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Abstract—Network topology discovery with dis-
tributed traceroute-based measurement systems is im-
portant to monitor, measure, diagnose and capture IP-
level network topology dynamism. Depending on the
discovered topology size and the captured topology
dynamism accuracy, a compromise has to be done
regarding the measurement time granularity and the
scale of these measurement systems. In this paper, we
present our large-scale measurement dataset, and anal-
ysis of the network topology dynamism captured in a
real measurement scenario. We also quantify the missed
dynamism information with coarser measurement time
granularity inferred by our proposed algorithm. These
results confirm that probing less frequently, as it is the
case of most of the existing measurement systems to-
day, can dramatically affect the dynamism information
captured.

Index Terms—Active measurements, Network topol-
ogy dynamism, Monitoring

I. Introduction

Large view of the Internet topology is essential to
analyze its key properties [1], [2], understand its struc-
ture [3], [4] observe its evolution [5], [6] and model its
dynamism [7], [8]. Different approaches building Internet
topology are proposed in the literature [9], [10], [11],
[12], in our work, we focus on capturing IP-level network
topology dynamism [1], [13], [14] as discovered by large-
scale distributed traceroute-based measurement systems
[15], [16], [17], [18], [19] offering end to end observation
and analysis of the underlying topology. Most of these
measurement systems expose different characteristics in
terms of scalability (number of measurement sources used
to discover the path toward a set of destinations) and mea-
surement time granularity (the period τ needed by these
systems to accomplish a complete discovery cycle). Thus
depending on the size of the monitored network topology
and the accuracy of the topology dynamism captured, a
compromise has to be done regarding the measurement
time granularity and the number of deployed measurement
sources of these measurements systems. Furthermore, scal-
ing up these measurement systems with broad distribution
of carefully chosen measurement agents and destination
points is mandatory to yield good estimates of network
graph properties [20], [11], [21]. However, while the scaled
up measurement systems offer to discover additional topo-
logical information during a discovery cycle, they might
provide a poor representation of the topology dynamism

that occurs as the duration of the discovery cycles could
be longer than the dynamism duration to be captured.
For example, a state of the art measurement system,
ARCHIPELAGO [15], needs about two days to cover
millions of destinations (all the Internet network prefixes)
from 45 vantage points with traceroute like tool. We argue
that two days measurement will not reach a high accuracy
in catching the whole network topology dynamism. In
addition, traceroute-based measurement systems might
suffer from measurement inaccuracy when probing toward
load balancers [22] leading to false topology dynamism
interpretation if new measurement methods [23], [24] are
not applied.

In this paper, we propose to analyze the network topol-
ogy dynamism information captured in a real measure-
ment scenario and quantify the impact of coarser time
granularity on the dynamism information missed.

The remainder of this paper is organized as follows.
First, we define our processed measurement dataset and
explain our algorithm to infer less frequent measure-
ments in the network topology inference section. Then, we
present our metrics and analyze the impact of measure-
ment time granularity on dynamism information missed.
Finally, we discuss our observations and provide perspec-
tives for our work on how to better capture Internet
topology dynamism.

II. Network topology graph inference

In this section we explain our procedure and experi-
mental setup to build network topology graphs. Then we
introduce our notations and inference algorithm related to
our approach.

A. Fine grained measurement dataset

Capturing Internet topology dynamism at the IP-level
with large-scale distributed traceroute-based measurement
systems requires accurate and fast discovery of the net-
work. Most of the existing systems are not accurate enough
since they might discover false dynamism information
and measurement artifacts (false links, false loops, etc.)
inferred by regular traceroute tool when probing toward
load balancers [22]. In addition, it is difficult to capture
most of the dynamism information as the measurement
time granularity of these system is too long. Consequently,



we built our own fine grained measurement dataset re-
specting the accuracy and time granularity requirements
as mentioned previously. More precisely, we avoid false
dynamism information and correct the inaccuracy of the
legacy traceroute tool in our measurement dataset, by pro-
cessing high frequency measurement using Paris traceroute
tool [24] during 2 months over 580 nodes of PlanetLab
overlay [25] probing 800 PlanetLab destinations with a
time granularity of τ = 1 hour which produced our
fine grained measurement dataset that we use to build
incremental graph topology of the network over the time.
Note that we have only kept network discovery results
from 230 measurement agents that have been continuously
probing during the entire experiment period corresponding
to two months continuous discovery cycles or rounds 1.

B. Network topology graph representation.
Having explained how we generate our measurement

dataset, here we define how to aggregate these measure-
ments to create directed graphs of the discovered IP-level
topology Gτk = (V τk , E

τ
k ) composed of graph elements that

are either node sets V τk (distinct nodes formed by the IP
addresses) and link sets Eτk (distinct successive IP address
pairs) as discovered by the measurement system for each
measurement round k with a time granularity of τ . Note

that Gτ = {
K⋃
j=1

Gτj } represent all unique graph elements

that appeared at least once during the entire experiment
time (K= 1488 rounds). Moreover, we introduce a state
value δτk(n) representing the status of each graph elements
n ∈ Gτ seen at a given measurement round k to be either a
graph element presence when δτk(n) = 1 or a graph element
absence when δτk(n) = 0.

∀n ∈ Gτ , δτk(n) =

{
1, if n ∈ Gτk
0, if n /∈ Gτk

Finally, we propose to summarize the entire state values
by a state matrix Mτ (Gτ ) where each element mτ (n, k) =
δτk(n) represent the status of graph elements n ∈ Gτ for
each measurement rounds of the experiment.

C. Inference algorithm
Having explained how we generate the state matrix from

our fine grained measurement with a time granularity of
τ (1 hour) for each measurement round k, we propose to
infer what would have been observed with longer discovery
cycles. It is intuitive that having very frequent discovery
cycles might inform us about longer discovery periods, but
not at the inverse. So, for all graph elements ∀n ∈ Gτ ,
to infer the potential state matrix that would have been
measured with agents probing τy = y × τ less frequently
(where y > 1), we propose to generate synthetic discovery

1We have carried our measurement study between the 25th of
May to the 25th of July 2010 starting with 580 agents. Due to
some instability on PlanetLab nodes only 230 agents were running
continuously during the experiment period.

rounds from our fine grained dynamism representation of
the state matrix Mτ (n) to infer the virtual state matrix
Mτy (n) for agents probing τy = y × τ times slower. We
build this virtual state matrix as follow; for any virtual
round ky = ‖ky ‖ we select randomly a state value mτ (n, k)
between rounds of the fine grained measurement such as
∃mτy

(n, ky) |mτy
(n, ky) ∈ {mτ (n, k), . . . ,mτ (n, k + y)}.

The construction of the inferred state matrix and virtual
rounds is depict in Fig. 1. For simplicity, we use the mea-

Fig. 1. Building inferred virtual rounds

surement frequency notation in the rest of this document.
Thus, for an inferred probing measurement round that is
y × τ slower than our fine grained measurement, we say
that it’s frequency is Fy.

III. Dynamism analysis

In this section we present our formalism and analysis
of network topology dynamism information captured by
introducing the dynamism features and metrics.

A. Dynamism features
We feature out the network topology dynamism cap-

tured during a given observation window with dynamism
events identified by the appearance or the disappearance
of graph elements between consecutive rounds and with
static states defined as the observation of the duration of
continuous presence or continuous absence of these graph
elements over a number of rounds.

1) Dynamism event: To analyze the dynamism events
that occur between successive rounds, we compare the
state value of graph elements n ∈ Gτ at measurement
round k to its value at a measurement round k+1, indicat-
ing which graph element has appeared or disappeared. We
observe a dynamism event when mτ (n, k) 6= mτ (n, k + 1)
and we define ψnτ (k, k + 1) to be the dynamism events
information gathered for a given graph elements n ∈ Gτ
between two consecutive measurement rounds k and k+ 1
in the experiment.

ψnτ (k, k + 1) =


1, if mτ (n, k + 1)−mτ (n, k) > 0
0, if mτ (n, k + 1)−mτ (n, k) = 0
−1, if mτ (n, k + 1)−mτ (n, k) < 0

If ψnτ (k, k + 1) = 1 it is a graph element appearance
otherwise, if ψnτ (k, k+ 1) = −1 it is a disappearance. Note
that in case of ψnτ (k, k + 1) = 0 there is no dynamism
event but a consecutive presence or absence; static state
formulated hereafter.



2) Static state: We define a static state to be either
a continuous presence following an appearance event and
ending with a disappearance event or a continuous absence
that follows a disappearance event and ends with an
appearance event. The dynamism state duration of size
N given bellow characterizes the length of a continuous
presence or a continuous absence for a graph element
n ∈ Gτ . Note that this static state that lasts N rounds,
starts at round k + 1, is preceded by a dynamism event
at round k, and is succeeded by a dynamism event at
k+N+1. Thus αnτ (k,N) = 1 denote a consecutive presence
of length N otherwise if αnτ (k,N) = −1 it is a consecutive
absence of length N

αnτ (k,N) =
1
2

[ψnτ (k, k + 1)−
k+N∑
j=k+1

ψnτ (j, j + 1)] = {1,−1}

B. Dynamism metrics and observation

In the following, we introduce metrics to analyze the
dynamism features describe earlier. We focus particularly
on the observation of the number of dynamism events and
on the duration of the static state either from our fine
grained measurement or from the inferred measurement.
Furthermore, we quantify the missed network topology
dynamism when inferring slower measurement rounds.

1) M1 - Number of dynamism events: This first
metric aims at counting the number of dynamism events
that occurs at each rounds of the entire measurement
experiment. We propose to count the number of dy-
namism events (appearance and disappearance) at each
measurement round. This information is also interesting
to evaluate the proportion of dynamism events compared
to the entire graph elements measured and its evolution in
time.

As explained earlier, an appearance or a disappearance
of a graph element can be captured only between two
consecutive rounds. If we consider to study the entire
dynamism events to be the sum of appearance and disap-
pearance of the entire graph elements between successive

rounds, we define Φτ (k, k + 1) =
n∑
j=1

|ψjτ (k, k + 1)| to be

the full dynamism events number between two consecutive
rounds.

We present in Fig. 2(a), 2(d) the results of our metric
for the entire number of dynamism events observed for our
fine grained and inferred measurements. For each rounds of
the fine grained measurement, we have obtained in average
a graph of 14,322 ips and 40,850 links. Furthermore, the
average number of total dynamism events observed for
the graph elements at each round is equal to 200 ips
and 1500 links. This results reflects that the dynamism
events represent a small proportion of the entire graph as
it involve only an average of 1.4% of all ips and 3.6% of
all links.

If we consider the results of M1 applied to all inferred
virtual rounds, we observe that probing less frequently

increases the number of dynamism events captured. For
example, we found that the average number of dynamism
events increased to 5.5 % for ips and to 12.2 % for
links when inferring measurements every 48 hours. As
expected, these results confirm that probing less frequently
accumulate a portion of the dynamism events that occur
during the measurement period which might falsify the
dynamism results captured. Nevertheless, we might miss
dynamism events with coarser measurement period if they
occur an odd-numbered of time; for example if an ip
disappears and reappears during the measurement period
we won’t consider it as a dynamism event. Moreover, if
a dynamism event occurs many times during a coarser
measurement period, we might underestimate the entire
number of dynamism events captured. Finally, the ob-
served results show a periodical behavior for dynamism
events that remains with the same periodicity with an
average period of 160 rounds (7days) for all fine grained
and inferred network topology.

2) M2 - Occurrence of dynamism state: This
second metric is about measuring the length duration
of consecutive presence for all graph elements. Thus, we

define dp(N, τ) =
n∑
j=1

K∑
k=1

(αnτ (k, k + N) = 1) to be the

number of presence duration of length N observed for all
graph elements ∀n ∈ Gτ at all rounds k ∈ [1, 1488]. This
should tells us if there is really much detail to observe
at finer time granularity and perhaps indicate where the
richest dynamism information are. Based on this metric,
we propose to analyze in Fig. 2(b), 2(e) the proportion
of continuous presence observed. For this purpose, we
calculate the CDF function P (dp(k, τ)) ≤ k of the con-
tinuous presence probability for all graph elements during
the entire experiment both for fine grained and inferred
virtual measurements. We found that in our fine grained
measurement typically 10% of the ips and 40% of the links
are present less than half a day (12 rounds). Then, as
we probe less frequently, we observe that the length of
presence for ips and links get longer; as for F48, 10% of the
ips have a presence length less than 20 days (500 rounds)
and 40% of the links have a presence length less than 37
days (900 rounds). Thus, this confirms that it is important
to probe at a finer time granularity as the information on
presence length can be dramatically distorted. Moreover,
probing every two days as in ARCHIPELAGO might miss
short presence ips and links thus been less exhaustive for
reporting dynamism features.

3) M3 - Probing frequency effects on dynamism
feature: The last metric that we propose to analyze is
dedicated to quantify the dynamism information missed
by probing slower than our fine grained measurement. For
that we compare the number of dynamism events captured
at a specific virtual measurement round to the sum of
dynamism events captured on consecutive fine grained
measurement rounds which correspond to the virtual mea-
surement round. The mathematical formulation of this
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(b) CDF presence length for ips
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(c) Proportion of missed dynamism events
for ips
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(d) Total dynamism for all Links
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(e) CDF presence length for links
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(f) Proportion of missed dynamism events
for links

Fig. 2. Results of the total topology dynamism events, presence static states and proportion of missed dynamism events observed for all
the graph elements at 6 different virtual frequencies (F1, F3, F6, F12, F24, F48)

metric is describe bellow.

∆(τy = yτ, k) =

k+y∑
j=k

Φτ (j, j + 1)

Φτy (k, k + 1)

We observe in Fig. 2(c), 2(f) that half of dynamism events
observed at F1 for links and ips are missed when probing
3 times slower. Furthermore, as we probe less frequently,
we miss more and more graph elements events; for in-
stance probing every 2 days (as does ARCHIPELAGO)
may reveal 15 times fewer dynamism events compared to
probing every hour. Thus, these results point out the need
for probing at a finer time granularity to avoid missing
dynamism events and to better capture Internet topology
dynamism.

IV. Conclusion and perspectives

In this paper, we present our analysis and results of
the network topology dynamism features and metrics. We
provided the important requirements to design an opti-
mized large scale measurement system, that is capturing
the most of Internet topology dynamism either short or
long term while lowering measurement load. We have seen
from our fine grained measurements, that we run at a
very frequent time basis over a large-scale measurement
system in Planetlab network, that dynamism events are a
marginal portion of the entire topology graph elements
as it represent 1.4% of all ips and 3.6 % of all links.

However, this information is crucial for understanding
network topology behavior (40% of the links and 10% of
the ips have a presence length less than half a day) and
for helping network operators to better identify network
topology dynamism. Furthermore, lowering the probing
frequency can dramatically affect the observed dynamism
as probing at ARCHIPELAGO’s frequency is missing
15 times the dynamism events that really occurs. These
results provide incentives to improve measurement systems
with more frequent probing to capture the most topology
dynamism details. Based on that, we follow new directions
to increase probing frequencies without increasing probing
load mainly by exploiting measurement redundancy and
dynamism aware probing as it is specified in our future
work where we design new efficient algorithms to better
capture Internet topology dynamism with very frequent
measurement frequency, low measurement load and better
accuracy.
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