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Abstract. Authentication of printed documents using high resolution
2D codes relies on the fact that the printing process is considered as a
Physical Unclonable Function used to guaranty the security of the au-
thentication system. The 2D code is corrupted by the printing process in
a non-invertible way by inducing decoding errors, and the gap between
the bit error rate generated after the �rst and second printing processes
enables to perform the authentication of the document. In this context,
the adversary's goal is to minimize the amount of decoding errors ob-
tained from the printed code in order to generate a forgery which can be
considered as original. The goal of this paper is to maximize the decod-
ing performance of the adversary by inferring the original code observing
the printed one. After presenting the di�erent kinds of features that can
be derided from the 2D code (the scanner outputs, statistical moments,
features derived from Principal Component Analysis and Partial Least
Squares), we present the di�erent classi�ers that have been evaluated
and show that the bit error rate decreases from 32% using the baseline
decoding to 22% using appropriated features and classi�ers.

1 Introduction

Fighting forgery and falsi�cation constitutes a major challenge in various in-
dustrial sectors (Medicines, Documents, consumer goods, etc). Those issues are
becoming increasingly critical with the fast development of global exchanges
and internet. The development of digital devices such as digital camera, printer,
scanner and copying-machines, also facilitates attacks from forgers. According
to the Organization for Economic Co-operation and Development (OECD), in-
ternational trade in counterfeit and pirated goods reached more than US $250
billion in 2009 [14]. According to the World Health Organization in 2005, more
than 10 per cent of medicines on the global market are forgeries and this �gure
rises to nearly 25 per cent in developing countries [13]. To �ght against fraud, the
companies use to adopt authentication methods which consist in printing secret
signatures (holograms, security inks. . . ) on products to distinguish them from
falsi�ed ones. However, the solutions based on those signatures, are generally
complex and therefore create heavy costs and constraints..
The authentication system that is studied in this paper has been �rstly proposed



in [12,11]; it proposes to use copy detection patterns represented as 2D codes
in order to detect forged documents. The authentication mechanism is based
on the property that the printing process can be considered as a Provably Un-
clonable Function because of the non-invertibility of the whole printing process.
This non-invertibility is due to di�erent factors such as the high resolution of
the printer, the random organization of the �bers on the paper or the stochastic
formation of the ink drop (or the toner powder) of printers.
Similar techniques exist for authenticating items using non-invertible 3D pro�les
created by later marks [15] or material singularities [6]. But the originality of
the proposed system relies in the fact that the side-information (the 2D code)
carries the output of the PUF (the printing process) and that no other helper
information than the 2D code is needed to perform authentication. Using this
system, an adversary that wants to copy the 2D code will have to perform a new
print and scan process; and after decoding the forged 2D code will present more
errors than the original one. Authentication will be performed by measuring the
average number of decoding errors, the original codes creating an amount of
errors signi�cantly lower than copied ones.

1.1 De�nition of the authentication system

This authentication process can be formally de�ned as follow. Let us consider
the game (�gure 1) which involves one main communication channel - the print-
and-scan process- and three players: the legal sender Alice, the legal receiver Bob
and the adversary Eve. The �gure 3 summarizes the di�erent communication
channels between the three players.
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Fig. 1. The di�erent communication channels.

Alice sends, for instance a text document to Bob. Bob wants to verify the
authenticity of this document using for example a binary graphical code (XAlice)



printed in grayscale (Y Alice) on the document. The size of the code is arbitrary
(100 × 100 for instance). The �gure 1 shows an example of random graphical
code that Alice can use. In this setting, this code is considered to be a secret
key between Bob and Alice.

(a) (b)

Fig. 2. (a) Graphical code before printing (X). (b) Graphical code after printing (Y )
(The segments around the corners are used for synchronization purposes).

Once the code is printed, we obtain a grayscale code Y Alice (see �gure 2). As
for the adversary Eve, she wants to produce a forged document with a graphical
code YEve. She wants also that the legal receiver accepts her code as if it comes
from Alice. Therefore, her goal is to make YEve statistically as close as possible
to Y Alice. So then, the receiver Bob wants to build an authentication system T
which discriminates between a document coming either from Alice or from Eve.

We can consider that Alice is a passive player and the security game is
between Eve and Bob. We regroup the printing process and the scanner into the
main channel. The scanner introduces additional distortions (blur), but it allows
fast and signi�cant acquisition. We use a classical methodology for security in
order to try to �nd the �worst case attack� performed by Eve and to evaluate
the authentication system associated to this attack.

The goal of Bob is to build a authentication system T whose response will
enable to decide between hypothesis H0 (the code received Y is accepted) or
hypothesis H1 (the code Y is rejected). One possible solution consists in building

an estimation function GBob Y
GBob // X̂ and to compute the error estimation

ε (Y |XAlice) = GBob(Y ) − XAlice. The authentication test T is achieved after
choosing a certain threshold η:{

H0 : Y = YAlice if ε(Y |XAlice) ≤ η
H1 : Y = YEve else.

(1)

The choice of η should be driven by two constraints: we want to accept as
much as possible the codes coming from the legal sender Alice; this constraint
corresponds to the minimization of the Probability of False Alarm (Pfa):

Pfa = P(ε(Y |XAlice) > η |Y = YAlice). (2)



The second error consists in detecting as false the codes coming from Eve; this
constraint corresponds to the minimization of the Probability of Non Detection
(Pnd):

Pnd = P(ε(Y |XAlice) ≤ η |Y = YEve). (3)

This authentication system is based on the fact that there is no reversible degra-
dation after printing, we can replace the error estimation by any norm or function
that re�ects these phenomena. In order to perform a security analysis using this
basic authentication system and to evaluate the potential attack of the adversary,
, we assume that Bob and Eve have exactly the same tools (printer, scanner,
software for acquisition). Eve and Bob have at their disposal noisy samples of
printed images, important computation capacities and the graphical code Y Alice
printed by Alice. The only di�erences are that (1) Bob knows the original code
XAlice and Eve does not and (2) that Eve uses a more advanced decoder than
Bob. This second assumption enables to evaluate the risk taken by Bob if he
overestimates the security of its PUF. Table 1 summarizes these di�erent as-
sumptions.

Tools Eve Bob

Acquisition tool Same than Bob's Scanner

Printer Same than Alice's Same than Alice's

Authentication Method - Estimation + Hypothesis testing

YAlice Yes Yes

XAlice No Yes

Decoder Advanced Baseline
Table 1. Assumptions for the game between Eve and Bob.

1.2 Adversary's options

The main goal of the opponent Eve is to reproduce what she observes as precisely
as possible. In fact, ideally, this accuracy should be such that the legal receiver
cannot distinguish the codes coming from the legal sender and those from the
opponent. We study mathematically the di�erent implications of this formulation
of the problem. Given:

� XAlice (and XEve) the binary code that Alice (respectively Eve) sends
through the print and scan channel;

� YAlice (and YEve ) the printed grayscale code obtained from XAlice (respec-
tively XEve);

� ϕ the print and scan channel;
� GEve the estimation function built by the opponent Eve;
� ψ the adversary channel.



Under those notations, the main channel (i.e. legal channel from Alice to Bob)
consists in one print and scan step:

XAlice
ϕ // YAlice ,

while the adversary channel:

XAlice
ψ // YEve ,

consists in two print and scan steps and one estimation step between:

XAlice
ϕ // YAlice

GEve // XEve
ϕ // YEve.

So then, the adversary's channel corresponds mathematically to:

ψ = ϕ ◦GEve ◦ ϕ. (4)

The following expression summarizes the ideal goal of the adversary:

ϕ(XAlice) = ψ(XAlice). (5)

If we have indeed this equality, the two channels are identical (in fact, they
produce identical results). Using the expression in eq.(4), we can rewrite the
problem as:

ϕ(XAlice) = (ϕ ◦GEve) ◦ ϕ(XAlice) = ϕ ◦ (GEve ◦ ϕ)(XAlice). (6)

We can deduct from this last expression that if we have an estimation function
GEve such as:

ϕ ◦GEve = Id, (7)

or:

GEve ◦ ϕ = Id, (8)

(where Id is the identity function), in both cases the goal is reached. Now, we
need to specify what these two expressions mean and how to build GEve from
them. We now detail the two types of solutions using this speci�cation.

Minimization of the �copy� error: eq. (7) corresponds to the design of GEve
such as:

ϕ(GEve(YAlice)) = YAlice. (9)

In practice, the print and scan process is highly stochastic and non-linear, so
we cannot solve the problem analytically. To tackle numerically the problem, we
need to transform it into a minimization problem. Given a, b 7→‖ a− b ‖α, ‖ . ‖α
is an arbitrary norm (Minimum Square error, Bit error Rate if binary values
case...); the problem in eq. (9), becomes:

GEve = argmin‖ϕ(GEve(YAlice))− YAlice ‖α, (10)



which is an optimization problem. But since Y Eve = ϕ(GEve(YAlice)) , the ex-
pression becomes simply:

GEve = argmin ‖ Y Eve − YAlice ‖α, (11)

which corresponds to minimizing the copy error. The goal here is to design a
code XEve = GEve(YAlice) that allows us to reproduce the observation YAlice
without using the original code XAlice. In fact, in order to solve the equation
(9), we do not need XAlice. But, we need a model ϕ̂ of the print and scan channel
to solve numerically the problem.

Minimization of the decoding error: Another alternative to achieve eq. (5)
is to consider eq. (8) which corresponds to the building of GEve such as:

GEve(ϕ(XAlice)) = XAlice. (12)

Using the norm de�ned in subsection 1.2:

GEve = argmin‖GEve(ϕ(XAlice))−XAlice ‖α, (13)

But since Y Alice = ϕ(XAlice) , the expression becomes:

GEve = argmin‖GEve(Y Alice)−XAlice‖α, (14)

which corresponds to the minimization of the decoding error. Therefore in this
solution the adversary Eve tries to retrieve the original code, but since she does
not know XAlice, Eve needs to infer the decoding function GEve using arbitrary
codes Xi and arbitrary samples Yi coming from the printing process . Two sub
approaches can be distinguished:

� We can estimate ϕ̂ as the link function between the target Yi and the input
to the print and scan channel Xi; so then, we �inverse� it to obtain GEve.
The model can be deterministic (convolution/deconvolution) or stochastic.

� We can directly estimate the function GEve using statistical learning. We ex-
tract a vector of features that summarizes Yi , so then, we choose a functional
form for GEve and estimate its parameters using the generated examples.

In order to be able to do the inversion, the �rst solution may requires several
strong assumptions such as linearity for transfer functions or markovian prop-
erty for stochastic models. Those assumptions may a�ect the accuracy of the
�nal decoding. A poor setting of the model might conduct to unstable results
during the decoding. The second solution does not require a model of ϕ but can
integrate it as a likelihood function when it is available. Several studies explored
the �rst solution in the domain of document degradations; [4] used in the con-
text of bar codes a hidden Markov process for the stochastic modeling.[16]uses
a nonlinear model with additive noise dependent to the input in the same con-
text. [8] provides a text degradation a model using �ipping probabilities and
morphological �ltering.



By contrast, the second solution is not well studied in this speci�c domain.
But, it proves its e�ciency in wide applications in which we deal with complex
empirical data (cf. [2]). In this paper, we use only the results obtained by the sec-
ond method (minimization of the estimation error). We use statistical inference
methods, especially supervised classi�cation to build the decoding function.

2 Maximizing the decoding performance

2.1 Practical setup

To constitute the database, we printed 100 random binary codes (size: 100 ×
100 dots) were printed. The printer used is a laser printer (Dell 2350dn). The
acquisition of the printed codes were done using a high resolution scanner (Canon
CanoScan 9000F). The main channel is constituted by the printer, the scanner
and the codes extraction algorithm which perform various treatments on the
code. The printing and scanning conditions are the following:

� The Resolution of the printer is set to 600dpi (native resolution of the
printer);

� The intensity of the printer is set to 8 (out of 10),
� The Quality of the printing is set to �raw�.
� The Resolution of the scanner is set to 9600dpi (highest resolution).

With those conditions, the output obtained is a grayscale image of size: 1500×
1500 pixels. We now show the design of the decoding function under these con-
ditions.

2.2 Local speci�cation of GEve

Let X the 100×100 binary code before printing; and Y the 1500×1500 grayscale
code obtained after printing and scanning. The goal here is to �nd an decoding
function GEve such as:

X̂ = GEve(Y ). (15)

Because of the dimension of the codes (X is described by 10,000 dots while Y
is described by 2,250,000 pixels), writing directly a functional form for GEve is
hardly conceivable. The solution adopted here is to consider the local evolution
within the codes. X is in fact a collection of dots {(i , j)}; each dot(i , j) is
characterized by its binary value xi,j . Let yi,j a vector of R225, corresponding to
the 15×15 high resolution printed image of xi,j . We locally specify the estimator
GEve by a function g such as:

∀i, j x̂i,j = g(yi,j). (16)

The input is a vector of R225 while the output is binary. Therefore, we can
use a basic Threshold function to specify the local estimator g. In the next
subsection, we present a more e�cient design using supervised classi�cation.



This speci�cation, however introduce several additional biases. Firstly, we ignore
the interactions within the dots after the printing; in fact, the information about
xi,j is spread within the code. Each dot in X may carry part of this information
because of various events linked with the printing process. Secondly, we assume
that we can estimate each dot independently while the dots printed interact
strongly. To partially attenuate these e�ects, we assume that by taking in account
the printed image of dots in a 3×3 neighborhood of xi,j , we capture the relevant
information. If we call ui,j the vector obtained:

ui,j = [yi−1,j−1 , ... , yi,j , ... , yi+1,j+1], (17)

The dimension of ui,j is 225× 3× 3 = 2025 . The local estimator becomes:

∀i, j x̂i,j = g(ui,j). (18)

Using the local and contextual speci�cation, we transform our problem into
�nding a decoding function from R2025 to {0, 1}.

2.3 Supervised classi�cation

We present here the tools that have been used to infer the original code. Given:

� t ∈ T d a vector of d structural characteristics also called features, which
summarizes a given observation;

� c(t) ∈ {c1, c2, ..., ck} a characteristic about the observation we want to iden-
tify (class or pattern or regularity);

We assume that each observation is obtain by an i.i.d. sampling from an unknown
distribution p(t) . The problem of classi�cation consists in building a function δ
that outputs a class to each features vector:

δ : t 7−→ ĉ. (19)

using a �nite sequence of data called training set:

D = {(t1 , c1) , (t2 , c2) , ... , (tm , cm)} (20)

Statistical decision theory provides a solution which consists in partitioning the
input space according to each class by using decision boundaries which separate
the classes. For binary classi�cation (k = 2), for instance, if F : f(t) = 0 is a
decision boundary, and if we encode he classes as following: c1 = 1 and c2 = −1,
we have:

δ(t) = sign(f(t)). (21)

Classi�cation algorithms or classi�ers require:

� A category of boundaries (linear, quadratic, nonlinear and nonparametric...);
� A loss function (misclassi�cation, exponential...) to penalize misclassi�ca-
tions;



� A regularization term to limit over�tting (i.e. dependance to the training
set) .

So then, the classi�er choose the boundary that minimize the criterion: loss +
regularization. To evaluate classi�ers, the solution consists in generating a new
sequence Dtest :

Dtest = {(t1 , c1) , (t2 , c2) , ... , (tm′ , cm′)}, (22)

and evaluate the classi�ers on it by calculating the generalization or prediction
error rate:

Êrrg =
1

m

∑
(t,c)∈Dtest

|c− δ(t)|. (23)

Theoretically, the size of Dtest should be �in�nite� (i.e. su�ciently large in prac-
tice) to cover the whole distribution p(t) . In general, Dtest is not large enough;
therefore, other estimates as cross-validation (K-fold and Leave-one-out) and
bootstrap validation are computed. Since its output is binary, the local estima-
tor g is in fact a classi�er. In this work, we compare 5 classi�ers :

� Three linear classi�ers: Linear Discriminant Analysis, Naive Bayes, Logistic
Regression,

� Two nonlinear classi�ers: Quadratic Discriminant Analysis , Support Vector
Machine.

[1,5] provides full description of these methods. They are widely used supervised
classi�cation techniques and give good results in general.

2.4 Feature extraction

The dimension of the feature vector chosen (2025) can constitute a serious is-
sue for classi�cation. In fact, in high dimensions, the vectors are far from each
others and �nding good boundaries becomes increasingly di�cult. The number
of samples required increases exponentially with the dimension. This problem is
well known as �curse� of dimensionality and to break it, we need to represent
all the information with less features. This operation is called feature extraction
in statistical learning, it consists in general in concentrating the information in
privileged directions with minimal loss. In our case, we increase the dimension
by taking the 3 × 3 context in order to capture more information. We need to
apply feature extraction; we tested three methods:

� Using statistics: we summarize the 2025 feature by taking the 4 �rst moments
(mean, variance, skewness, kurtosis) for the 3×3 context after printing which
give us 36 features. These 52 features are linear and nonlinear functions of
the 2025 features. The moments summarizes the spatial distribution of the
9 images. They can be completed with the median, the quartiles, the min or
the max.



� Using Principal Components Analysis (PCA); PCA performs linear projec-
tion to lower dimensional space. The new features obtained are decorrelated
and ranked according to their variance; The percentage of variance preserved
during the projection, is a measure of the quantity of information saved dur-
ing the projection.

� Using Partial Least square Regression (PLS); PLS is very similar with PCA;
but PLS take in account the preservation of the variance of the targets
simultaneously in its projection.

The statistics does not give a criteria to evaluate the quantity of information
loss, while PCA and PLS methods provide the percentage of variance captured
according to the number of variables kept. That percentage gives a possible
criteria to select the dimension of the new space. We de�ned various group of
features for our classi�cation task using these feature extraction methods:

� The �rst set F1 is constituted by the 15× 15 = 225 features of a dot printed
(cf. 2.2);

� F2 is constituted by the features of a dot printed and by those of the dots
in its 3× 3 context (so then, we have 3× 3× 15× 15 = 2025 features);

� F3 is constituted by Statistical Moments obtained from each 15×15 printed
image of a dot printed and by those in its 3× 3 context; we add moments of
4 crossover blocks to capture the transitions between the dots; we have then
52 features;

� F4 is constituted by PCA features deduced from F2; we retained 200 �rst
features using the % of variance of the input explained; those features ex-
plained 99% of the variance;

� F5 is constituted by PLS features deduced from F2; we retained 500 �rst
features using the % of variance of the input and the target explained; those
features explained 99% of the variance.

3 Results

To test the methods selected, we used the 50 graphical codes kept in 2.1. We use
5 codes as a training set; which give us 5 × 10, 000 = 50, 000 training samples.
The classi�ers are afterward tested on the rest of the codes (45 codes). For each
code (= 10, 000 examples) we compute a Bit Error Rate. We assume that Bob's
decoder uses a basic thresholding as a baseline method. It consists in averaging
each scanned dots, and choosing an optimal threshold between 0 to 255. The
baseline approach enables to obtain a BER of 32 % on the testing set. We
compare now this naive approach with respect to one used by the adversary.
Table 2 and Fig. 3 depict an overview of the results for the di�erent feature sets
and classi�cation tools.

3.1 Using F1 and F2 (raw inputs with and without neighborhood)

The table (a1) and the boxplot (b1) shows results for F1. LDA and logistic re-
gression provides the best results when F1 is used. However, the boxplot shows



variability according to the images tested. In fact, we encounter this e�ect for
all set of features. QDA is very good in training, but produces bad predictions.
This is typically over�tting. Naive Bayes gives a robust result i.e. with less vari-
ability but is less accurate than LDA and Log. Reg.; as for SVM, its medium
performance, can be explained by its sensitivity to irrelevant and non-weighted
variables. LDA and Log. Reg. implicitly weight the variables i.e. concentrates
the information in several directions. They are therefore more robust to those
features.

When F2 are used (cf. (a2) and (b2)), there is degradations of the perfor-
mance of the classi�ers and and general trend to over�t except for Naive Bayes
(more robust classi�er). The extension to 2025 features add irrelevant variables.
We may also deal with the �curse� of dimensionality.

3.2 Using F3 (moments)

Using those features improves the BER for all classi�ers, especially SVM (22.1%)
which now is the most accurate among the ones tested. However, LDA and
logistic regression (22.6%) manage to give very close results than those obtained
with SVM. QDA avoid over�tting but it is still outperformed by the others.
Naive Bayes does not show any improvement compare to the results obtained
using F2.

3.3 Using F4 and F5 (PCA and PLS )

The results with PCA are very close to those obtained with the moments. The
exception is Naive Bayes which gives results even better than LDA. The possi-
ble explanation is the fact that Continuous Naive Bayes assumes independent
features. Therefore, the covariance matrix of the features is forced to be diago-
nal. In the previous representations, this assumption is violated. So then, Naive
Bayes assumption results in loss of possible discriminative loss. Since PCA pro-
vide decorrelate features, the covariance is really diagonal this time. Therefore,
Naive Bayes is equivalent to LDA in this context. The other exception is QDA
which is over�tting again.

We obtained similar results (cf. a5, b5) using PLS features; the exception is
SVM. In fact, we suspect a default in the hyperparameters setting; the error rate
according to them behaves at the opposite of the case with PCA features. Since
they are set by cross-validation (best error rate among a set of values using a
small testing set), it is more likely that the range of values chosen should be
extended for PLS.

3.4 Summary

Moments provides good results in classi�cation followed by features generates
from PCA (see Table 2 and Fig. 3). As for the classi�ers, the linear ones assure
good results compare to SVM. In fact, setting SVM is very di�cult; we were



compelled to use a smaller training set. We should search for implementations
(Chunking methods, SMO) which can handle large training sets.

Another observation is that the mean BER is in general than 22%. That
constitutes an empirical lower bound about the amount of information that we
can retrieve using the methods tested.

Algorithm Mean BER Std

LDA 24.4% 3.9%

QDA 32.6% 3%

Naive Bayes 31.3% 2.4%

Logistic regression 24.3% 4.2%

SVM + clustering 27.6% 3.9%

Algorithm Mean error Std

LDA 27.3% 3.8%

QDA 45.7% 0.9%

Naive Bayes 35.4% 1.2%

Logistic regression 27.6% 4%

SVM + clustering 41.8% 2%

a1) F1 (225 features), a2) F2 (2025 features),

Algorithm Mean error Std

LDA 22.6% 4.1%

QDA 26% 2.9%

Naive Bayes 35% 1.2%

Logistic regression 22.6% 4.6%

SVM + clustering 22.1% 3.9%

Algorithm Mean Error Std

LDA 22.9% 4%

QDA 37.7% 2.4%

Naive Bayes 22.8% 4.1%

Logistic regression 22.9% 4.4%

SVM + clustering 22.6% 4.2%

a3) F3 (Moments), a4) F4 (200 PCA features),

Algorithm Mean Error Std

LDA 22.9% 4.1%

QDA 25.9% 3.6%

Naive Bayes 22.9% 4%

Logistic regression 22.9% 4.3%

SVM + clustering 28.5% 3.5%

a5) F5 ( 500 PLS features).
Table 2. Bit Error Rates w.r.t. di�erent feature sets.

4 Conclusion

This paper proposes to assess the security of a PUF based authentication system
which uses the printing process as a non-invertible function. The security analysis
has been carried out using a �black box� strategy where we try to infer the inverse
of the physical system from a set of observations without modeling the printing
process itself. This approach enables to already show that the adversary can
improve the recovery of the original code with respect to a naive decoding by a
substantial amount (the BER drops from 32% to 22%). Further works will try
to combine a model of the printing channel with our inference approach in a
iterative way to check that the decoded 2D code is similar with a typical printed
code once reprinted.



b1) F1 (225 features) b2) F2 (2025 features)

b3) F3 (Moments) b4) F4 (200 PCA features)

b5) F5 (500 PLS features).

Fig. 3. Boxplots of the BER per image for di�erent feature sets. On each box, the
central mark in red is the median of the BER. Under the lower edge of the box, we
have 25% of the cases. Under the upper edge we have 75%. The whiskers extend to the
most extreme data points not considered as outliers.
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