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Abstract. In a real-world network, different hosts involved in covert
channel communication run different covert channel software as well as
different versions of such software, i.e. these systems use different network
protocols for a covert channel. A program that implements a network
covert channel for mobile usage thus must be capable of utilizing multi-
ple network protocols to deal with a number of different covert networks
and hosts. We present calculation methods for utilizable header areas in
network protocols, calculations for channel optimization, an algorithm to
minimize a covert channel’s overhead traffic, as well as implementation-
related solutions for such a mobile environment. By minimizing the chan-
nel’s overhead depending on the set of supported protocols between mo-
bile hosts, we also minimize the attention raised through the channel’s
traffic. We also show how existing covert network channel infrastructure
can be modified without replacing all existing infrastructure elements by
proposing the handling of backward-compatible software versions.

Keywords: network covert channel, covert channel protocols, covert
proxy, mobile security

1 Introduction

Covert channels are hidden communication channels which are not intended for
information transfer at all [5]. The intention of a covert channel is to hide the
existence of an information flow that possibly violates a system’s security policy
[6, 7]. Covert channels contribute to the free expression of opinion since they
are useful to bypass censorship [28]. Network covert storage channels are covert
channels that transfer information through a network by altering an attribute
within the channel, while network timing channels communicate via modifica-
tions of packet timings and packet ordering [14]. The remainder of this paper
focuses on covert storage channels.

For optimal auto-configuration of a program implementing a covert storage
channel, it is necessary to provide means to minimize the raised attention and to
select network protocols depending on the situation. Such an auto-configuration
of a program is a requirement for mobile implementations which need to be able
to add new storage channel types on demand (e.g. in form of an extension). If



such a program is able to deal with different network protocols, it can commu-
nicate with a number of different covert channel systems, i.e. different covert
systems utilizing different network protocols. Fig. 1 depicts the scenario of a
mobile covert channel user Bob communicating with Alice by utilizing different
covert channels from different locations. Our proposed extendable implementa-
tion is able to provide such scenarios.

Fig. 1. Mobile communication from Bob to Alice using a single covert channel software
able to deal with multiple networks with a number of covert channel systems utilizing
different protocols.

In a large number of network protocols such as in TCP, IPv4, IPv6, or ICMP,
header areas usable for covert channels are known [14–17]. At the same time,
methods to prevent, limit and detect covert channels have been developed as
well, such as the shared resource matrix methodology, the pump, covert flow
trees, fuzzy timings and others [18–26].

Implementations capable of covert channel protocol switching or proxy chain-
ing exist, e.g. LOKI2 [4], phcct [11, 13], and cctt [1]. Yet, they lack auto-configura-
tion and dynamic extensibility. The idea of interoperability between covert chan-
nel hosts using different network protocols was discussed in [9], where a two-phase
protocol was presented which contained a so called “network environment learn-
ing phase” (NEL, where the protocols used between two covert hosts where
determined), as well as a “communication phase”.

This paper describes a solution for the missing aspects of such covert network
channels and improves on the related work: We discuss the handling of micro pro-
tocol implementations in mobile covert channels. Furthermore, we motivate their
forensic usefulness in the context of multiprotocol channels, and we also focus on
optimization of case-dependent covert channels (e.g. optimized performance and
optimized packet sizes). This optimization is necessary as the available covert
space per packet and the packet or header sizes may vary considerably between
protocols. Our approach use a linear optimization. Additionally, we present a



simple but effective forwarding algorithm for covert proxies, able to reduce a
channel’s raised attention in such mobile environments.

The remainder of this paper is organized as follows. Section 2 serves as an
introduction to the topic of utilizable header areas in network protocols while
section 3 extends the topic of the previous section for multiprotocol channels
with different probabilities, and additionally motivates multiprotocol channels
from a forensic’s point of view. Section 4 deepens the knowledge on utilizable
areas in network packets, and section 5 focusses on the attribute-dependent
optimization of protocol usage. Section 6 discuses implementation related topics
and deals with the question, how a smart sharing of utilizable space for both,
covert channel internal protocols as well as payload, is feasible. The calculations
of sections 2 and 3 are extended for the context of covert channel proxy chains in
section 7, where a forwarding algorithm for covert data is presented. The paper
closes with a conclusion in section 8.

2 Calculating Basic Space Requirements

It is well-known that many hiding options exist in popular network protocols.
A classification of these network protocols from a covert channel user’s point of
view enables the user to choose protocols according to his requirements. E.g. one
classification attribute would be the detectability of a specific hiding method in
a given protocol, another classification attribute is the amount of space to be
utilized for covert data in a specific protocol. In case a covert channel user needs
to transfer a large amount of data, it is required to place as much data as possible
within a single network packet, since too many unexpected or abnormal network
packets can alert a monitoring authority.

Fig. 2. Sum of utilizable areas of a network protocol’s header.

To calculate the available space spkt within a network packet’s header, it is
required to sum up the sizes of all utilizable areas of a header, which is illustrated



in Fig. 2. Given an unidirectional covert network channel and assuming that the
amount of covert data soverall required to be sent is known a priori, the number
of packets N needed to transfer all data is

N =

⌈
soverall
spkt

⌉
(1)

since spkt ·N ≥ soverall. If the channel is able to let a receiver acknowledge a
network packet with another network packet containing only an ACK flag and
the ID of the acknowledged packet, the number of transmitted packets is 2N .
Here, we do not count re-transmitted packets. We further assume that the ACK
flag and the received packet’s ID fit into a single acknowledgement packet and
that each such packet acknowledges only one received packet.

Fig. 3. spkt value for a multi-layer covert channel.

When a multi-layered network environment is used (as in case of the TCP/IP
model), more than one layer can be used to place hidden data (as shown in
Fig. 3). In such cases, the value of spkt is the sum of all utilizable header areas in
every header. If a data transport over routers is mandatory, the utilizable areas
of non-routeable network headers (e.g. Ethernet frames) cannot be used for the
covert channel since they are replaced on every hop of the routing path, thus
spkt may not contain these areas.

When a plaintext protocol is utilized, it is usually possible to dynamically
extend a protocol’s header by a number of attributes (e.g. by adding different
HTTP attributes as “User-Agent”). Also, it is possible to dynamically extend
the size of a single attribute to a limited size (e.g. the HTTP URL parameter can
usually grow up to 1024 bytes length1). Such dynamic values can be considered
in our calculation when they are used with a static length or if the average length
is used.

1 According to [27], HTTP servers should be able to handle an unlimited number of
bytes within the URL parameter, but in practice many servers’ URLs, specially in
embedded systems as CISCO VoIP telephones, are limited to a length of 1024 bytes
or less.



3 Multiprotocol Channels

Multiprotocol network covert channels were introduced by a proof of concept tool
called “LOKI2”[4] and enhanced through transparent protocol switching in [11].
Such channels utilize a number of protocols to increase the effort to detect and
analyze the traffic they carry. Multiprotocol channels operate as follows: Before
a new covert network packet is sent, the sender chooses one of the available
protocol hiding methods (e.g. in HTTP [2] or in DNS [3]), embeds the covert
data into the new network packet, and sends it.

In case more than one network protocol is used by a covert channel, the
amount of available space per packet spkt can vary. Assume a set of network
protocols P = {P1, P2, . . . , Pn} used by the covert channel with the available
spaces s1, s2, ..., sn, where si = spkt(Pi), the average amount of available space
s̄pkt is

spkt :=

n∑
i=1

pisi (2)

if protocol Pi is chosen with probability pi.

In the simplest case, a network protocol header, e.g. the DNS header, contains
a combined sum of all spaces, spkt, as mentioned above. Due to defined rules (e.g.
protocol standards) for such protocols, it is apparent that it is not always possible
to combine all utilizable parts of a header at the same time, e.g. a HTTP POST
request is not possible together with a HTTP OPTIONS request. To achieve
a correct calculation of spkt, all non-combinable header parts must be treated
as different protocols. If we assume that a network covert channel uses HTTP
with the three request types GET, POST, and OPTIONS with different utiliz-
able areas, the set of network protocols will be P = {HTTPGET , HTTPPOST ,
HTTPOPTIONS}. In case ICMP type 0 and 8 (echo response and echo request)
would be used as well, both ICMP types can be represented by one element
picmp−echo in P since the utilizable header areas are identical [8]. If both proto-
col types are represented as one element, the probability of occurrence of both
protocol types picmp−echo must be the sum of picmp−8 and picmp−0.

The utilizable area of a network packet’s header is not always used completely
by a covert channel, since attributes such as the raised attention per bit of a
packet can be high for some bits. For example, if only the 3 least significant bits of
the IPv4 TTL value are used for a covert channel, their raised attention is much
lower compared to changing the 3 least significant bits of the IPv4 source address,
since it is usual for network packets to take different routes, but it is (at least
for internet servers outside of a LAN) not usual to have connections to the same
host from a small range of 23 different IP addresses. Thus, protocol utilizations
with different attributes should be separated in calculations by representing
distinguishable elements of the set P .

From a forensic point of view, such multiprotocol covert channels result in a
positive side-effect: In case one of the protocols used could be detected as used
for a covert channel and was successfully analyzed, i.e. an attacker was able to



understand the hidden content, the non-analyzed data packets of a communi-
cation are still hidden since they are transferred within other protocols using
different hiding techniques, as described in [12].

Additionally, it is feasible to send highliy sensitive data in fragments to make
a forensic analysis harder: As shown in [29], TCP/IP normalizers face a prob-
lem called inconsistent TCP retransmissions, i.e. by sending packets that have
identical TCP sequence numbers but different content and different TTL values,
a normalizer cannot easily determine a connection’s real content. By fragment-
ing covert channel payload using a multiprotocol channel, a forensic analysis
of covert channel traffic faces a similar problem: For a forensic analysis, it is
hard to determine the real covert channel’s content, as well as the relevance
of the content. This can be achieved by sending a key information in at least
two pieces and different protocols: (Part1, P1) and (Part2, P2). For example: A
covert channel user sends “secret” using (“se”, P1), (“cr”, P2), (“et”, P1). If an
attacker is capable of detecting and analyzing covert traffic of protocol P1, the
attacker will only see the traffic “seet” instead of “secret”. Thus, hiding of crit-
ical keywords can be improved and a forensic analysis can result in presumably
useless data.

4 Utilizable Areas in Well-known Protocols

This section exemplifies spkt values for known covert channel utilizations of net-
work protocols. Each implementation of a covert channel can cover different
areas of a header, thus spkt values are implementation-dependent. Therefore, it
is necessary for the covert communication between two hosts to modify exactly
the same bits of a header. To achieve this goal, covert channel software versions
should be backward-compatible, i.e. when a transaction begins, one or two ver-
sion bits should be exchanged and the lowest available covert channel software
version available on both hosts may be used to prevent errors.

Taking the ICMPv4 address mask request as an example to determine spkt,
one can find the information to utilize the 32 bit address mask in [14], i.e.
spkt(ICMPAddrMaskReq) = 32 bits. The same source shows a number of IPv4
header hiding options; in case one chooses the 3 lowest bits of the TTL as well as
the “Identification” value (16 bits) for the implementation of a covert channel,
then spkt is 19 bits, but it can also have lower and higher values if a different
number of header bits is used.

If the ICMP address mask request as well as the IP header are utilized
together (as shown in Fig. 3) and assuming that they are used as described
before, then spkt will be the sum of both spkt values: spkt = 19 + 32 = 51 bits.

Different bits of a header correspond to different detection probabilities, e.g.
the modification of the least significant bit (LSB) of the IPv4 TTL value is harder
to detect than a modification of the most significant bit (MSB) of the TTL. We
do not believe that it is possible to define concrete values for the detectability of
each bit, since such values always depend on the given monitoring situation of
a network. E.g. the probability of detecting a covert channel that uses the ISN



bits varies depending on whether the TCP ISN flag is checked for covert data
for all connections in a network or not [26].

To quantify such detectability values we propose to link a protocol Pi to an
element of a small classification set (e.g. low, average and high detectability, C =
{Low,Medium,High}). This may require an additional separation of elements
of the set P (Sect. 3 already separated incompatible protocol header utilizations
like HTTPOPTIONS and HTTPGET ).

We assume as an example that a HTTP covert channel is used to tunnel
data through a requested URL as well as through the “Accept-Language” value
via the GET method (cf. [27]). Requested URLs are usually written to a logfile
and displayed in monitoring software like “Webalizer”2. The value of the field
Accept-Language is unlikely to be monitored. Most small websites do not even
handle the language settings sent by a client. Thus, the detection of covert data
within the URL is usually more likely than the detection within the Accept-
Language field. Therefore, a developer should define one element in P containing
only the flag with the low (or average) detectability (HTTPGETAccLang

) as well
as one element that contains the flag with the higher detectability as well, i.e.
P = {HTTPGETAccLang

, HTTPGETAll−Fields
}, which enables a covert channel to

be configured as desired (more space per packet vs. keeping a lower profile).

Additionally, it must be kept in mind that a protocol’s classification should
also depend on the protocol’s probability of occurence, since exotic protocols can
result in raising higher attention.

5 Optimizing Channels on Demand

A covert channel might be used in different situations and with different inten-
tions, e.g.:

– When an automatic password cracking program needs to transfer short pass-
word information out of a network (e.g. one password per hour), the through-
put of the covert channel is not important, while it is highly important to
keep a low profile.

– When a blogger wants to upload a set of pictures of harmed protesters as
soon as possible, a good covert channel throughput is required since the
upload is to be done fast because of the relevance of that data in spite of its
large size. Still a certain level of coverage from detection is necessary.

Being able to develop a covert channel program capable to deal with such dy-
namic situations, it is required to make its behavior dependent on the attributes
of the protocols used. First, we introduce a value qi that indicates how many
bits are transferred to send a single covert bit using network protocol Pi with
an (average) size sizeof(Pi) of that protocol’s complete header:

2 Webalizer is an open source logfile monitoring software available on
http://www.mrunix.net/webalizer/.



qi :=
sizeof(Pi)

spkt(Pi)
(3)

Depending on the given situation, we use linear optimization to calculate
optimal probabilities p1, ..., pn for all protocols P1, ..., Pn utilized between two
systems. The set of constraints is that

∑
i pi = 1 and that 0 < m ≤ pi ≤ 1 for

all protocols Pi, where m is a minimum threshold to ensure that each protocol
is used at all, even if it is not really desirable in the current situation. A possible
value for m is c/n, where c < 1 is a suitable constant. For example, with n = 20
and c = 0.2, each protocol will be chosen with at least 1% probability. Using
such a threshold complicates forensic reverse engineering because it prevents
concentration on a small number of protocols.

If a high throughput of covert data for a fixed number of packets is required,
then the target function to be maximized can be chosen as

f1 =

n∑
i=1

pi · si .

If the goal is a small amount of header information sent for a given number of
covert data bits, then the target function to be minimized is

f2 =

n∑
i=1

pi · qi .

The latter function can also be maximized by subtracting it from a large fixed
value such as

∑
i qi.

In a similar manner, the number of packets used can be minimized. By using
a weighted sum of those target functions, one can optimize for any desired com-
promise. Furthermore, other optimization criteria may be possible which can be
used to construct further target functions.

The choice of the target function, i.e. the intended situation, can be com-
municated between sender and receiver in a manner similar to the choice of the
software version.

6 Implementations Based on Micro Protocols

Micro protocols are small protocols placed within the hidden data of a covert
channel and used to control the channel [12].

The usage of micro protocols is mandatory for the implementation of the
features described in earlier sections.3 Within a micro protocol’s data, infor-
mation about supported protocols of a client, as well as covert channel version

3 While the set of deployed protocols between two hosts is static, a micro protocol is
not mandatory. To define a sequence of protocols to use, identical procedures and
pseudo-random number generators with identical seeds for random choices can be
used on both hosts. Other approaches leading to equal protocol sequences on both
hosts are possible as well.



information can be exchanged between covert channel hops. E.g., one can de-
fine two bits representing a version information as described in Sect. 4. Other
bits can determine supported elements of P . As mentioned in Sect. 1, Yarochkin
et. al. presented a simple technique for the determination of available protocols
between covert channel hosts in [9], but did not focus on optimization, forward-
ing, protocol classification or covert channel versioning, as we do. An important
point mentioned by Yarochkin et. al. is of course the need to automatically filter
administrativly blocked protocols.

Extensibility of existing covert channel software requires protocol information
to be version dependent, i.e., in a new software version, a new protocol Pi could
be supported which requires a new representation of Pi within the microprotocol.
As mentioned in Sect. 1, the dynamic extendability of a software requires on-
demand support for new protocols. Given the explained techniques as well as a
modular covert channel software design, all these features can be implemented.
Such modular designs are well known from the Apache4 webserver module API
as well as from Linux5 kernel modules.

In case a micro protocol is used, it should be unified for all utilized network
protocols to increase the stability of a covert channel software implementation.
To find the maximum size such a micro protocol can use, it is required to find the
minimal available size over all protocols used, i.e. smin = mini spkt(Pi). In case a
constant or minimum required payload size is used, smin must also contain this
payload, which decreases the header size: spayload + sheader = smin, as presented
in the left half of Fig. 4. If the payload is not of a constant size, e.g. if it requires
only a defined minimum of space, the remaining space si,remain = si− smin can
be used for additional payload.

Fig. 4. Minimum space required for a minimum payload size and a constant micro
protocol header size visualized for a set of two network protocols.

4 www.apache.org
5 www.kernel.org



7 Network Covert Channels with Proxy Chains

Covert communication paths based on covert proxy servers are a means to im-
plement anti-traceability into a network covert channel (see Fig. 5). The value of
spkt becomes useful in this context too, if multiple protocols as well as multiple
covert proxy hosts are used.

Fig. 5. A sample proxy network containing links with different spkt values (Si =
spkt(Pi), where i = 1, . . . , x), S=sender, R=receiver, Q1 ... Qn represent covert proxies.

Each host Qi of a given covert proxy chain from the sender (S) to the receiver
(R) chooses one network protocol to transfer data to the next host Qi+1 on the
proxy chain. The intersection of the protocol sets on Qi and the next hop Qi+1

can be used for the communication between both hosts as described in [9].
In many cases, it is not necessary for a network covert channel to be fast,

as only small amounts of data such as passwords may be transferred. On the
other hand, it is important to keep the raised attention of a channel as small
as possible. To achieve this goal, the number of network packets per transaction
must be limited (e.g. fragmentation must be prevented). A solution for this
problem is possible as follows:

Let SPi be the intersection of the set P (Qi) of protocols available on host
Qi and the set P (Qi+1) of protocols available on host Qi+1, i.e. SPi = P (Qi) ∩
P (Qi+1). The set Si represents the sizes spkt for all elements Pj of SPi. Now
let smax(i) be the maximum over all elements of Si, i.e. smax(i) = maxSi. To
prevent fragmentation and to send as few packets as possible, host Qi sends
network packets with the maximum data size smax(i) to host Qi+1. When Qi+1

receives the network packet from Qi that needs to get forwarded to Qi+2, it acts
as follows:

– If smax(i) = smax(i + 1), then forward the data.
– If the transaction ended (i.e. if there is no remaining data), then forward

the data, too. Whether a transaction ends (or begins) can be determined by
covert channel-internal protocols as presented in [10].

– Otherwise: Send as many complete data packets of size smax(i + 1) as pos-
sible. To avoid bursts in case that smax(i + 1) � smax(i), one may use a
leaky bucket approach to regulate packet frequency. If the data left to send
is smaller than smax(i + 1), then wait for a time t for further data to arrive
from Qi and then send as many complete data packets as possible. Repeat
this step as long as no data is left or no new data arrived for time t.

Also here, a linear optimization might be useful that tries to balance the
number of packets (by preferring protocols in Si with large spkt) and detectability



(by using a multitude of protocols). Also, one might desire in some scenarios to
combine this approach with the one from Sect. 5.

If more than one covert channel software version is in use, the newest software
version between two hosts must be defined before the intersecting set of all
protocols is calculated, since each local set P depends on the software version,
as described in section 4. Such functionality can be implemented in a micro
protocol.

8 Conclusions

We presented techniques for the dynamic implementation of network covert stor-
age channels, i.e. it is possible to build a program that is able to dynamically
load extension information for the utilization of new network protocol headers.
Such dynamic covert channel implementations enable their users to act in mobile
covert channel networks.

Additionally, our concept enables implementers to continue the development
of existing covert channel network infrastructure without dealing with the need
to replace all distributed existing software versions. This paper also introduced
calculation methods as well as an forwarding algorithm which are able to deal
with different protocol types, micro protocols, and the utilization of covert proxy
systems, while minimizing the channel’s raised attention to keep a low profile.

A drawback of the described techniques is that they – in comparison to ex-
isting implementations – result in more complex algorithms, since additional
control capabilities must be implemented using micro protocols. A proof of con-
cept implementation is under development but, since it is part of a larger project,
unfinished at the moment. Yet previous work, such as [9, 11, 12] indicates that
protocol switching using a (micro) protocol is feasible.

Future work will include the design of a description structure for the dynamic
extension of covert channel programs.
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