
A Unifying Architecture for Easy Development,
Deployment and Management of Voice-Driven

Mobile Applications
Jakub Dolezal, Lukas Kencl

Department of Telecommunication Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague, Czech Republic

{jakub.dolezal, lukas.kencl}@rdc.cz

Abstract—With the advances in voice recognition and synthe-
sis, voice-interactive applications are reaching the mass mobile
market. However, creating, deploying or managing context-rich
voice-driven applications is complicated due to the scattered and
highly diverse nature of specific pieces of software, tools and
skills required for a complete system solution. To overcome this,
we propose a novel unifying architecture for easy development,
deployment and management of voice driven applications which
seamlessly integrates mobility and context-awareness, user- and
dialog-management, multi-modal interaction and continuous per-
formance measurement and evaluation. Finally, we validate the
architecture by stress tests examining possible bottlenecks.

I. INTRODUCTION

Over the last 20 years, the World Wide Web (WWW) has
established itself as a major platform for global information
spreading and sharing. However, WWW relies heavily on
text and visual representation of information, excluding the
visually impaired users and limiting others from engaging in
multiple parallel activities.

The challenge we focus on is to enrich the Internet ex-
perience by voice modality. This will lead to more natural
interaction emphasizing strengths of each modality, e.g. voice
as a user input and visual output for presenting results. In
addition to WWW, service-oriented approach is emerging as
a way for delivering information, offering the possibility to
process data in the cloud environment.

Voice modality differs from the well-known text or graphical
applications. Current approaches build on top of long-term
research of automated speech recognition (ASR) and text-
to-speech synthesis (TTS). In order to make both ASR and
TTS widely available in distributed networks, VoiceXML [1]
markup language and MRCP [2] protocol have been created
and adopted by many companies. However, special software
and skills are required for both development and deploy-
ment. Similar to conventional development, it is necessary
to handle code reusability and modularity. Latest progress in
virtualization, service-oriented approach and cloud computing
advantageously allows accessing and utilizing third party in-
frastructure for compute-intensive technologies, if needed.

This paper introduces a novel unifying architecture for
feasible development and deployment of voice-driven appli-
cations on large scale, targeting the mobile environment and

context-awareness. The architecture relies on the Web Ser-
vices paradigm, concealing all the specifics of voice modality
from the developer. Hence the voice-application developer is
required only to implement a few Web-Services, according to
the interface definition, and register them. The service registry
supports automatic discovery, simple semantic classification
and multiple access points for each service, hence services
can be switched in case of failure. To validate readiness for
mass deployment and scalability, performance evaluation of
possible bottlenecks has been conducted.

II. RELATED WORK

Our work has been inspired by several ideas. Context-
awareness is a subset of pervasive computing, addressing
user centered design by changing the behavior according to
user’s context (e.g. location). This design principle is deeply
analyzed in a survey of new opportunities to increase usability
in various deployments scenarios [3]. Various configurations
of mobile services architecture are proposed in [4]. The archi-
tecture includes REST/HTTP based access management for
both recognizer and synthesizer, targeting primary developers
familiar with voice driven applications. The authors of the
World Wide Telecom Web [5] envision an ecosystem for large
scale deployment of mutually-linked voice-driven applications,
as a parallel to the widespread WWW. The motivation is to
support emerging economies with low Internet penetration.

Design of speech interface for information retrieval is inves-
tigated in [6]. VoiceXML is used for dialog implementation.
The work also proposes handling large result sets, aiming to
document oriented information retrieval. Design of complex
dialogs in VoiceXML is considered to have drawbacks in [7].
The work proposes more productive and flexible approaches of
the design by introducing DialogXML, a declarative language
for dialog transitions, but it is still required to learn another
XML markup language. VoiceXML has been adopted for
information retrieval interfaces exploiting Wikipedia.org [8]
or virtually any WWW page by employing semantic partition-
ing [9], however these works introduce a one-purpose solution.
Our long-term research focuses on voice interaction within a
network infrastructure. Earlier, we have proposed and proved
useful the Voice2Web platform for convergence of VoiceXML



VoiceXML Interpreter

3G

Speech Recognizer (ASR)Speech Synthesizer (TTS)

VoIP

PTSN

Remote Service

PBX

Nexus node
GPS HTTP

Service Registry

PCM SIP

MRCP

G.711

SIP

HTTP

UDDI

Internet

Location Server

MLP

MRCP

SOAP

Fig. 1: Various client devices can reach the architecture, which is bounded by the red triangle, surrounded by telecommunication
infrastructure. The architecture utilizes user’s location and discovers available services. Based on service response, a VoiceXML
document is rendered and forwarded to the interpreter that consequently employs ASR and TTS. Bold formatted protocols
interconnections (UDDI, SOAP and HTTP) are evaluated in this paper.

services and WWW [10], letting developers create their own
applications effectively.

A system for large-scale development and deployment of
voice-driven applications is described in [11]. The system
allows non-technical people to create simple applications
employing voice. Service oriented platform for location aware
services is introduced in [12], however the platforms omits
dynamic service discovery and user interaction. Future ad-
vance of voice toward multimodal interaction is emphasized
in [13] as a integration of complementary modalities in order
to maximize strengths of voice, DTMF and haptic interaction.

III. ARCHITECTURE

The proposed distributed service-oriented architecture, con-
sisting of a Nexus node, remote services and a register, is
depicted in Figure 1. The Nexus node is the heart of the
platform, maintaining context and connecting services with
the registry that contains name, description, access URLs
and taxonomy for every deployed application and service.
Based on information retrieved from the services the Nexus
node renders a VoiceXML document that comprises both the
dialog structure and content and that is next interpreted by
a dedicated piece of software. During the interpretation, both
the recognizer and synthesizer are employed. The Nexus node
requests each service according to an interaction sequence,
identical for every application:

Initialization takes place at startup only, just after the con-
nection with the user is established. Record of the application
is found in the registry and its taxonomy is used as a key to
discover matching services that will later provide appropriate
information for dialog creation. 1. – 3. Settings, Location
and Authorization services are requested to get access policy,
user history, preferences and current location respectively. 4. –
Task selection service provides information to render selection
dialogs, consisting of one or more steps, each offering cascade
menus with tasks to select. Hence a selection may handle
even complicated user inputs. 5. – Task invocation service

is requested, user selection is passed as an input parameter,
so a service will return desired information according to
the selection. Invocation can be interrupted anytime to make
another selection.

Each of these five kinds of remote services is required
to comply to a given SOAP interface to enforce appropriate
behavior but to claim no requirements to implementation. This
approach facilitates modularity, service reusability and robust-
ness [14]. The registry offers both publishing and inquiry,
relying on the UDDI [15] protocol. Every application and
service is required to be registered via a web interface to
become visible to the Nexus node. A record per each service
can hold multiple access URLs, which are used sequentially
in case of runtime failure. The taxonomy consists of four sets
that describe application’s requirements and service’s abilities:
supported languages, places and locations, supported functions
and objects, manipulated by functions. Hence, appropriate
services can be discovered and switched at runtime.

A. Layer Model

The architecture introduces a four layer model similar to
ISO/OSI as shown in Figure 2. Each layer provides function-
ality for the layer above and encapsulates the used algorithms
or protocols. Along cloud support discussed above the layers
implements four further functions:

Mobility and Context-Awareness: The architecture is linked
with user’s environment and offers appropriate information
to the user. This is achieved by supporting GPS and Mobile
Location Protocol (MLP) [16] for interoperability with vari-
ous location services. Moreover, advanced user management
enables to monitor the user to suggest help, provide history of
previously selected tasks and remember preferred languages.
A list of known user’s locations is also stored at runtime, so
that more complex mobility analysis is feasible.

Dialog Management and Multimodality: The architecture is
capable to render advanced dialogs. This incorporates autho-
rization, multi-language support, speech rate adjustment, his-



tory navigation, intelligent confirmation based on recognition
results and many others. Rendering of these dialogs is fully
automated, however a developer can override the default ones
via service. Since speech recognition may be inaccurate under
noisy circumstances, the platform also supports synchronous
multimodal interaction, that in addition to voice takes also
advantage of DTMF.

Experimentation and Measurement: The architecture has
built-in support for tracking grammars and recognition results
in order to manage large scale experiments and monitor QoS.
A record for each result consists of list of candidates and
confidence scores obtained from a recognizer, language, GPS
location, timestamp and ID of the engaged operator. Recogni-
tion errors such as nomatch or noinput are also tracked. Huge
sets of records are exploited to analyze critical grammars and
to pinpoint noisy places. Such automated feedback is a great
hint for developers in order to deliver next generation of smart
voice driven applications.

Rapid Application Development: The architecture goes be-
yond traditional development of voice driven application.
It offers declarative approach of describing dialog content.
The dialogs are dynamically rendered according to available
choices to recognize or structured information to synthesize,
both received from a registered service. E. g. a developer
registers via WWW and implements a service to send sequence
of choices; the Nexus node then discovers the service in
registry, receives choices, renders grammar, handles result
confirmation and recognition errors. Hence there is no need
for a developer to learn VoiceXML.

IV. PERFORMANCE EVALUATION

To discover possible bottlenecks and performance bounds,
we conducted parallel access evaluation for protocols UDDI,
SOAP, HTTP and HTTP Cached employed by the architecture
as shown in Figure 1. The MLP protocol is not included
since its behavior depends on origin of location (GPS, mobile
network). Each protocol was evaluated by one scenario:
(i) UDDI is used to query the registry, that returns a list of
services found according to search criteria. The registry uses
MySQL database as a storage for services records.
(ii) SOAP, used by Task Service, provides a menu with 50
constant choices to select. This service has been created for
evaluation purposes only.
(iii) HTTP carries the VoiceXML document from the Task
Servlet to the VoiceXML interpreter. The servlet is a part of
the Nexus node, which is responsible for maintaining user-
context and rendering the VoiceXML document according to
information retrieved from the Task Service. The servlet also
tracks grammars and stores them into MySQL database.
(iv) HTTP Cached is a complementary scenario to HTTP,
providing low consumption of resources. Resulting VoiceXML
document generated by the Task Servlet is GZIP-compressed
and cached in memory upon first request and uncompressed
and returned upon following requests. Real life usage enables
fine-grained lifespan adjusting.

Dialog Layer

Context Layer
Experimentation,

user management

Registry Layer

Multi languages, 

confirmation, ...

Web-Service & MLP

Inquiry, Publish

Data Layer

User

Service

Developer

Fig. 2: The architecture comprises of four layers that discover
available services, contact them and retrieve information,
maintain user’s context and finally render voice dialogs.

We state a hypothesis to verify: HTTP communication will
be a bottleneck with the greatest overhead due to context
management and dialog rendering. Next, UDDI will also
bear a great burden, due to the massive join operations on
underlaying database. Conversely, times of SOAP will be
low, since only XML parsing and serialization is involved.
Finally, HTTP Cached will be lightweight, employing memory
accesses only.

A. Measurement Setup

Each scenario was performed separately five times during
the measurements. A stepping thread pool was employed for
simulation of parallel access. Every 24 seconds a new thread
was started, up to the total of 50 threads after 20 minutes of ex-
periment duration. After receiving a response, each thread slept
according to a Gaussian random timer, configured with mean
delay 300ms and variance 100ms. The Nexus node, registry
and service were all deployed on single machine (dual core
Pentium 4 CPU at 3.60 GHz and 2GB RAM memory) with
installed Tomcat servlet container [17], hence networks effects
were not considered. Tomcat was configured with maximum
heap size 1280 MB, 40 maximum threads. To eliminate an
impact of server start-up, each scenario was performed first
off-record to let Tomcat allocate enough threads. The request-
generating client was deployed on a separate machine, with
100Mb network connectivity.

B. Results

Response times were measured for an increasing size of re-
quest thread pool. The results for each scenario were averaged.
Next, transaction throughput T was computed by: T = S

R ,
where S is the size of the pool and R is the average response
time of 1 thread. The throughput is an estimate of maximum
transaction count per time for various size of thread pool.

TABLE I: Summary of response times for various scenarios

UDDI SOAP HTTP HTTP Cached

Requests [-] 85194 98536 22588 101266
Average [ms] 45.76 8.75 670.83 4.08

Min [ms] 14.40 6.00 44.66 3.00
Max [ms] 715.60 662.00 10976.66 697.00

Std. Dev [ms] 26.86 0.32 581.25 0.27
Percentile 95% [ms] 145.60 11.80 1455.66 5.20



5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

10
4

Size of thread pool

R
es

po
ns

e 
tim

es
 [m

s]

 

 
UDDI
SOAP
HTTP
HTTP Cached

((a)) Response time

5 10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

10
5

Size of thread pool

Tr
an

sa
ct

io
n 

th
ro

ug
hp

ut
 p

er
 s

ec
on

d

 

 
UDDI
SOAP
HTTP
HTTP Cached

((b)) Transaction throughput

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Size of thread pool

C
P

U
 u

til
iz

at
io

n 
[%

]

 

 

UDDI
SOAP
HTTP
HTTP Cached

((c)) CPU utilization

5 10 15 20 25 30 35 40 45 50
0

0.4

0.8

1.2

1.6

2.0

Size of thread pool

N
et

w
or

k 
ou

tp
ut

 [M
B

/s
ec

]
 

 
UDDI
SOAP
HTTP
HTTP Cached

((d)) Outgoing net traffic

Fig. 3: Overall results outlying average response times (a) and transaction throughput (b) are augmented by performance
analysis containing CPU utilization (c) and outgoing network traffic (d) for various size of the thread pool.

Figure 3 contains response times and throughput analysis
along with CPU utilization and amount of outgoing data.
The HTTP scenario, performed by the pool of more than 33
threads, caused exponential memory consumption repeatedly
growing into out-of-memory failure of Tomcat. All other
requests received a correct answer, having zero error rate.
Table I contains statistic insight into results, both average and
std. deviation were computed from averaged response times
over all sizes of the thread pool.

C. Discussion

Each new request is served by a thread, slower responses
for the larger thread pool are caused by parallelism overhead
and database access, as proven by the UDDI and HTTP
scenarios, where response times and CPU utilization are high.
Conversely, SOAP and HTTP Cached scenarios are lightweight
and easily scalable. Results of SOAP depends however on the
amount of payload transfered. To verify this, a configuration of
the scenario, carrying 600 choices to select instead of original
50, was investigated. The results indicate a maximum through-
put value at approximately 38 threads. The UDDI scenario
reaches maximum at 35, HTTP at 12 threads. This drawback
can be overcome by employing caching functionality. Our
hypothesis of the possible bottlenecks is thus verified.

Scalability can be viewed in two aspects: number of applica-
tions deployable and number of concurrent users. Application
scalability is achieved by combining distributed resources,
allowing for easy composition and execution of many parallel

services. The key scaling benefit is shown in the SOAP
scenario, which proves the architecture’s ability to maintain
cooperation with many web services simultaneously. In real-
life, the ASR would most likely become the bottleneck, how-
ever, it can be scaled individually, using standard techniques.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel architecture to facilitate large
scale development and deployment of voice driven applica-
tions. The architecture greatly reduces today claimed require-
ments and simplifies necessary effort to create such application
by employing a Web Service access to dialog creation. The
key benefit of this approach is the feasibility of creating voice
driven applications without knowledge of either VoiceXML or
dialog-design patterns. Web services are registered so they can
be dynamically discovered and switched in runtime. Therefore
the architecture is fully ready for cloud computing.

The architecture, currently deployed at our university lab-
oratory, serves for purposes of conducting experiments and
prototyping applications: a tourist guide navigator and an
assistant to visually impaired people. We also intend to open
the architecture to academic community in order to open up
an avenue for new ideas and solutions.

ACKNOWLEDGMENT

This research was supported by CTU grant
SGS11/123/OHK3/2T/13 and FRVS grant 2163/2011.
We wish to thank IBM Research and Vodafone Foundation
Czech Republic for their generous support.



REFERENCES

[1] W3C. (2007) Voice Extensible Markup Language (VoiceXML) 2.1.
[Online]. Available: http://www.w3.org/TR/voicexml21/

[2] IETF. (2006) Media Resource Control Protocol (MRCP). [Online].
Available: http://tools.ietf.org/html/rfc4463

[3] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” Int. J. Ad Hoc Ubiquitous Comput., 2007.

[4] G. Di Fabbrizio, T. Okken, and J. G. Wilpon, “A speech mashup
framework for multimodal mobile services,” in Proceedings of the 2009
international conference on Multimodal interfaces, 2009.

[5] A. Kumar, N. Rajput, D. Chakraborty, S. K. Agarwal, and A. A.
Nanavati, “WWTW: the world wide telecom web,” in Proceedings of
the 2007 workshop on Networked systems for developing regions, 2007.

[6] J. E. Gilbert and Y. Zhong, “Speech user interfaces for information
retrieval,” in Proceedings of the twelfth international conference on
Information and knowledge management, 2003.

[7] E. Nyberg, T. Mitamura, and N. Hataoka, “DialogXML: extending
VoiceXML for dynamic dialog management,” in Proceedings of the sec-
ond international conference on Human Language Technology Research,
2002.

[8] C. Kolias, V. Kolias, I. Anagnostopoulos, G. Kambourakis, and
E. Kayafas, “Design and implementation of a VoiceXML-driven wiki
application for assistive environments on the web,” Personal Ubiquitous
Comput., 2010.

[9] I. V. Ramakrishnan, A. Stent, and G. Yang, “Hearsay: enabling audio
browsing on hypertext content,” in Proceedings of the 13th international
conference on World Wide Web, 2004.

[10] J. Rudinsky, T. Mikula, L. Kencl, J. Dolezal, and X. Garcia, “Voice2Web:
Architecture for Managing Voice-Application Access to Web Re-
sources,” in Proceedings of the 12th IFIP/IEEE International Conference
on Management of Multimedia and Mobile Networks and Services, 2009.

[11] A. Kumar, S. K. Agarwal, and P. Manwani, “The spoken web application
framework: user generated content and service creation through low-end
mobiles,” in Proceedings of the 2010 International Cross Disciplinary
Conference on Web Accessibility (W4A), 2010.

[12] Y. H. Ho, Y. C. Wu, M. C. Chen, and A. Sinica, “PLASH: A
platform for Location Aware Services with Human Computation,” IEEE
Communications Magazine, vol. 48, pp. 44–51, dec 2010.

[13] Z. Trabelsi, S.-H. Cha, D. Desai, and C. Tappert, “A voice and ink
XML multimodal architecture for mobile e-commerce systems,” in
Proceedings of the 2nd international workshop on Mobile commerce,
2002.

[14] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal,
and B. Srivastava, “A service creation environment based on end to end
composition of Web services,” in Proceedings of the 14th international
conference on World Wide Web, 2005.

[15] OASIS. (2011) UDDI Version 3 Specification. [Online]. Available:
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

[16] P. Vlacil and R. Bestak, “Implementing Mobile Location Protocol,”
in 32nd International Conference on Telecommunications and Signal
Processing, 2009.

[17] The Apache Software Foundation. (2011) Tomcat Servlet Container.
[Online]. Available: http://tomcat.apache.org/


