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Abstract. Anonymity and privacy protection are very important issues
for Trusted Computing enabled platforms. Protection mechanisms are
required in order to hide activities of the trusted platforms when per-
forming cryptography based transactions over the Internet, which would
otherwise compromise the platform’s privacy and with it the users’s
anonymity. In order to address this problem, the Trusted Computing
Group (TCG) has introduced two concepts addressing the question how
the anonymity of Trusted Platform Modules (TPMs) and their enclosing
platforms can be protected. The most promising of these two concepts is
the Direct Anonymous Attestation (DAA) scheme which eliminates the
requirement of a remote authority but includes complex mathematical
computations. Moreover, DAA requires a comprehensive infrastructure
consisting of various components in order to allow anonymous signatures
to be used in real-world scenarios. In this paper, we discuss the results of
our analysis of an infrastructure for anonymous credential systems which
is focused on the Direct Anonymous Attestation (DAA) scheme as spec-
ified by the TCG. For the analysis, we especially focus on mobile trusted
platforms and their requirements. We discuss our experiences and exper-
imental results when designing and implementing the infrastructure and
give suggestions for improvements and propose concepts and models for
- from our point of view - missing components.

1 Introduction

The anonymity of trusted platforms is a crucial topic in Trusted Computing.
The use of common digital signature schemes requires complex public-key in-
frastructures and allows adversaries to track and identify certain signing plat-
forms. In order to address this problem, the TCG has introduced two schemes
to protect the anonymity of Trusted Platform Modules (TPMs) and with it the
anonymity of their host platforms and users. One of these schemes - the Privacy
CA (PCA) scheme - relies on standard public-key infrastructures and performs



the anonymization step in collaboration with a trusted third party. The other,
from our point of view, more promising scheme is Direct Anonymous Attesta-
tion (DAA) which eliminates the requirement of a remote authority, but requires
complex mathematical computations. Although large effort has been put into re-
searching the efficient generation of anonymous signatures, little attention has
been paid to the supporting infrastructures which are essential components for
deploying anonymous credential technology in the field. When designing and
developing infrastructures for the DAA scheme, one faces several obstacles.

The first problem is that different protocols exist. Different DAA schemes
have been proposed, for example in [3], [10] and [5]. These schemes are either
variations of the original RSA-based DAA protocol or schemes based on different
cryptographic primitives. Second, different clients have to be supported. DAA
client platforms may range from server systems and desktop PCs, down to mobile
phones or smart-cards. Each of these platforms has different processing capabil-
ities and, therefore, different requirements on the used DAA scheme. The third
obstacle is credential revocation. It is easy to see that revoking an anonymous
credential is a complex task. Common approaches either involve revocation au-
thorities or rogue tagging mechanisms. However, rogue-tagging typically implies
drawbacks like high resource requirements that may not be available on mobile
platforms. Suitable infrastructures that take all these issues into account are
missing. In order to address these problems, we have designed and implemented
a DAA infrastructure. Therefore, we introduce a Join protocol specification that
supports the different variations of DAA schemes mentioned before. Moreover,
we introduce an online revocation check mechanism that allows us to move the
rogue tagging check from the client to a trusted third party.

Although research has been done focusing on specific problems of DAA on
mobile platforms ([7], [16]) investigations of the feasibility of DAA with all its
aspects in the sense of a complete infrastructure with revocation etc. are miss-
ing. However, such infrastructures are especially interesting when taking new
applications of DAA in the mobile world, such as anonymous authentication
via NFC [1] or transport layer security (TLS) [8] into account. Therefore, we
provide an investigation of the practicability and requirements of DAA and its
infrastructure for mobile platforms. For our analysis, we have chosen the RSA-
based DAA scheme as specified by the Trusted Computing Group (TCG) [14]
as this is currently the only existing public version of a DAA scheme which is
standardized by a public committee.

1.1 Related Work

Few publications can be found that address the topic of infrastructures for anony-
mous credentials. The most important one is the paper from Camenish et. al.
[4] which deals with the design and the implementation of the idmix credential
system prototype. The publication addresses protocols and credentials used in
the idmix system which is related to DAA.

The remainder of this article is organized as follows. We discuss the overall
architecture of our implementation and give detailed results of the server and



client components where we put special emphasis on the rogue tagging mech-
anism. Moreover, we discuss our proposed protocol with support for different
types of clients and different schemes and we address the topic of credential
revocation by proposing a modification of the online-certificate-status-protocol
(OCSP).

2 Overview

The Direct Anonymous Attestation (DAA) scheme is a mechanism to provide
trusted information to a challenger about a platform’s integrity without compro-
mising the platform’s privacy. This can be achieved by applying an anonymous
group signature on the attestation information provided by the TPM.

The DAA model involves three parties: the issuer or group manager, the
signer (or client) and a verifier. The issuer manages the group and controls which
platform may enter the group and creates a group credential for the entering
platforms. Moreover, the issuer defines and publishes a set of group parameters
which allows verifiers to validate signatures that have been created by group
members.

Briefly summarized, an anonymous attestation scenario works as follows: on
startup, the client platform which consists of a host (i.e. PC platform) and
a TPM, executes a TCG based authenticated-boot and creates measurement
values of the loaded software image, which are then stored in the TPM. The
TPM now contains the current configuration of the platform. When the platform
wants to prove this configuration to a remote platform, it generates a signature
on these hash values with a so-called attestation key. The attestation key is a
special RSA key which is created and used inside the TPM. The TPM ensures
that the private parts of attestation keys acan not leave the TPM and that
attestation keys are only used for signing configuration values. The platform
sends the signed configuration values to the remote verifier which is then able to
validate the local platform’s configuration with the public part of the attestation
key. Moreover, the remote platform can trust that the signature was generated
in a genuine TPM by validating a DAA signature on the public attestation key.

For each attestation process, a new key has to be created and certified. This
is where the DAA signature comes into play. Instead of sending the public-key to
a Privacy CA every time, the TPM can locally certify its attestation key using
an anonymous signature on the key. When using anonymous signatures to certify
attestation key, the TPM first creates a temporary RSA key-pair. The public
part of this temporary RSA key is locally signed with a DAA signature. Hence,
the TPM is able to locally certify its temporary attestation key. This temporary
attestation key is then used to create a signatures on the configuration values.
When validating a signature over the configuration values, the remote verifier
first has to verify the DAA group signature on the temporary attestation key.
Before a TPM can create DAA signatures, it has to generate a private DAA-key
f and execute the Join protocol with the group manager in order to receive a



group-credential for f. Once the TPM has joined a group, it is able to generate
DAA signatures to locally certify public-key held by the TPM.

In order to analyze the efficiency of the scheme on mobile platforms, we de-
veloped an infrastructure that provides issuer, client and verifier components.
Our DAA infrastructure is based on a client-server architecture consisting of
different components which include an issuer, a trusted-third party (TTP) for
long term certification of the issuer’s public-key, a DAA status responder and a
certificate authority (CA) that issues credentials for the TTP, the responder and
the revocation authority. Moreover, the CA issues credentials for all players in
the infrastructure to enable end-point authentication for the transport layer se-
curity (TLS) endpoints. Furthermore, it provides the corresponding revocation
information for all issued certificates. All communication is established using
the TLS protocol in order to provide authenticity of the endpoints and confiden-
tiality and integrity of the transmitted data. Although our design and proposed
protocol aims at supporting different clients, our current implementation focuses
on desktop systems and mobile phones.

2.1 The Issuer

The issuer is responsible for generating the group credentials and for issuing
the credentials to client platforms. Before a client can join the group, it has
to be authenticated, allowing only authorized clients from joining the group.
Moreover, the issuer has to perform a rogue and revocation check of the client’s
TPM. Therefore, the issuer maintains a list with Endorsement Keys (EKs) for
all the clients, which are allowed to join. However, there are some cases when the
issuer would allow arbitrary clients to join. Therefore, we introduce two modes
of operation for the issuer:

1. Public Access mode - Clients can join even if their EK is not on the
issuer’s list. Their key will be put on the list on the fly during execution of
the join protocol in order to be able to monitor who is in the group.

2. Private Access mode - Only clients that have an authorized EK on the
issuer’s list can join and request the corresponding group credentials from
the issuer.

In our approach, we focus on the DAA protocol discussed in [10] which is avail-
able on many different platforms [2], [13], [7].

Issuer Setup Protocol Before the issuer can start to operate, it has to generate
its group credentials which is done during the setup phase where all parameters
required for the issuer are generated. The parameters include values for exclusive
use by the issuer (e.g. issuer’s private key) and public values like the issuer’s
public-key. The public values also include a non interactive proof showing that
the issuer’s parameters have been generated correctly. Parameters are generated
according the following protocol:



1. The issuer chooses a modulus n with length ln and primes p, q, p′, q′ such
that: n = pq, p = 2p′ + 1, q = 2q′ + 1

2. Next, it chooses random integers x0, x1, xz ∈ [1, p′q′] and x ∈ [1, n] which will
be used to generate the proof and computes S = x2 mod n, Z = Sxz mod n,
R0 = Sx0 mod n and R1 = Sx1 mod n

3. The issuer produces a non-interactive proof that S,Z,R0 and R1 are com-
puted correctly. (see [3] for more details)

4. It generates rouge tagging parameters by choosing random primes ρ, Γ and
γ′ ∈R Z∗

Γ , satisfying Γ = rρ+1 such that r is an integer, ρ - r, 2lΓ−1 < Γ <
2lΓ , 2lρ−1 < ρ < 2lρ and γ′(Γ−1)/ρ ̸≡ 1 mod (Γ ).
Finally, the issuer calculates γ = γ′(Γ−1)/ρ mod Γ

5. The public-key of the issuer is the tuple (n, S, Z,R0, R1, γ, Γ, ρ) and the
private-key is the tuple (p′, q′).

In addition to the public-key, the issuer computes a proof that the parameters
of the public-key are generated correctly. This proof can be used to verify that
the Z,R0, R1 ∈ ⟨S⟩ and S ∈ QRn parameters are properly constructed. As the
verification of the public-key proof is time and resource consuming, it may be
delegated by a client to a trusted-third-party which verifies the proof and signs
the group-key, thereby attesting the authenticity and the correctness of the key.

2.2 The Client

In our scenario, the mobile phone is a Java 2 MicroEdition (J2ME) application
which runs on a mobile phone. These mobile platforms can be equipped with
dedicated micro-controllers or software based TPMs as discussed in ([9], [6], [6]).
After computing the secret key f , the client may execute the join protocol with
the issuer in order to obtain its credentials. Once the client has received the
credentials, it is able to create DAA signatures on behalf of the group. Any
verifier can verify these signatures with the issuer’s - respectively the group’s -
public-key. Prior to joining the group, the client has to verify the public-key of
the issuer. It is very important to perform this step, since improperly generated
issuer-parameters can cripple the anonymity protection of the DAA scheme [3].

Our client application delegates the computationally expensive parts of the
issuer proof verification to a trusted third party (TTP). The steps done by
the trusted third party are roughly: The TTP verifies the issuer’s proof that
Z,R0, R1 ∈ ⟨S⟩ and that S is a quadratic residue mod (n). Then the TTP
verifies that rouge tagging is set up correctly by checking whether ρ and Γ are
primes, ρ | (Γ − 1), ρ - (Γ − 1)/ρ and γρ ≡ 1 (mod Γ ). Finally, it checks if all
parameters of the issuer’s public-key have the required lengths.

Following these steps, the client has proof that all the issuer-parameters are
computed correctly which implies that the security properties for the client still
hold [3, page 9].

3 The Join Protocol

During the Join protocol, client and issuer exchange parameters. Some of these
parameters are only temporary parameters which are used to derive other pa-



rameters and others are credentials which are finally issued by the issuer to be
stored as client-key and group credential. Moreover, we have modified the pro-
tocol in order to support different (i.e. future versions and devices that cannot
rely on a trusted host platform like smart-cards) versions of the DAA scheme.
The Join protocol works as follows:

1. The client sends the join command, version and hash of its public EK.
2. The issuer receives the join command and tests if the requested version and

DAA scheme are supported. When operating in Private Access mode (see
section 2.1) the issuer now tests if the client’s EK hash is on the list of
allowed EK hashes. Regardless of the access mode the issuer requests the
client to transmit its public EK.

3. The issuer chooses a random ne of length lΦ and encrypts it with the client’s
public EK. The encrypted ne and the issuer’s basename bsn are sent back
to the client.

4. The client needs to show proof of possession of the public EK
– The client’s TPM decrypts ne, picks a random ν′ of length ln + lΦ and
computes: U = Rf0

0 Rf1
1 Sν′

as well as aU = H(U∥ne)
– The client sends ζI = (HΓ (1∥bsnI))

(Γ−1)/ρ to its TPM.

– The TPM verifies that ζρI ≡ 1 mod Γ holds and computesNI = ζ
(f0+f12

lf )
I

– Finally the client sends U, cnt,NI and aU to the issuer.
5. Upon reception of aU , the issuer computes a′U = H(U∥ne)

– the client has proved that it is the owner of the EK if and only if a′U = aU
holds.

6. Next, the issuer checks for the rogue tagging using NI (see section 4).
7. The issuer generates a random nonce ni of length lh and forwards it to the

client.
8. The client needs to prove knowledge of f0, f1 and ν′ to the issuer.

– The TPM generates random numbers rf0 , rf1 of length lf + lΦ + lH and

rν′ of length ln + 2lΦ + lH . It then computes Ũ = R
rf0
0 R

rf1
1 Srν′ mod n

– Client sends ch = H(n∥R0∥R1∥S∥U∥ Ũ∥ni) to its TPM
– The TPM generates a random nonce nt of length lΦ and computes the final
hash c and values sf0 , sf1 , ν

′ as: c = H(ch∥nt), sf0 = rf0+sf0, sf1 = rf1+sf1
and sν′ = rν′ + s · ν′
– The client forwards c, nt, sf0 , sf1 , ν

′ to the issuer.
9. The issuer verifies the computations done by the client and its TPM.

– sf0 , Sf1 must be of length lf + lΦ + lH + 1. sν′ must have the length
ln + 2lΦ + lH + 1.
– The issuer computes Û = U−cR

sf0
0 R

sf1
1 Ssν′ mod n and the proof if and

only if c = H(H(n∥R0∥R1∥S∥U∥ Û∥ni)∥nt) holds.
10. After verification of the client proofs, the issuer constructs a Camenisch-

Lysyanskaya (CL) credential.
– The issuer first generates a random number ν̂ of length lν and calculates
ν′′ = ν̂ + 2lν−1. Then the issuer selects a random prime e ∈ [2le−1, 2le−1 +
2l

′
e−1] and computes: Φ(n) = (p− 1)(q − 1) and d = e−1 mod Φ(n).

– The issuer now calculates A = ( Z
USv′′ )d mod n and sends it to the client.



11. The client challenges the issuer to prove correct computation of A. In order
to do so, the client sends a nonce nh of length lΦ.

12. The issuer generates a random re ∈ [0, p′q′] and computes Ã = ( Z
USv′′ )re mod n,

c′ = H(n∥Z∥S∥U∥A∥Ã∥nh) and se = re − c′d
– The response (c′, se, A, e, ν′′) is forwarded to the client.

13. The client verifies the issuer’s response and obtains its CL credential.
– To verify the issuer’s response the client computes Â = Ac′( Z

USv′′ )se mod n

and c′′ = H(n∥Z∥S∥U∥A∥Â∥nh). The response is valid if and only if c′′ = c′

holds and if e is prime with e ∈ [2le−1, 2le−1 + 2l
′
e−1].

– Using ν′′ the TPM computes ν = ν′ + ν′′ and then stores (f0, f1, ν
′′) as

private-key.

3.1 Prototype Implementation of the Join Protocol

No defined application protocol for the DAA join step has been defined either
by the authors of [3] or by the TCG. The TCG Trusted Software Stack specifi-
cation includes provisions for basic support of the DAA join and sign commands
of the TPM [14]. The basic DAA support specified in [14] only consists of an
API interface without any kind of provisions for the application level network
protocols required to execute the DAA join sequence between an issuer and a
client platform.

Trusted Channel between Issuer-Service and Clients For our prototype
implementation, we developed a simple application protocol which allows the
client to communicate with a DAA issuer over a TLS secured network connection.
The application protocol discussed in this section describes a working prototype
implementation which is intended to encourage a broader discussion of how a
practical DAA issuer network service could look like.

The application protocol used by our prototype is a simple request response
protocol based upon a series of simple ASN.1 messages exchanged over a trusted
channel. In our prototype system, this trusted channel is established using a TLS
protected TCP/IP network connection. Using TLS server authentication enables
us to authenticate the DAA issuer service against the host willing to join the
DAA group. The host can resort to standard PKI methods for verifying the
identity of the DAA issuer based on its server certificate. On mobile platforms,
the online certificate status protocol (OCSP) can be employed to delegate the
possibly resource and communication intensive certificate validation step to a
trusted third party.

Since different platforms have different strengths and computation powers
and our implementation of the issuer should serve all of them, we support dif-
ferent versions of commands. As you can see from the join process section, the
first message to be sent from the host to the issuer is the command message.
This message includes the command which in that case is ”join” and also the
version of the join protocol.



In order to support multiple platforms and protocol we implement different
forms of ASN.1 messages and differ them based on the used version. The first
version would be e.g. “1.0” and the second one “1.1”. Hence, whenever a client
which can not handle the first option wants to join, it simply specifies which
version it can handle or rather which it understands and then the issuer interacts
with it in an appropriate form. Additionally the versioning scheme allows us
to implement protocol changes in future while maintaining compatibility with
existing clients.

4 Rogue Detection and Revocation

In order to detect and prevent compromised TPMs from joining or from signing
messages, a rogue and revocation detection mechanism must be used. As men-
tioned in [3], if the secret of a TPM is revealed it is tagged as rogue and the
values f0 and f1 are put on a blacklist. In order to check whether a TPM is
rogue or not, the following steps have to be performed:

The host and the issuer separately compute ζI = (HΓ (1∥bsnI))
(Γ−1)/ρ. Then

the client’s TPM computes NI = ζ
(f0+f12

lf )
I and sends NI to the verifier. Now

the verifier checks for all pairs (f0, f1) on its blacklist whether NI = ζ
(f0+f12

lf )
I

holds, if a pair satisfying the equation is found the TPM is considered to be
rogue.

The same procedure is used during the sign and verification process of a
signature, allowing the verifier to check whether the TPM is rogue or not. Al-
ternatively, the ζV (ζI) can be chosen at random. In this case, ζ serves only for
rogue detection. But if we derive it from the bsn, we would have the same ζ for
the same bsn, and it would be possible to link different actions of the platform.

In case the issuer acts as verifier and uses the same bsn, the platform may be
identified and its transactions may be linked, since ζV = ζI and can be linked
to the identity, which should not be the case. The authors of [12] address this
problem and propose a simple solution by changing the calculation of ζV to:

ζV = (HΓ (0∥bsnV ))
(Γ−1)/ρ

In this case, the ζV ̸= ζI so it is not possible to link the identity of the plat-
form to the actions. The biggest problem here is how to gather information in
order to assemble a blacklist. In [3][Page 14] it is mentioned that when a cer-
tificate (A, e, ν) and the values f0 and f1 are found, they are tested whether

AeRf0
0 Rf1

1 Sν ≡ Z (mod n) holds. If so, they are put on the blacklist. However,
there is no mechanism to get the parameters f0 and f1. If somebody is able to
extract them out of a TPM and uses them to impersonate another party there
is no way to distinguish between the original platform and the impersonating
platform. It is unlikely that the impersonator will publish the extracted secrets.
Moreover, there is no way that a platform can check if its secrets have been
extracted. Even if the owner of the platform somehow gets the information that
the platform has been compromised, the secrets can not be extracted from the



TPM in order to perform a self-revocation. There is no command for that action
because the secret is supposed to never leave the TPM even if it is requested by
the user [15] (for example, if the user wants to revoke the DAA credential if he
notices that the TPM keys are compromised). The only way a user can delete its
credentials is by performing a take-ownership where new secrets (f0, f1) will be
generated. However, if he did not extract and publish the old secrets, someone
might use these secrets for signing on behalf of the group and there is no way
to detect it since the pair (f0, f1) is not in the blacklist. Hence, the extracted
credentials cannot be revoked and remain valid.

4.1 Online Credential Revocation Check

In order to shift the computational effort from the mobile client to a more re-
sourceful platform we introduce a modification of the Online Certificate Status
Protocol (OCSP) [11]. OCSP allows to retrieve the status of a certificate from
an online source, the OCSP responder. To achieve this, the OCSP request struc-
ture contains the CertID field consisting of hash algorithm identifier, hash of
the issuer’s name and the issuer’s key, and the serial number of the requested
certificate, we want to obtain the status of. A status may be good, revoked or
unknown. A status may be good, revoked or unknown. We slightly modified the
RFC2560 CertID structure to include the basename, the pseudonym ζ and a
reference the issuer’s public-key, which is used to obtain the group parameters.
Figrue 1 illustrates the information flow in our modified variant of the OCSP
protocol.

Fig. 1: Online Credential Status Reporting

Using the information provided in the modified CertID structure the respon-
ders checks if its black-list contains ζ and returns an appropriate OCSP status
response. The authenticity and inbtegrity of the OCSP response can be verified
using standard public-key signatures as discussed in RFC2560 [11].

5 Experimental Results

In this section, we discuss the results and setup of our infrastructure imple-
mentation. We tested the performance of the server (issuer) on a Sony Vaio



VGN-NR11Z/S notebook and the client on a Nokia 5800 Express Music cell
phone, a Frescale i.MX51 development board and an MSI U135 netbook. Table
1 shows the main characteristics of the testing devices.

Device Role CPU Clock Freq. RAM OS

Nokia 5800 Express Music H ARM11 434 MHz 128 MB Symbian 60v5

Sony Vaio VGN-NR11Z/S I Intel Core 2 Duo 2.0 GHz 2 GB Windows XP

i.MX51 EVK H ARM Cortex-A8 800 MHz 512 MB Linux (Debian)

MSI U135 netbook H Intel Atom 1.2 GHz 1 GB Linux (SuSE)

Table 1: Testing devices (Roles: H = Host, I = Issuer)

Overall performance evaluation of the DAA setup was done with the Sony
Vaio notebook configured as server (issuer) and the Nokia mobile phone config-
ured as client (host). The Freescale development board an the MSI netbook did
not take part in the overall client/server performance evaluation. Instead the
latter two devices were used to evaluate performance impact of using different
Java virtual machine configurations as discussed later in section 5.2.

5.1 Overall client/server system performance

In the client/server performance test setup, both test devices were placed on the
same local area network (LAN). Both the Nokia 5800 Express cell phone and
the Sony Vaio notebook were connected to the test LAN using a wireless LAN
access point. For this test. the issuer component was executed on a SUN Java
1.6 virtual machine configured with its installation default settings for Windows
XP.

Modulus length Join Time

1024 bit 10.85 s

1536 bit 19.56 s

2048 bit 32.52 s

(a) Join times with empty
blacklist

Rouge TPMs Time

100 33.57 s

1000 46.67 s

2000 59.76 s

5000 103.35 s

10000 187.20 s

(b) Join times with dif-
ferent black-list sizes

Rouge TPMs Time

200 79.95 s

500 179.47 s

1000 352.11 s

2000 699.06 s

10000 187.20 s

(c) Rogue detection on a
mobile phone

Fig. 2: Join and rouge detection times

Join Performance Results After the initial client and the server setup has
been performed, the client can do the DAA join step. The performance results for
joining a DAA group with empty blacklist shown below in table 2a include the
network communication overhead. Since communication is done over network the
results may vary in different connections with different strengths. These results
were gained when performing joining with an empty blacklist. Hence, there is
no rogue TPM on the list.



Rogue Detection Performance As discussed earlier the issuer has to compute

a rouge tagging value NI = ζ
(f0+f12

lf )
I for each pair (f0, f1) on its blacklist. A

single NI computation is very expensive, but overall cost increases linearly with
the size of the blacklist. The more TPMs are on the list, the longer it takes to
prove for any TPM whether it is rogue or not and the longer it takes to finish the
join protocol. We measured the join process performance considering the effects
of the rogue detection process. The tests were performed in a way that after each
Join a new pair (f0, f1) is inserted into the blacklist for the next Join. In table
2b we show the time required for a join with rogue TPMs in the blacklist. The
length of modulus for these measurements was 2048. As visible in figure 3a, there
is a nearly linear dependency between the number of TPMs on the rouge list and
the total time required for the joining process. Given those results the amount
of time required for each additional rouge TPM corresponds to approximately
14.7 milliseconds or equivalently to 1.47 seconds per 100 rouge TPMs.
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(b) Verification with rogue detection

Fig. 3: Join and verify performance

The biggest problem is that the rogue detection has to be performed when
verifying signatures. Since a client should be able to verify signatures, it also
should be able to check for rogue TPMs. We measured the execution time of the
rogue detection depending on the number of TPMs in the blacklist on the Nokia
mobile phone. The corresponding results can be found in table 2c and figure 3b.

Assuming medium to large blacklist sizes it clearly becomes evident that
rouge detection is an expensive operation which might not be feasible on battery-
powered devices like mobile phones. Moreover the level of user acceptance for
signature verification processes in the order of minutes is at least questionable.

Proof Verification As previously discussed, a proof that the parameters of the
issuer’s public-key are generated correctly, should be generated by the issuer. In
order to prove that Z,R0, R1 ∈ ⟨S⟩, a total of 3 · 160 = 420 relatively expensive
calculations (verifications of bit-commitments) are required. Each of these calcu-
lations includes a modular exponentiation with an exponent ∈ [1, p′q′] and also
a modular multplication. The proof verification step requires significant compu-



tational resources and takes significant time (≈ 99.44 s) even on the Sony Vaio
platform used as issuer in our other experiments. On the Nokia mobile phone
platform the verification time is far beyond any acceptability bounds (≈ 2399.24
s). The computing power of Java applications on mobile devices is clearly insuf-
ficient to verify this kind of proof. A viable solution for this case would be to
delegate the verification step to a trusted third party.

5.2 Performance impact of different Java virtual machines

In the previous section we considered performance characteristics of a model
realization of a DAA infrastructure based on a mobile phone acting as host and
a notebook playing the part of the issuer. In this section, we briefly evaluate the
impact of the Java virtual machine on the performance of the client side join
process. In contrast to section 5.1 we ignore any server side computations and
network overhead. Measurements shown in this section were performed using a
special version of the client application which just instruments the client-side
computations.

Platform Java Virtual Machine Average join time (client) Deviation

Freescale i.MX51 OpenJDK/Zero 8.591 s 0.019 s

Freescale i.MX51 OpenJDK/Shark (mixed) 6.087 s 0.510 s

Freescale i.MX51 OpenJDK/Shark (interpreted) 142.742 s 0.274 s

Intel Atom N450 OpenJDK/Client (interpreted) 40.312 s 0.209 s

Intel Atom N450 OpenJDK/Client (mixed) 3.512 s 0.025 s

Table 2: Average timing values for client-side computations of the join process

We tested four combinations of Java virtual machines and just-in-time com-
piler settings which are intended to model typical JVMs found on mobile plat-
forms. In order to produce comparable results for the tested platforms we used
OpenJDK 1.6.0 as Java runtime environment. All cryptography related oper-
ations, including big number support was implemented with IAIK’s JCE-ME1

library. We tested the mixed-mode and interpreted Java VM configurations given
in table 2. Figure 4 plots client-side computation times for repeated execution
of the join process from within the same virtual machine instance. Table 2 gives
average values for computation times. We decided to sample execution times
for one particular VM configuration inside a loop from within a single VM in-
vocation. This decision allows us to evaluate initial delays due to class loading
and just-in-compilation. Three of the four VM configurations depicted in 4 ex-
hibit relatively constant timing behavior with some minor jitter caused by other
operating system processes interfering with our measurements. Only the Open-
JDK “Shark” virtual machine exhibits great variations in join process execution
times, caused by the relatively expensive just-in-time compilation steps done
during the first few join process executions. As evident from figure 4 there is a
huge performance gap almost in the range of one order of magnitude between

1 See http://jce.iaik.tugraz.at/sic/Products/Mobile-Security/JCE-ME

http://jce.iaik.tugraz.at/sic/Products/Mobile-Security/JCE-ME
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Fig. 4: Join computation performance for different Java VM configurations

the JIT (mixed mode) and the non-JIT (interpreted only) configurations on the
Intel Atom platform. Interestingly the performance gap between the non-JIT
and the JIT virtual machines on the ARM platform is by far smaller.

6 Conclusion

Based on the overall performance results of our implementation shown in section
5.1 we conclude that the most time-consuming part of the DAA protocol is the
rogue detection. Even if rogue detection can be done relatively fast on desktop
PCs and servers it still negatively affects the verification process which might
be done on battery-powered mobile devices. Recalling from the test of the rogue
TPMs, the time required by rouge checking process increases lineraly with the
size of the black-list. For larger black-lists the time spent for rouge detection
easily exceeds the actual signature verification time by orders of magnitude.
The worst part is, that rouge detection has a big influence on mobile phones,
even for small blacklists with sizes in the order of 30 rouge TPMs. Therefore,
we conclude that delegating the validation of the rogue status to a third party
is an unavoidable requirement.

Another open problem with rogue detection are the mechanisms and pro-
tocols used to report corrupted TPMs. The current implementation of DAA in
TPM 1.2 implicitly anticipates compromise of the DAA private key as only re-
vocation reason. Currently there is no method that enables a user to voluntarily
report corruption of his platform without knowing the f value guarded by the
TPM. Moreover the proof verification process required to check the validity of
an issuer’s public key requires impractical amount of storage and computational
resources on mobile phones. This problem can be solved by off-loading the proof
verification to a trusted third party. Finally the results from section 5.2 clearly
show the impact of the choice of Java virtual machine on the performance of our
purely Java-based prototype implementation.
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