hxj,2)xi,1).
(e) Return the re-encryption key rki→j to AI and add (IDi,IDj ,

rki→j , si,j) to the rk-list.

– Re-encryption queries. For query on input (IDi, IDj , C), B parses C as
(C1, C2, C3, C4). Then, B recovers the corresponding tuples (IDi, xi, pki)
and (IDj , xj , pkj) from the pk-list and evaluates H5(IDi||pki||C1||C2||C3)

to obtain ρi. B checks that e(C1, ρi)
?= e((hψi · g1), C4) and e(C2, ρi)

?=
e(v, C4). If not, B returns ⊥. Otherwise,
1. If i = `, B does the followings:

• Look up the corresponding tuple (m,σ, IDi, pki, r) in the H4-list
such that C1 = (hψi · g1)r and C2 = vr. If there exists no such
tuple, return ⊥.

• Choose a random s ∈ Z∗q and evaluate H3(e(h, h)s||IDi||pki||IDj ||pkj)
to obtain µi,j .

• Set C ′1 = e(h, h)µi,j ·r, C ′′1 = (hψj · g1)s, and C ′2 = e(h, v)xi,1·xj,2·r

in case c = 0 or C ′2 = e(g, g)xj,2·r in case c = 1.
• Output C ′ = (C ′1, C

′′
1 , C ′2, C3, IDi, pki) to AI .

2. If i 6= `, B simulates a re-encryption key query on (IDi, IDj) to obtain
rki→j , then outputs C ′ = Re-Encrypt(params, rki→j , C) to AI .

– Decryption queries. B responds to AI ’s query on (IDi, C) as below:
1. If i = `, B parses C,

• Case C = (C1, C2, C3, C4). B does followings:

(a) Look up the corresponding tuples (m,σ, IDi, pki, r) and (γ, ζ)
in the H4-list and the H2-list, respectively, such that

C1 = (hψi · g1)r, C2 = vr, C3 = (m||σ)⊕ ζ

If there exist no such tuples, return ⊥.
(b) Check that C4

?= H5(IDi||pki||C1||C2||C3)r. If not return ⊥,
otherwise output m to AI .

• C = (C ′1, C
′′
1 , C ′2, C3, IDj , pkj). B does followings:

(a) Recover the corresponding tuple (IDj , IDi, rkj→i, sj,i) from the
rk-list.

(b) Check that C ′′1
?= rk

(2)
j→i. If not return ⊥.

(c) Recover the corresponding tuples (IDj , xj , pkj) and (IDi, xi, pki)
from the pk-list, then evaluate H3(e(h, h)sj,i ||IDj ||pkj ||IDi||pki)
to obtain µ.

(d) Look up the corresponding tuples (m,σ, IDj , pkj , r) and (γ, ζ)
in the H4-list and the H2-list, respectively, such that

C ′1 = e(h, h)µ·r, C ′2 = e(h, v)xj,1·xi,2·r, C3 = (m||σ)⊕ ζ

in case c = 0 or

C ′1 = e(h, h)µ·r, C ′2 = e(δ, v)xj,1·r, C3 = (m||σ)⊕ ζ

in case c = 1. If there exist no such tuples, return⊥. Otherwise,
output m to AI .

2. If i 6= `, B simulates a private key query on IDi to obtain ski, then
outputs m = Decrypt(params, ski, C) to AI .

Challenge: Once AI decides that Phase 1 is over, it outputs two messages
m0,m1 ∈ M and ID∗ on which it wishes to be challenged. If ID∗ 6= ID`,
B stops the simulation and outputs ”failure”. Otherwise, B picks a random
bit b ∈ {0, 1} and a random σ∗ ∈ {0, 1}k0 . Finally, B builds a challenge
ciphertext for ID∗ and the current public key pkID∗ according to the value
of c.
– Case c = 0. B picks a random l ∈ Z∗q and a random string ξ ∈ {0, 1}n+k0 .
B then defines the challenged ciphertext to be

C∗ = (C∗1 , C∗2 , C∗3 , C∗4) = (h−l, gl, ξ, (gy)l)

where y is obtained from evaluating H5(ID∗||pkID∗ ||C∗1 ||C∗2 ||C∗3).
Define r = l/α. Since β = −α− ψ`, we have that

C∗1 = h−l = (h−α)l/α = h(ψ`+β)·r = hψ`·r · hβ·r = (hH1(ID∗) · g1)r,

C∗2 = gl = (gα)l/α = vr,

C∗4 = (gy)l = (gα·y)l/α = (vy)l/α = ρr

Without issuing a H2-query on the input (e(h, h)r||e(h, v)x`,1·r), AI is
unable to recognize that C∗ is not an encryption of m0 or m1 and such
an event would provide B with the searched p-BDHI solution.

– Case c = 1. B picks a random l ∈ Z∗q and a random string ξ ∈ {0, 1}n+k0 .
B then defines the challenged ciphertext to be

C∗ = (C∗1 , C∗2 , C∗3 , C∗4) = ((gαp−2
)ψ`·l · (gαp−2

)β·l, gl, ξ, (gy)l)

where y is obtained from evaluating H5(ID∗||pkID∗ ||C∗1 ||C∗2 ||C∗3).
Define r = l/α. Then, we have that

C∗1 = (gαp−2
)ψ`·l · (gαp−2

)β·l = (hψ`)l/α · (hβ)l/α = (hH1(ID∗) · g1)r,

C∗2 = gl = (gα)l/α = vr,

C∗4 = (gy)l = (gα·y)l/α = (vy)l/α = ρr

Without issuing a H2-query on the input (e(h, h)r||e(g, g)r), AI is un-
able to recognize that C∗ is not an encryption of m0 or m1 and such an
event would provide B with the searched p-BDHI solution.

Finally, B returns C∗ as the challenge ciphertext to AI .
Phase 2: AI issues more queries. B responds as Phase 1 with the restrictions

described in Section 2.2.
Guess: AI outputs its guess b′ ∈ {0, 1} which is ignored.

To produce a result, B chooses a random tuple (γ1||γ2, ζ) from the H2-list with
probability 1/qH2 . We distinguish two cases according to the value of c.

– Case c = 0. We have γ1 = e(h, h)r = e(g, g)f(α)2·l/α and B can extract the
p-BDHI solution by noting that, if γ∗ = e(g, g)1/α, then

γ1 = e(g, g)f(α)2·l/α =
(
γ∗(c

2
0) · e(

p−2∏

i=0

gci+1·αi

,

p−1∏

j=0

gcj ·αj

) · e(
p−2∏

i=0

gci+1·αi

, gc0)
)l

– Case c = 1. We have γ2 = e(g, g)r = e(g, g)l/α and B can extract the p-BDHI
solution by noting that γ∗ = γ

1/l
2 .

Let us analyze the simulation. The main idea of our analysis is borrowed
from [5, 11]. We first evaluate the simulations of the random oracles. From the
constructions of H1,H3 and H5, It is obvious that the simulations of H1,H3 and
H5 are perfect. Let AskH∗2 be the event that (e(h, h)r||e(h, v)x`,1·r) in case c = 0
or (e(h, h)r||e(g, g)r) in case c = 1 has been queried to H2, and AskH∗4 be the
event that (mb||σ∗||ID∗||pkID∗) has been queried to H4. The simulations of H2

and H4 are also perfect, as long as AskH∗2 and AskH∗4 did not occur, where b and
σ∗ are chosen by B in the Challenge phase.

The simulated challenge ciphertext is identically distributed as the real one
from the construction.

Next, we analyze the simulation of the re-encryption oracle. This simulation
is also perfect, unless AI can submit valid original ciphertexts without query-
ing hash function H4. Let ReEncErr denote this event. However, since H4 acts

as a random oracle and AI issues at most qRE re-encryption queries, we have
Pr[ReEncErr] ≤ qRE

q .
The simulation of the decryption oracle is perfect, with the exception that

simulation errors may occur in rejecting some valid ciphertexts. However, these
errors are not significant as shown below: Suppose a ciphertext C has been
queried to the decryption oracle. Even if C is valid, there is a possibility that C
can be produced without querying (gr

2||(gx1
3)r) to H2, where r = H4(m||σ||ID||pk).

Let Valid be an event that C is valid. Let AskH2 and AskH4 be the events that
(gr

2||(gx1
3)r) has been queried to H2 and (m||σ||ID||pk) has been queried to H4,

respectively. We then have that

Pr[Valid|¬AskH2] = Pr[Valid ∧ AskH4|¬AskH2] + Pr[Valid ∧ ¬AskH4|¬AskH2]
≤ Pr[AskH4|¬AskH2] + Pr[Valid|¬AskH4 ∧ ¬AskH2]

≤ qH4

2k0
+

1
q

and similarly we have Pr[Valid|¬AskH4] ≤ qH2
2k0

+ 1
q . Therefore, we have that

Pr[Valid|(¬AskH2 ∨ ¬AskH4)] ≤ Pr[Valid|¬AskH2] + Pr[Valid|¬AskH4]

≤ qH2 + qH4

2k0
+

2
q

Let DecErr be the event that Pr[Valid|(¬AskH2 ∨ ¬AskH4)] happens during the
entire simulation. Then, since AI issues at most qD decryption queries, we have

Pr[DecErr] ≤ (qH2 + qH4)qD

2k0
+

2qD

q

If B does not abort during the simulation, it is clear that the simulations of
the other oracles are perfect. Now, let us calculate the probability that B does
not abort during the simulation. Let ¬Abort denote this event. As the proof
technique in [1, 14], we define the following events:

– H: AI chooses ID` as the challenge identity ID∗.
– F0: AI extracts the partial private key for ID` at some point.
– F1: AI replaces the public key of ID` at some point.

Following the above events, B could abort for one of the following reasons:

1. Because c = 0 and the event F0 occurs during the simulation.
2. Because c = 1 and the event F1 occurs during the simulation.
3. Because of a private key query for the identity ID`. Let F2 denote this event.
4. Because of a re-encryption key query for (ID`, IDj). Let F3 denote this event.
5. Because AI chooses a challenge identity ID∗ 6= ID`. Let ¬H denote this event.

We also name the event (c = i) ∧ Fi as Hi for i = 0, 1. It is obvious that the
event H implies the events ¬F2 and ¬F3. Therefore, the probability that B does

not abort during the simulation is

Pr[¬Abort] = Pr[¬H0 ∧ ¬H1 ∧ ¬F2 ∧ ¬F3 ∧H]
= Pr[¬H0 ∧ ¬H1 ∧H] = Pr[¬H0 ∧ ¬H1|H] · Pr[H]

=
1

qH1

Pr[¬H0 ∧ ¬H1|H]

Since the events H0 and H1 are mutually exclusive, we have that

Pr[¬H0 ∧ ¬H1|H] = 1− Pr[H0|H]− Pr[H1|H]

On the other hand, we have that

Pr[Hi|H] = Pr[(c = i) ∧ Fi|H] =
1
2
Pr[Fi|H]

because the event Fi|H is independent of the event c = i for i = 0, 1. Finally,
as Pr[F0 ∧ F1|H] = 0, this implies that Pr[F0|H] + Pr[F1|H] ≤ 1. Therefore, we
have that

Pr[¬Abort] =
1

qH1

(
1− 1

2
Pr[F0|H]− 1

2
Pr[F1|H]

)

≥ 1
2qH1

Let Good denote the event (AskH∗2∨(AskH∗4|¬AskH∗2)∨ReEncErr∨DecErr)|¬Abort.
If Good does not happen, due to the randomness of the output of the random
oracle H2, it is obvious that AI cannot gain any advantage greater than 1/2 in
guessing b. Namely, we have Pr[b = b′|¬Good] = 1

2 . Hence, by splitting Pr[b = b′],
we have that

Pr[b = b′] = Pr[b = b′|¬Good]Pr[¬Good] + Pr[b = b′|Good]Pr[Good]

≤ 1
2
Pr[¬Good] + Pr[Good] =

1
2

+
1
2
Pr[Good]

and

Pr[b = b′] ≥ Pr[b = b′|¬Good]Pr[¬Good] =
1
2
− 1

2
Pr[Good]

We then have that
∣∣∣Pr[b = b′]− 1

2

∣∣∣ ≤ 1
2
Pr[Good]

By definition of the advantage for the IND-CCA adversary AI , we have that

ε = |2× Pr[b = b′]− 1|
≤ Pr[Good] = Pr[(AskH∗2 ∨ (AskH∗4|¬AskH∗2) ∨ ReEncErr ∨ DecErr)|¬Abort]

=
(Pr[AskH∗2] + Pr[AskH∗4|¬AskH∗2] + Pr[ReEncErr] + Pr[DecErr])

Pr[¬Abort]

Since Pr[AskH∗4|¬AskH∗2] ≤ qH4
2k0

, Pr[ReEncErr] ≤ qRE

q , Pr[DecErr] ≤ (qH2+qH4)qD

2k0
+

2qD

q and Pr[¬Abort] ≥ 1
2qH1

, we obtain

Pr[AskH∗2] ≥ ε · Pr[¬Abort]− Pr[AskH∗4|¬AskH∗2]− Pr[ReEncErr]− Pr[DecErr]

≥ ε

2qH1

− qH4

2k0
− qRE

q
− (qH2 + qH4)qD

2k0
− 2qD

q

≥ ε

2qH1

− qH4 + (qH2 + qH4)qD

2k0
− qRE + 2qD

q

Finally, notice that B solves the p-BDHI problem with probability 1/qH2 if
AskH∗2 happens. Consequently, we obtain

ε′ ≥ 1
qH2

Pr[AskH∗2] ≥
1

qH2

(ε

2qH1

− qH4 + (qH2 + qH4)qD

2k0
− qRE + 2qD

q

)

¤

