SIP Proxies: New Reflectors in the Internet

Ge Zhang', Jordi Jaen Pallares?, Yacine Rebahi?,
Simone Fischer-Hiibner!

! Karlstad University, Karlstad, Sweden
2 Fraunhofer FOKUS, Berlin, Germany

Abstract. To mitigate identity theft in SIP networks, an inter-domain
authentication mechanism based on certificates is proposed in RFC 4474
[10]. Unfortunately, the design of the certificate distribution in this mech-
anism yields some vulnerabilities. In this paper, we investigate an at-
tack which exploits SIP infrastructures as reflectors to bring down a
web server. Our experiments demonstrate that the attacks can be eas-
ily mounted. Finally, we discuss some potential methods to prevent this
vulnerability.

1 Introduction

The current most widely used authentication method for SIP is based on HTTP
hash digest mechanism. Therefore SIP users need to share secrets (e.g., user
account, password) with their home domains for message source authentication.
However, such shared secrets are usually not distributed to other domains. Thus,
identity misuse in multi-domain environments is possible, and accordingly will
lead to some security problems such as VoIP SPAM and caller impersonation. To
address this problem, J. Peterson, et al., [10] proposed a certificate based inter-
domain authentication mechanism: An originator SIP domain signs an outgoing
message with its private key and a recipient SIP domain verifies the signature
of the incoming message. Thus, the recipient SIP domain needs to have the
certificate of the originator domain for verifying messages. Nevertheless, there
is a serious problem in the designed certificate distribution scheme: A recipient
SIP proxy should download the certificate according to a URL address specified
in the SIP message. However, at the moment of certificate downloading, the SIP
message is still unverified and untrusted. Therefore, this mechanism offers an
opportunity for an attacker to let a SIP proxy connect to an arbitrary remote
host. In our previous work [15], we demonstrated an attack which exploits the
time for certificate downloading to block a victim SIP proxy. In this paper, we
aim to investigate another attack: The attacker can collect a list of SIP proxies as
reflectors, then use the reflectors to flood a victim web server. The results of our
experiments demonstrate that this attack can cause a serious impact, especially
on a web server which supports HTTPS protocol.

The idea behind this attack is that a SIP proxy needs to “pull” a certificate
according to a unverified request. To prevent the problem, we modified distri-
bution method to “push” a certificate: An originator should actively provide its



domain certificate. Our contribution in this paper is two-fold: First, we inves-
tigate a reflector DoS attack generated by the certificate distribution scheme
described in RFC 4474. Secondly, we address improved schemes to deal with the
threat.

The current paper is organized as follows: Section 2 provides an overview of
SIP as well as its inter-domain authentication mechanism. Section 3 investigates
the threats caused by the inter-domain authentication mechanism. Countermea-
sure solutions are discussed in Section 4. We summarize related work in Section 5,
and in Section 6, we provide a conclusion.

2 Background of SIP and RFC 4474

SIP [12] is a text-based protocol designed to establish, modify, or terminate a
session (e.g., VoIP calls) between two or more partners. Several SIP network-
ing components are essential to be introduced: User Agent (UA), proxy server,
registrar server. A UA represents a communication endpoint. According to its
role in a communication, a UA can be a UA client (UAC) which initializes a
SIP message, or a UA server (UAS) which receives a SIP request and makes
a response. A proxy server (or proxy) forwards SIP messages between different
SIP components in the network. A registrar server is where users login and an-
nounce their availability in the network. Generally, some security checks (e.g.,
authentication) are enforced on a proxy. SIP users are identified by their Uni-
form Resource Identifiers (URI) [2]. A URI consists of a domain name and a
user name (e.g., sip:Alice@kau.se). The format of a SIP message is similar to
HTTP protocol, with message headers and a message body with its correspond-
ing values (e.g, From: Alice@kau.se is to denote the sender of a message). SIP
messages are distinguished as two categories: SIP requests (e.g., REGISTER,
INVITE, ACK, BYE, etc) and SIP responses (1xx, 2xx, etc). In this paper, we
focus on inter-domain requests. We define that a SIP request transverses over
different SIP domains as inter-domain request. The proxy which initializes an
inter-domain request is defined as originator proxy, and its domain is named
as originator domain. While the destination proxy is named as recipient proxy,
within a domain defined as recipient domain.

VoIP attackers frequently use fraud SIP identities in order to be untraceable.
As a countermeasure, RFC 3261 [12] proposed a HTTP digest based authenti-
cation mechanism using shared secrets (e.g., user name and password). Unfor-
tunately, this solution does not work in multi-domain environments since the
secretes are usually not distributed. In this way, attackers can easily fraud their
SIP identities in multi-domain environments without being detected. To prevent
such a problem, an inter-domain authentication mechanism based on certificates
has been proposed in RFC 4474 [10] and illustrated in Figure 1. Let us say that
a caller sends a calling request to a callee in a multi-domain scenario. The origi-
nator domain signs the digest of this request with its private key. The generated
signature is encoded within a new header filed Identity appended to the origi-
nal request. Moreover, the originator domain attaches another new header field



Hash
Algorithm

]
 le=HTTP/HTTPS Download—|
=g "

Certificate provider L

Fig. 1. The inter-domain authentication mechanism defined in RFC 4474

Identity-info, which contains the Uniform Resource Locator (URL) [3] indicating
where the certificate can be downloaded from? as well as authentication param-
eters (e.g., the algorithm used for verification). This modified request is then
forwarded to the recipient domain. Thus, the recipient domain will first check
whether the certificate for the originator domain can be found locally (e.g., it has
already been cached). If the certificate is not cached, the proxy has to download
it according to the URL given in the Identity-info field. If the downloading does
not succeed or the downloaded certificate is invalid, the recipient domain will
neglect this request and reply with a negative response. Otherwise, the proxy
uses the public key extracted from the certificate to verify the signature in the
Identity header field. The request will be finally forwarded to the callee only if
the verification is successful.

3 Reflecting attacks using SIP proxies

We assume that all the SIP proxies mentioned along this paper are implemented
according to the authentication scheme specified in RFC 4474. A serious problem
of this authentication scheme is the fact that the recipient proxy cannot know
whether an incoming inter-domain request is spoofed or not until the authentica-
tion operation takes place. To do so, the recipient proxy needs the corresponding
certificate. If the certificate is not cached, the proxy has to download it from the
location specified in this Unwverified request. In this way, an attacker can cheat
one or many proxies to let them connect with any host for “certificate down-
loading”. This vulnerability can lead to DoS attacks on a web server, despite of
whether this web server really supports domain certificate downloading or not.
In this paper, we focus on a system model which is a large-scaled network con-
sists of numerous SIP proxies and web servers (e.g., the Internet). We assume
that the attacker can connect to the network and craft SIP requests to a number
of SIP proxies. The goal of the attacker is to reduce the availability of a targeted
web server.

3 According to RFC 4474, the URL indicated in the Identity-info header field and the
originator domain indicated in the From header field must be matched.



Attack description DoS attacks generally take advantage of unbalanced re-
source occupation between client side and server side. To understand the situa-
tion of resource consumption in the given context, we performed a measurement
with a testbed configured in Figure 2.

HTTP/
&<_SIPHTTPS

Attacker Recipient proxy ~Web server
i (Victim)
——Invite Web request
36 Bad Identity-Info response

Fig. 2. The testbed for measuring resource consumption

The testbed consists of three networking components as follows:

1. A web server: In this test, we employ Apache [1], a widely deployed web
server program. We configure it to support both HTTP and HTTPS con-
nections. To enable HTTPS connections, we generate a self-signed X.509
RSA certificate on the web server?. The size of this HT'TPS certificate is 806
bytes with 1024 bits public key.

2. A SIP proxy: We employ SIP Express Router (SER) [13] as our SIP proxy,
which is configured with 16 parallel process queue.

3. An attacker: The attacker generates crafted inter-domain SIP requests. The
attacker can designate the scheme name (http://, or https://) of the Identity-
info URL in a SIP request. The attacker is implemented using SIPp [14], an
open source SIP traffic generation tool.

Hardware: Each component mentioned in this paper is independently es-
tablished on a Pentium 4 machine with 512 Mb RAM running the linux Ubuntu
operating system, with 100 Mbps local network access.

Our measurement investigates the CPU overhead on the web server and the
attacker respectively for attacking. The purpose of this test is to find out the
difficulty of mounting this attack. A DoS attack targets resources of the victim.
Moreover, the DoS attack is reasonable for the attacker only if it is not required to
spend a lot of resources in equipment to achieve the task. During the following
test, we investigate the attacker and the proxy CPU utilization according to
different attacking rate configured for the attacker. Our measurement is repeated
for three different circumstances:

1. HTTP scenario: The attacker floods the proxy with requests in which the
Identity-info header fields begin with the input “http://”. In this way, the
proxy will need to connect to the web server using HT'TP protocol.

4 This certificate is only used for web server authentication during HTTPS hand-
shake, not for SIP inter-domain authentication purpose. To distinguish it from the
certificate for SIP authentication, we call it as HT'TPS certificate in the rest of this
paper



HTTPS >@ HTTPS <
3 ;; o

SIP prox HTTPS server
LH) Client Hello—— = SIP proxy (1) Client Hello HTTPS server
(2) Server Hello, Certificate, (2) Server Hello, Certificate, >

Server Key Exchange, Server Hello Done -_Server Key Exchange, Server Hello Done|

{3) Alert Unknown CA—————— =

(3) Client Key Exchange,
Change Cipher Spec, Handshake Message

-4—{4) Change Cipher Spec, Handshal g

e (5) Connecti =

(a) The trusted scenario

(b) The untrusted scenario

Fig. 3. Establishing a HT'TPS connection between the proxy and the web server

2. HTTPS (Trusted) scenario: The attacker sends requests to the proxy in
which the Identity-info header fields begin with scheme name “https://”.
The proxy first receives the certificate from the web server and it trusts this
self-signed HTTPS certificate (e.g., it is from a trusted root CA). Therefore,
the proxy will exchange session keys and build HTTPS connections with the
web server. The procedure is illustrated in Figure 3(a).

3. HTTPS (Untrusted) scenario: Similarly, the attacker send the proxy with
requests in which the Identity-info header fields begin with scheme name
“https://”. However, the proxy does not trust the self-signed HTTPS cer-
tificate of the web server in this scenario. In this way, the handshake is inter-
rupted after the SIP proxy checks the HT'TPS certificate sent from the web
server. Thus the HTTPS connection and downloading cannot be successful.
We depict this procedure in Figure 3(b).

Figure 4 compares the average CPU utilization on the attacker and the
web server with different attacking rates and scenarios. We can hardly find any
variability of the CPU utilization on the attacker whatever the used attacking
rate and the scenario type. On the other hand, The CPU utilization on the
web server stayed 4% or so for the HTTP scenario. The value increases from
around 4% to almost 74% for the HTTPS (trusted) scenario. However, this
value surges from 4% to around 72% for the HTTPS (Untrusted) scenario. With
an increasing attack rate, the CPU utilization on the web server surges for the
HTTPS scenarios. The CPU utilization on the web server is much higher than it
in the attacker in the HTTPS scenario. This result is mainly due to the random
number generating and the cryptographical operations, which consume a lot
of CPU resources. As shown in the results, it is easy to consume a significant
resources of a HTTPS web server by using little resources on the attacker side.
This unbalanced situation might be due to the following reasons:

1. HTTP scenario: TCP was specifically designed to provide a reliable end-
to-end communication with a “flow control” method. However, in return,
the “flow control” method consumes additional bandwidth. On the other



100
" web server kH1TP) —
web server (HTTPS (Untrusted)) ---o---
web server (HTTPS (Trusted)) ----+---
attacker (HTTP) =
80 | attacker (HTTPS (Untrusted)) --+-
attacker (HTTPS (Trusted)) --o---
Ao S
60
=]
o
Q
X
40
20
.
0
° 10 20 30 40 50

Attacking rate (INVITEs/s)

Fig. 4. The consumption of CPU resources on different components

hand, UDP, without a “flow control” method, is more efficient than TCP.
SIP communications can be built on either TCP or UDP. During the test,
the attacker sends requests to the SIP proxy over UDP while the SIP proxy
builds HTTP connections with the web server over TCP. That is why that
a little more resource consumed on the web server than on the attacker.
Anyway, the gap is rather small.

2. HTTPS (Trusted) scenario: According to Figure 3(a), it is clear that much
more resources are needed for building up a HT'TPS connection since it spans
over several steps. For example, to exchange session keys with the proxy, the
web server has to perform a lot of computation that occupies a big part of
the CPU resources.

3. HTTPS (Untrusted) scenario: Although the connection cannot be setup in
this scenario, the CPU utilization on the web server is still high. From Figure
3(b), the server key exchange is performed in step 2. The proxy cancels the
transaction in step 3 with an alert message, however, even in this case, the
server has to perform a key exchange operation. By default, it is an RSA
key exchange that takes place by creating a temporary RSA key pair. This
procedure consumes a lot of CPU resources.

In this way, we assume that an attacker has a target HTTPS web server with
URL: https://www.victim.com. To bring it down, an attacker just needs to
select a list of SIP proxies in the network as reflectors. Then, the attacker floods
the proxies with numerous crafted SIP requests in which the identity-info header
fields include the same value: https://www.victim.com/ [random_string]. As
a consequence, the SIP proxies will continuously build connections with the
victim web server and the CPU resources of the web server will be depleted.



1 or 4 recipient

- HTTPSHTTPS-.
HTTPS server %

STP»- ;
proxies
Attacker Reflector cloud (victim} Legal users

Fig. 5. The testbed for distributed reflector attacks on HTTP web servers

Avg delay (s Avg delay (s
20 VO y (s) 20 AVO y (s)

onNRo

15

ONADNO—t it

6
5
4
3 15
2
10 1 10
0
5 5

20 45 20 4g

25

25

16141210 ‘6141210

01520
(INVITES/s)

2
15 ¢ 8
10 [+ 6
(INVITEs/s) (Connections/s)

a 8¢
(Connections/s)

(a) 1 SIP proxy in untrusted scenario (b) 4 SIP proxies in untrusted scenario

Avg delay (s
2 g delay (s)

ONRO®

15

10

O=NWAROO
-
o
ONBOIDt bkt

25 25

01520 r 10°g 01520y
o 5 (INVITEs/s) % 5 (INVITEs/s)

(c) 1 SIP proxies in trusted scenario (d) 4 SIP proxies in trusted scenario

Fig. 6. The victim web server response delays for different parameters

Experiments setup To investigate the attack in detail, we setup our testbed in
the way depicted in Figure 5. The testbed consists of the following components:

1. The attacker: The attacker works in the same way as in the previous test.
It generates SIP requests with the identity-info header field including the
URL of the victim’s HTTPS web server. The attacking rate r (INVITE/s)
can vary from 0 to 40.

2. Reflector cloud: The attacker employs SIP proxies as attacking reflectors.
As soon as the SIP proxies receive requests from the attacker, they will
try to establish HTTPS connections with the victim web server. In this



experiment, we setup the reflector cloud with either one or four SIP proxies.
Please notice that the attacking rate r (INVITEs/s) is for the whole cloud.
Therefore, if there is only one proxy in the cloud, then the proxy receives
attacking requests at the rate r. However, if there are four proxies in the
cloud, then each proxy receives the attacking requests at a rate equal to r/4.

3. HTTPS web server: The configuration of the web server is similar to the
previous test. However, it only supports HTTPS protocol in this test.

4. Legitimate users: We employ httpref [6], a web server performance mea-
surement tool, to simulate legitimate users, which constantly build HTTPS
connections with the victim web server. The performance of the victim web
server can be demonstrated by observing the delay of connecting the legit-
imate users to the web server. The legitimate users can be configured to
constantly build HTTPS connections at a rate « (connections/s), varying
from 1 to 20.

In the test, we measure the average connecting delay between the legitimate
users and the web server. The result is shown in Figure 6. It shows that average
delay of the connection between legitimate users and the web server is about few
milliseconds without attack (when r = 0), no matter what the other parameters
are. However, under attack, the delay can be up to 14 (s) or 16 (s) if the attacker
selects 4 reflector proxies. By using only one reflectors, the attack impact is not
so high but still serious: The maximal delay is around 4-5 (s). Generally, the
attacking impact in trusted scenarios is slightly higher than the one in untrusted
scenarios. Furthermore, a higher attacking rate and more legal connections will
certainly lead to a higher attacking impact on the web server. A connection
attempt with 16 seconds delay is usually regarded as unsuccessful for most web
browsers. As a result, legitimate users cannot visit a HI'TPS web server if the
server is under flooding from the reflector proxies. It is also worth to mention
that this kind of attack can be easily performed in reality: An attacker first
collects a list of SIP proxies in the Internet as reflectors. Then the attacker
floods the reflectors with crafted requests containing certificates location at a
victim HTTPS server. In this way, the HT'TPS server can be brought down due
to too many connecting requests from the reflector proxies.

4 Countermeasures

4.1 Unified certificate repository

One solution is to build a global unified certificate repository to store certificates
for different SIP domains. Thus, the location of the unified certificate repository
can be hard-coded on a SIP proxy, instead of being specified by the requests.
In this way, wherever the SIP requests come from, the recipient proxy should
download certificates from such a known unified certificate repository. As a re-
sult, attackers no longer can arbitrarily specify which host a proxy should contact
with. Unfortunately, however, a unified certificate repository is not scalable and
might be difficult to be accepted by service providers in the Internet.



4.2 Alternative authentication methods

As alternatives, other security mechanisms at the transport layer or network
layer can also be considered as candidates for inter-domain authentication pur-
pose. For example, establishing a Transport Layer Security (TLS)[5] connection
or an IPSec[8] tunnel between an originator proxy and a recipient proxy. As for
the use of TLS within this context, RFC 4474 mentions that while the creation of
a chain of transitive authentication between the originating UA, the local proxy
and the remote proxy via TLS may work well in some architectures, transitive
trust is inherently weaker than an assertion that can be validated end-to-end.
In the case a SIP request is crossing multiple SIP domains, this transitive trust
becomes even less effective. RFC 3325[7] proposes a solution to this problem
implementing the P-Asserted-Identity header. However, this solution only allows
hop-by-hop trust between intermediaries, and no end-to-end authentication. In
addition to that, it assumes a managed network of nodes with strict mutual trust
relationships, an assumption that is incompatible with widespread Internet de-
ployment. Similarly, IPSec cannot assure an end-to-end protection, either.

Furthermore, TLS is connection-oriented and requires also a handshake. In
contrast, the mechanism described in RFC 4474 is connectionless and does not re-
quire any handshake operation. Moreover, TLS aims at providing confidentiality,
integrity and authentication for the entire traffic. Nevertheless, the mechanism
proposed by RFC 4474 only focuses on providing authentication and integrity
for selected parts of a SIP request. In this way, the RFC 4474 mechanism, a
lightweight protection method, introduces less performance overhead than the
other methods. With the just discussed benefits related to end-to-end protection
and performance, the RFC 4474 mechanism cannot be easily replaced by TLS
or IPSec.

4.3 Encoding certificates into the SIP requests

According to RFC 4474, it is the recipient proxy which is responsible for down-
loading the certificate of the originator proxy. This action is qualified as pulling
a certificate by the recipient proxy. This pull action produces the vulnerability,
which makes the victim proxy connect to a networking host arbitrarily set by the
attacker. In contrast, we address an alternative way for certificate transferring
in which an originator proxy actively pushes a certificate to the recipient proxy.

Method Figure 7 illustrates the procedure of a potential “push” scheme.
Firstly, we assume that a UA can receive a copy of the domain certificate after
registration to this domain. When an originator proxy receives an inter-domain
request from its user, the proxy will sign this request, and add the signature
into the request as a new header Identity. The proxy will also attach the request
with a new header identity-info. However, different to the one defined in RFC
4474, this Identity-info only contains verification parameters (e.g., which algo-
rithm should be used). There is no URL contained in the Identity-info headers



any more. The recipient proxy will search the domain certificate of the origi-
nator domain in the local cache after getting this request. If the certificate of
the originator domain is cached locally, the proxy will then verify the request
by using the cached certificate. Otherwise, the recipient proxy will send to the
originator proxy a “4XX” response to indicate that a certificate is required for
further processing. The UAC in the originating domain will then resend the re-
quest along with the domain certificate. Again the originator SIP proxy will sign
the request and attach Identity and Identity-info headers. Finally, the recipient
can get the certificate from the request and cache it for a period of time. In this
way, the cache is pushed by the UAC, instead of being pulled by the recipient
proxy, which means the attacks addressed above are prevented. We suggest that
the requests with certificates (Step 6 and 8) should be transmitted over TCP.
The reason will be explained in this section later.

& 3 S

UAC Originator proxy Recipient proxy

1. SIP request
2. Authenticate, Sign

I—3. SIP request + Identity + Identity-infom-
ld. SIP response: certificate is required—

5. SIP response:
¢ certificate is required

I—6. SIP request + Certificatem]

7. Authenticate, Sign

8. SIP request + Identity
+ Identity-info + Certificate
9. Cache certificate

Fig. 7. An improved certificate distribution scheme

Further discussion The certificate “pushing” scheme still faces different chal-
lenges. First, in order to be transmitted properly the certificate needs to be
encoded in base64. Then we have to deal with the maximum package size for
each SIP package: while the maximum size of a UDP packet is 64 Kbytes includ-
ing the IP and UDP headers, the maximum transmission unit (MTU) depends
on the kind of network we are using but we can assume that above 1500 bytes
in an ethernet network we will have to deal with packet fragmentation. SIP al-
lows both TCP and UDP transmission protocols. In case we are using TCP for
the transmission we can count on that the network level will re-assemble the
fragmented SIP packages. If we are using UDP, the reception of the fragmented
packet may encounter some errors.

The size of a SIP message is usually around 1000 bytes, then the size of the
certificate cannot exceed 500 bytes if we want to send it over ethernet using
UDP. With this limitation, we can look at RSA type certificates with a public



key of 2048 bytes and take the PEM encoding of it which is already base64. Such
certificates will have an approximate size of 1350 bytes which is too much for
a UDP transmission. If we take a look at Elliptic Curve Cryptography (ECC)
[4] using for example a curve of type secp256k1, the approximate length of the
PEM base64 encoded certificate will be around 782 bytes, which also makes it
not suitable for transmission over UDP. Regarding RSA and ECC certificates,
NIST recommends RSA keys of 3072 bytes for security beyond the year 2030,
whilst in the case of ECC to achieve the same level of security requires a key
length of 224 bytes [11].

As proposed, the infrastructure would need a caching function for the certifi-
cates and the first time they are sent it must be done over TCP. On the other
hand, the idea of including certificates in the SIP messages could also be re-used
to distribute the Certificate Revocation Lists (CRL) for the revoked certificates
of SIP proxy servers. The CRL distribution cost would be lowered by using SIP
headers to transport certificates over TCP. On the other hand, in order to sup-
port different certificate types, the RFC4474 will need to be extended to signal
which kind of signature algorithm is used to include the ECC certificates which
use the ECDSA signature algorithm. The current standard only specifies that
all implementations must support the RSA-SHA1 signature algorithm.

5 Related work

Using reflectors for distributed denial-of-service attacks is not a new concept.
Paxson [9] summarized several types of attacks using reflectors. In his paper, a
reflector is defined as “any IP host that will return a packet if sent a packet.”
It can be a DNS server, a web server or a IP router, etc. Thus, attackers need
to collect a large number of reflectors (e.g., 1 million) and send to the reflectors
spoofed requests announced coming from a victim. The reflectors will in turn
generate responses from themselves to the victim, so that the resource of the
victim (e.g., bandwidth) is occupied. Different from these classical reflecting
attacks, the attack proposed in this paper takes SIP proxies as reflectors. The
attack can be successfully mounted with only a small amount of reflectors.

Our previous work [16] and [15] described some other problems and vulnera-
bilities of this mechanism. [16] addressed the confidentiality issues of certificate
cache, which is especially vulnerable to timing attacks. In this way, attackers
can observe and compare the timing required for different requests to find out
the calling history between SIP domains. [15] proposed a threat by exploiting a
long time for certificate downloading to block a victim SIP proxy.

6 Conclusions

With an inappropriate design of the certificates distribution scheme, the inter-
domain authentication mechanism for SIP is vulnerable to Denial of Service
attacks. An attacker can consume the resource of a HTTPS server by simply



selecting a list of SIP proxies as reflectors. The result of our experiments demon-
strated that a HI'TPS web server can be easily taken down in this way. Finally,
we proposed an improved certificate distribution scheme to prevent this vulner-
ability. More evaluation of the proposed scheme will be done in the future.

References

1. Apache, HTTPd server. http://httpd.apache.org/, visited at 16th-Aug-2009.

2. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic syntax, 2005. RFC 3986.

3. T. Berners-Lee, L. Masinter, and M. McCabhill. Uniform Resource Locators (URL),
1994. RFC 1738.

4. S. Blake-Wilson, D. Brown, and P. Lambert. Use of Elliptic Curve Cryptography
(ECCQ) algorithms , 2002. RFC3278.

5. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2, 2008. RFC 5246.

6. Httperf. http://www.hpl.hp.com/research/linux/httperf/, visited at 16th-
Aug-2009.

7. C. Jennings, J. Peterson, and M. Watson. Private Extensions to the Session Ini-
tiation Protocol (SIP) for Asserted Identity within Trusted Networks, 2002. RFC
3325.

8. S. Kent and R. Atkinson. Security Architecture for the Internet Protocol, 1998.
RFC 2401.

9. V. Paxson. An analysis of using reflectors for distributed denial-of-service attacks.
SIGCOMM Comput. Commun. Rev., 31(3):38-47, 2001.

10. J. Peterson and C. Jennings. Enhancements for Authenticated Identity Manage-
ment in the Session Initiation Protocol (SIP), 2006. RFC 4474.

11. Y. Rebahi, J.J. Pallares, T. M. Nguyen, S. Ehlert, G. Kovacs, and D. Sisalem.
Performance analysis of identity management in the Session Initiation Protocol
(SIP). In Proceedings of the 2008 IEEE/ACS International Conference on Com-
puter Systems and Applications, pages 711-717. IEEE, 2008.

12. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol, 2002. RFC 3261.

13. SIP Express Router 2.0. http://www.iptel.org, visited at 16th-Sep-2008.

14. SIPp. http://sipp.sourceforge.net/, visited at 16th-Sep-2008.

15. G. Zhang, S. Fischer-Hiibner, and S. Ehlert. Blocking attacks on SIP VoIP proxies
caused by external processing. Springer Telecommunication Systems, 2009.

16. G. Zhang, S. Fischer-Hiibner, L. A. Martucci, and S. Ehlert. Revealing the calling
history of SIP VoIP systems by timing attacks. In Proceedings of the 4" Inter-
national Conference on Awvailability, Reliability and Security (ARES ’09), pages
135-142, Fukuoka, Japan, 2009. IEEE Computer Society.



