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Abstract. To create convincing forged images, manipulated images or parts of 
them are usually exposed to some geometric operations which require a resam-
pling step. Therefore, detecting traces of resampling became an important ap-
proach in the field of image forensics. In this paper, we revisit existing tech-
niques for resampling detection and design some targeted attacks in order to as-
sess their reliability. We show that the combination of multiple resampling and 
hybrid median filtering works well for hiding traces of resampling. Moreover, 
we propose an improved technique for detecting resampling using image foren-
sic tools. Experimental evaluations show that the proposed technique is good 
for resampling detection and more robust against some targeted attacks. 
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1 Introduction 

With the availability of powerful tools for image processing, digital images can 
easily be altered without leaving visual evidence. Therefore, developing techniques 
for deciding on image authenticity became an urgent need. There are many different 
types of image tampering, which can be detected by different forensic methods. In 
order to create convincing forged images, manipulated images usually undergo geo-
metric transformations, which require a resampling step. Thus, detecting traces of 
resampling became a popular approach in the field of image forensics. Techniques 
that detect resampling artifacts are often based on analyzing local linear dependencies 
[1, 2] or the variances of the second derivatives of images [3–5]. 

Robustness and security are important characteristics of any forensic detection 
technique along with detection capacity. While the robustness of a detection tech-
nique refers to the ability to detect forgeries even if the forged image is post-
processed, the security refers to the ability to resist targeted attacks which were spe-
cifically tailored to disguise a forged image as authentic. In order to evaluate robust-
ness, the aforementioned detection techniques were tested under several simple post-
processing operations, such as Gaussian noise addition or JPEG compression. Re-
cently, some authors [6, 7] designed testing frameworks to evaluate and compare the 
robustness of different resampling detectors. With the aim to assess the security of 
resampling detection, Kirchner and Boehme [8] designed several targeted attacks 
against the technique of Popescu and Farid [2]. Inspired by the above works, in this 



paper we propose some other simple but effective targeted attacks to conceal traces of 
resampling from common forensic tools.  

Every existing resampling detector has its pros and cons. The technique of Popescu 
and Farid [2] is likely the most powerful but its use is complex and time consuming 
due to the use of the Expectation Maximization (EM) algorithm. In order to overcome 
the drawback of [2], Kirchner [1] proposed a fast detector which does not need to use 
the EM algorithm. Some other techniques based on detecting the variance of second 
derivatives in images are simpler to implement and provide faster detection in com-
parison with [2]. However, they suffer from high false positive rates and some of 
them [3, 4] are not capable of detecting rotated or skewed images. In this paper, we 
design an improved technique which is fast and robust in detecting resampled images. 
The technique is based on computing a so-called pseudo probability map of the image 
to be tested and applying the Radon transform to this map. The performance and secu-
rity of the proposed technique are evaluated with a large image dataset under different 
attacks. Finally, we compare it with the state-of-the-art technique [2] under the same 
condition. 

The structure of the paper is as follows. In the next section, we briefly review the 
concept of resampling and the main ideas of [2]. In Section 3, we propose some tar-
geted attacks against resampling detection. After that, we present our improved re-
sampling detection technique in Section 4. Experimental results will be shown in 
Section 5. Lastly, we conclude the paper in Section 6. 

2 Techniques for Resampling Detection 

2.1 Resampling and Interpolation 

Once a geometric transformation such as scaling or rotation is applied to an image, 
a resampling process is involved. Interpolation is the central step of resampling in 
order to estimate the value of a signal at intermediate positions to the original sam-
ples. This step is the key to smooth the signal and then create a visually appealing 
image [9]. For example, a p/q resampling of an 1-D discretely-sampled signal consists 
of following three steps [2]: 

─ Upsampling: create a new signal xu[t], where xu[pt] = x[t], t = 1, 2, … and xu[t] = 0 
otherwise. 

─ Interpolation: convolve xu[t] with h[t]: x i[t] = xu[t] * h[t], where h[t] is an interpola-
tion filter (e.g. bilinear, bicubic). 

─ Downsampling: create a new signal xd[t], where xd[t] = xi[qt], t = 1, 2, …  

The extension to two dimensions is straightforward where the above mentioned 
operations are applied in both spatial directions. 



2.2 Resampling Detection 

There are several techniques to detect traces of resampling in digital images [1–5]. 
Among them, the technique of Popescu and Farid [2] is widely used and effective. 
The main step of [2] is to determine the probability of each sample being correlated to 
its neighbors. To this end, the technique employs a linear predictor to approximate 
each sample’s value as the weighted sum of its surrounding samples: 
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The correlation probability pi of each sample is computed based on the prediction 
error ri, which is modeled as a zero-mean Gaussian random variable:  
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The probability values of all samples of an image together form the probability 
map (called p-map). The authors of [2] empirically found that the p-map of a resam-
pled image is periodic and the periodicity becomes evident in the frequency domain 
by using the Fourier transform (DFT). However, the values of the weights (α) are 
usually not known in practice, so the p-map can not be computed directly. Therefore, 
the authors of [2] use an initial set of α for the estimation and then use Weighted 
Least Squares (WLS) integrated into an iterative EM algorithm in order to estimate 
the correlation of neighboring samples. 

3 Attacks Against Resampling Detection 

The robustness of [2] was determined by applying different countermeasures, such 
as Gaussian noise addition and JPEG compression to resampled images. Nevertheless, 
Kirchner and Boehme [8] showed that the reliability of the technique was still solved 
only on the surface. Therefore, the authors proposed in [8] some targeted attacks 
against the technique [2]. The first attack is based on nonlinear filtering, the second 
attack is based on the Sobel edge detector, and the third attack integrates both men-
tioned attacks.    

In this section, we design some other rather simple but effective targeted attacks 
against [2]. The first attack is based on multiple resampling by specific scales, the 
second attack is based on hybrid median filtering, and the third attack employs a com-
bination of the attacks above. We also use the attacks to evaluate the security of our 
improved technique which we propose in Section 4. Experimental results will be pre-
sented in Section 5. 

3.1 Attack Based on Multiple Resampling 

When an image is downsampled by a factor of two, no sample in the downsampled 
image can be written as a linear combination of its neighbors [2]. Subsequently, traces 
of resampling should not be noticed in theory.  Hence, we design an attack to disguise 



a resampled image by upsampling the image by a factor of two and downsampling it 
by a factor of two, thus yielding an image of the original size. In order to remove the 
aliasing artifacts of the downsampling process, the image is then anti-aliased.  

 

       

       

       

Fig. 1. Shown in the top row is the original image, in the middle row the same image upsam-
pled by a factor of 20%, and in the bottom row the same upsampled image, post-processed by 
the attack of multiple resampling. Each row shows the image itself, its p-map and the Fourier 
transform of the p-map. 

Fig. 1 illustrates the detection process of [2] which consists of tested images, their 
corresponding p-maps and the Fourier transform of the p-maps. We realized that there 
is no peak in the Fourier transformed p-map of the original image, but in the case of 
an upsampled image, its transformed p-map has remarkable peaks. Although the qual-
ity of the tested image is not noticeably affected by the attack of multiple resampling, 
at the same time the peaks have not been absolutely eliminated (i.e. the traces of re-
sampling can still be uncovered by the resampling detector). Using the detector of [2] 
on a dataset of 200 upsampled images by a factor of 20%, we obtained a detection 
rate of 99%. After applying the attack to the upsampled images, the detection rate is 
reduced to 84%.  

3.2 Attack Based on Hybrid Median Filter 

Since the technique [2] is based on detecting linear dependencies between samples 
in a locality, all kinds of nonlinear filters applied as a post-processing step are candi-
date attacks [8]. Kirchner and Boehme [8] proposed a targeted attack based on median 
filtering against [2]. While the attack is successful to conceal traces of resampling, the 



visual quality of attacked images suffers from noticeable blurring. To overcome this 
drawback, we design a targeted attack which based on another nonlinear filter called 
hybrid median filter [10]. The filter consists of three steps, each being applied to a N 
× N sliding window (N must be odd). In the first step one computes the median of 
horizontal and vertical pixels in a N × N block (called M1). In the second step we 
compute the median of diagonal pixels in the block (called M2). Finally, the filtered 
pixel value is the median of the two median values (M1 and M2) and the center pixel 
of the block.  

Fig. 2 illustrates the detection results of [2] for both kinds of nonlinear filters. We 
found that the median filter destroyed most evident peaks in the transformed p-map, 
but it also makes the image blurry. Conversely, the image attacked by the hybrid me-
dian filter is much less blurred, but sometimes peaks are still retained. When testing 
[2] on a dataset of 200 upsampled images by a factor of 20%, the detection rate is 
99%. After applying the hybrid median filter to the upsampled images, the detection 
rate is degraded to 76%. 

 

       

       

Fig. 2. Shown in the top row is the upsampled image attacked by the 3 × 3 median filter and in 
the bottom row the same upsampled image post-processed by a hybrid median filter with N = 3. 
Again, we show the image, its p-map and the Fourier transform of the p-map. 

       

Fig. 3. Detection results of the upsampled image by a factor of 20% and then post-processed by 
the combination attack. 



3.3 Combination Attack 

Although the proposed targeted attacks reduce the capability of detecting resam-
pling, the detection rates are still high. In order to design a more powerful attack, we 
use them in combination: Firstly, the image is upsampled by a factor of two, then 
downsampled by a factor of two. The image is then anti-aliased. Lastly, a hybrid me-
dian filter is applied to the image.      

Fig. 3 illustrates the detection results of an upsampled image which has been ma-
nipulated by the combination attack. We realized that all peaks disappeared in the 
transformed p-map, while the quality of the attacked image remains good. When we 
apply the combination attack to a dataset of 200 upsampled images by a factor of 
20%, we found that the detection rate of the approach of [2] is reduced impressively 
to 3%. 

4 An Improved Technique for Resampling Detection 

4.1 Fast Resampling Detection 

The core part of [2] is the EM algorithm used to estimate the probability of linear 
dependencies between neighboring samples. The results of all samples in the analyzed 
image are used to create the p-map. The remarkable peaks in the Fourier transforma-
tion of the p-map become evidence to uncover traces of resampling and can be recog-
nized easily in the case of a resampled image.  

Kirchner [1] showed that it does not matter what prediction weights (α) be used, 
the linear prediction errors which determine the p-map will be periodic in case of a 
resampled image. Thus, the author believed that the rather complex and time consum-
ing EM estimation is not compulsory. As a result, he presented a fast but still reliable 
resampling detector. 

Although the values of prediction weights (α) do not affect the periodicity of the p-
map, different sets of α create different intensities in the p-map. For this reason, we 
call a p-map computed based on some pre-defined weights the pseudo p-map (pp-map 
for short). Through experiments, we found many times that using one predefined set 
of α for detecting an image by the technique [1], peaks can be recognized in the trans-
formed pp-map, but using another set, peaks are not evident (though the periodicity 
exists in theory). Consequently, the selected set of α strongly affects the obtained 
outcomes.  Whilst the major advantage of [1] versus [2] is bypassing the EM estima-
tion, we believe that the technique [2], where the intensities of the p-map are correctly 
computed is more robust and reliable. Kirchner [1] empirically found one of the best 
preset filter coefficients α for computation of the prediction error as: 
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4.2 Improved Resampling Detection 

In this section, we introduce a resampling detection technique which consists of 
three main steps: computing the pp-map of the analyzed image, applying the Radon 
transform to the map and finding critical peaks in the transformed spectrum in order 
to infer the detection result. 

Probability Map Computation. The residue of a sample is computed following 
Equation (1) where the weights (α) and the size of neighborhood (N) are pre-defined. 
The probability of correlation in a region N × N is estimated based on the residue, 
modeled as a zero-mean Gaussian noise described in Equation (2). These steps com-
pute the pp-map (w) without using the EM algorithm as in [2]. The main steps of the 
algorithm are depicted in Algorithm 1, where r(i) is the residue of a sample, p(i) is the 
associated correlation probability and w(i) is the corresponding in the pp-map. 

 
Algorithm 1. Compute the pseudo probability map 
Choose α, N, σ 
Set p0 = 1/maxy, where maxy is the size of the range of possible values for y(i) 
for each sample i 
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Radon Transformation. The Radon transform (RT) computes projections of an im-
age along various directions given by a set of angles. The transformed result is the 
sum of the intensities of the pixels in each direction, i.e. a line integral [11]. The RT 
has robustness properties against rotation, scaling, and translation (RST) [12] and is 
also robust against additive noise [13]. 

Mahdian and Saic [5] improved the technique of Gallagher [4] by applying RT to 
the second derivatives of tested images. Accordingly, [5] can detect not only rescaled 
images but also rotated images. The major drawback of the technique [5] is its high 
false positive rate, especially in detecting images which contain strong textures. In-
spired by the work of Mahdian and Saic [5], in our technique we apply RT to the pp-
map of the image. To this end, firstly, the RT of the pp-map is computed for a set of 
predefined angles; this results in a set of projected vectors which are arranged in a 
matrix R. If the image has been resampled, the corresponding autocovariance matrix 
of the vectors contains a specific periodicity. Since our goal is to determine if an im-
age has been subject to geometric transformations, we focus on the strongest periodic 



patterns present in the Fourier transform of the autocovariance of the projected vec-
tors. Lastly, the strongest patterns are plotted in a spectrum from which the peaks are 
evident (see an example in Fig. 4 and Fig. 5).  We assume that this technique works 
well for resampling detection due to the periodicity of the pp-map of resampled im-
ages shown in [1]. 
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Fig. 4. Detection results of an original image. The peaks in the spectrum are not clear and dis-
tinguishable. 
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Fig. 5. Detection results of the upsampled image by a factor of 20%. The clear and strong peaks 
can easily be recognized. 



Table 1. Detection rates when applying different attacks to upsampled images 
by a factor of 20%. 

 No 
Attack 

Median 
Filter 

Hybrid 
MF 

Multiple 
Resampling 

Combination 
Attack 

[2] 99.0    1 76.0     84       3.0 
Proposed 83.5   25 68.5     66     54.5 

Peak Detection. After applying the RT (use the angles from 0° to 179° with an in-
cremental step of 1°) to the pp-map, we obtain a spectrum where critical peaks can 
easily be recognized. If an image is resampled then there are clear and strong peaks in 
the spectrum. As an example, Fig. 4 and Fig. 5 show the results of applying the detec-
tor to an original image and a resampled image respectively. In order to infer the de-
tection results, we search for strong peaks by computing the local maximums of the 
spectrum and choose the peaks based on a pre-defined threshold. The performance of 
the technique is improved when compared to [1, 2]. 

5 Experimental Results 

In order to evaluate the detection techniques, we test them with different image 
datasets of original images, resampled images and attacked resampled images. Firstly, 
we randomly collected 200 uncompressed images from [14], converted them to gray-
scale and cropped each of them to 256 × 256 pixels in order to create a dataset of 
original images. From the dataset of original images, we created different datasets of 
upsampled, downsampled, and rotated images by different factors (using bicubic in-
terpolation). 

In this section, we test our proposed technique and compare it to the technique of 
Popescu and Farid [2] as a baseline. We use the set of weights (α) as in (3) for the 
proposed technique. This set is also used as the initial weights in [2]. In both tech-
niques, the size of the neighborhood is set to 3. In order to allow a fair comparison, 
we set their thresholds so that their detection rates in detecting upsampled images by a 
factor of 20% are larger than 80% and their false positive rates in detecting original 
images are lower than 5%. 

As presented in Section 3, the median filter is a strong attack against resampling 
detectors based on measuring linear dependencies between neighboring samples. 
However, the major disadvantage of this attack is blurring. Among our targeted at-
tacks, the hybrid median filter and multiple resampling affect image perception qual-
ity less, but they seem not strong enough. The combination attack is more powerful, 
while still maintaining the image quality. To confirm this, we apply the attacks to a 
set of 200 upsampled images by a factor of 20%. We test the attacked images with our 
proposed technique and the technique of [2]. The detection rates can be seen in Table 
1. Both techniques work well to detect traces of resampling with detection rates of 
99% and 83.5% respectively and the false positive rates below 5%. However, while 
the technique of [2] is mostly defeated by the combination attack with detection rate 



down to 3%, our proposed technique is much more robust, as the detection rate re-
mains over 50%. Consequently, in this section, we use only the combination attack in 
order to evaluate the security of the resampling detection techniques. 
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Fig. 6. Detection rates for downsampled images (dash line for [2] and solid line for the pro-
posed technique). 
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Fig. 7. Detection rates for upsampled images (dash-star line for [2], solid-star line for the pro-
posed technique) and for attacked upsampled images (dash-circle line for [2], solid-circle line 
for the proposed technique). 
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Fig. 8. Detection rates for rotated images (dash-star line for [2], solid-star line for the proposed 
technique) and for attacked rotated images (dash-circle line for [2], solid-circle line for the 
proposed technique). 



Next, we test both techniques with downsampled images by different scaling fac-
tors. We realized that the detection rates of both techniques in detecting downsampled 
images are rather low (see Fig. 6). The reason is that the downsampling causes loss of 
information, thereby limiting the detection capacity of the statistical-based techniques. 

We then evaluate the techniques with upsampled images and rotated images as 
well as their attacked versions. The attacked images are created by applying the com-
bination attack to the resampled images. We found that both techniques can detect 
upsampled images by a scaling factor larger than 5% rather well (see Fig. 7). The 
technique of [2] even detects upsampled images by a factor larger than 10% perfectly 
(with a detection rate of nearly 100%). However, on the attacked images the detection 
rate of [2] is decreased significantly. This shows that [2] is not robust against this 
targeted attack. Although the proposed technique is not as powerful as [2] in detecting 
resampled images, it seems more robust against the combination attack. A similar 
situation occurs in detecting rotated images where both techniques work quite well in 
detecting rotated images by a factor larger than 3° (see Fig. 8). Although the proposed 
technique is little more robust than [2], both of them are almost defeated by the com-
bination attack. 

To assess the robustness of a detection technique, the authors usually test it with 
images where different post-processing operations have been applied. In this paper, 
we do not repeat the robustness evaluation of the original papers. However, we found 
an interesting property of the RT: its robustness against Gaussian noise is favorable 
for our technique. In other words, the proposed technique is less sensitive to noise. To 
confirm that, we test the techniques with upsampled images by a factor of 20% with-
out any post-processing operation and with Gaussian noise addition. The results are 
shown in Table 2. While the detection rate of [2] is 99% in test with upsampled im-
ages, it is totally defeated when the images are post-processed by adding Gaussian 
noise by the Signal to Noise Ratio (SNR) of 20 dB. 

A good attack not only reduces the detection rates of forensic techniques, but also 
maintains the image quality. There is usually a trade-off between the strength of at-
tacks and the perceptual quality of the images which have been manipulated by the 
attacks. To quantify this aspect of an attack, we compute the average difference be-
tween pairs of resampled images (before the attack) and attacked resampled images 
(after the attack). The difference between a pair of images with the same size can be 
measured by calculating the PSNR (Peak Signal to Noise Ratio) or the Weighted 
PSNR (WPSNR). The WPSNR is an improved version of the PSNR firstly introduced 
in [15]. Based on the fact that the human eyes are less sensitive to modifications in 
textured areas than in smooth areas, the WPSNR uses an additional parameter called 
the Noise Visibility Function (NVF), which is a texture masking function. A higher 
PSNR or WPSNR usually indicates that the attacked image is of higher quality. In 
Table 3, we show the average PSNR and WPSNR of 200 pairs of upsampled images 
(by a factor of 20%) and their versions under different attacks of adding Gaussian 
noise (25 dB), median filtering and the combination attack. We found that the combi-
nation attack maintains the best image quality among the test cases. 



Table 2. Detection rates for Gaussian noise added upsampled images by a factor of 20%. 

 No Attack SNR 20 dB SNR 25 dB SNR 30 dB SNR 35 dB 
[2] 99.0    1.0   10   36  62.5 

Proposed 83.5  36.5   68   77  79.0 

Table 3. Average difference between resampled images and attacked resampled images (dB). 

 Add Noise 
SNR 25 dB 

Median  
Filter 

Combination 
Attack 

PSNR 21.20 20.29  22.93 
WPSNR 34.30 32.74  36.13 

 

6 Conclusion 

In this paper, we revisited most important works for resampling detection in the lit-
erature. We designed some targeted attacks tailored to disguise traces of resampling in 
digital images. Since there is a relation between the derivative-based techniques and 
the techniques based on linear residue [1], we suppose that if the attacks can defeat 
[2], they will also work for attacking other resampling detection techniques. Subse-
quently, we proposed an improved resampling detection technique which consists of 
the steps of calculating the so-called pseudo p-map of the image, applying the Radon 
transformation and searching for critical peaks in the transformed spectrum. Since the 
proposed technique does not need the EM estimation to compute the pseudo p-map, it 
is much faster than [2]. We evaluated the performance and security of the proposed 
technique and the technique of Popescu and Farid [2]. We found that both techniques 
work well in absence of attacks and the technique [2] is the most powerful. However, 
our proposed techniques are more robust when attacks are applied.  
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