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Abstract— On-demand service activation and deactivation has
made private cloud a platform of choice for enterprises. Private
clouds allow end users to request virtual machines along with a
lease period, during which the virtual machine will be utilized.
Automatic deactivation of virtual machines due to the expiry of
the lease leads to fragmentation of the cloud; a large number of
physical servers become operational with low utilization as virtual
machines have been deactivated. To optimize the use of resources,
clouds would need to periodically ‘de-fragment’ the cloud, leading
to performance implications. In this work, we propose a ser-
vice deactivation aware placement methodology, SD AP, which
places virtual machines in a way that minimizes the cost of
de-fragmentation in the cloud. Coupled with SDAP, we also
propose a low cost de-fragmentation methodology, Defrag, to
periodically consolidate the cloud. Using request traces from
a live production cloud, we show that SDAP and Defrag
can ensure high utilization in the cloud without expensive de-
fragmentation costs.

I. INTRODUCTION

The illusion of infinite computing resources available on-
demand coupled with the concept of pay-as-you-use through
Cloud Computing [2], [9] has transformed the dream of
computing as a utility into a commercial reality in the present
IT world. With clouds, enterprise and other software business
applications do not need a large initial capital outlay or worry
about over and under-provisioning of resources. Clouds are
witnessing favorable adoption from the software industry and
major web application providers are increasingly shifting to
this emerging concept.

One of the primary reasons for enterprises to move away
from traditional data centers are the high facilities cost. The
energy usage and environmental impact of data centers has
become a matter of significant concern [12]. According to [18],
48% of the total IT electricity cost is used to keep the data
centers running in USA alone. Traditional data centers are not
energy proportional, i.e., the power drawn by data centers is
not proportional to the amount of work done.

Servers are often characterized by the power model, which
captures power as a function of their utilization. Typical
servers draw a significant amount of power, even when they
are not utilized (upto 70% of the peak power [1]). Hence,
the power drawn by servers is not proportional to the work
done if the servers are not running at 100% utilization. In data
centers, server resources are allocated to workloads to cater to
their peak resource usage. The ratio between the peak resource
usage of an application and its average resource usage can be
as high as 10 [21]. Hence, typical server utilization in data

Akshat Verma
IBM Research, India.

centers is around 10% making them very inefficient in their
energy usage.

Dynamic consolidation or reconfiguration in virtualized data
centers has been a popular area of research and has helped
improve resource utilization and energy efficiency [13], [20],
[22], [11]. In dynamic consolidation, the resource usage for the
workloads are monitored and workloads consolidated periodi-
cally to the required number of servers. Dynamic consolidation
is useful for long-running enterprise workloads. Enterprise
clouds usually offer a more predictable lease-based model for
resource usage. A request for a new virtual machine in an en-
terprise cloud may often specify the duration during which the
virtual machine would be needed [10], [3], e.g., IBM SCE+,
CSP2, Cloupia, OpenNebula, Amazon Labslice to name a few.
Private clouds involve an approval for infrastructure requests
and includes the request duration of the virtual machine.
Hence, service deactivation is an important characteristic in
enterprise clouds. Recent research in this domain [16], [19]
establishes the importance of the lease time for reducing server
sprawl.

Placement in clouds has often focused on improving the
resource utilization of the servers. The placement problem
can be modeled as the classical bin-packing problem [6]
which is known to be NP-hard. The goal of the bin-packing
problem is to minimize the total number of bins (or servers)
used to pack a given number of balls (virtual machines in
our case). Hence, clouds implement variants of bin-packing
policies like first-fit or best-fit [8], [4] with the goal to reduce
fragmentation and improve the resource utilization. Heuristics
like the PCP [21] study the peak-requirement characteristics of
the applications and place complementary workloads together
in the goal to improve resource utilization. Improving the
resource utilization reduces the per-VM cost of resource
used. Further, since the power drawn by servers has a large
component that is independent of the actual usage, reducing
the number of servers reduces the overall power cost for the
data center.

However, due to service deactivation, virtual machines
may be deleted creating holes in the cloud infrastructure.
State-of-the-art cloud placement techniques are oblivious to
service deactivation and need to periodically consolidate or
defragment the cloud infrastructure. Defragmentation involves
consolidating the virtual machines to a smaller set of servers
and improving the resource utilization. In order for the de-
fragmentation to be transparent to cloud consumers, cloud
providers use live migration to migrate virtual machines [7],



[14]. However, periodic defragmentation using live migration
has associated performance costs [11], [20], [23].

In this work, we address the problem of placing virtual
machines in a cloud-based data centers, where virtual machine
requests have associated lease periods. We make the following
contributions.

A. Contribution

We propose a detailed model to capture the various costs
incurred for serving a virtual machine through its entire life-
cycle in a cloud environment. We identify resource costs,
skew costs, power-down costs, and defragmentation costs as
the key components determining the facilities costs incurred
by a virtual machine. We conduct an experimental study of
cloud requests and characterize the request patterns. Using the
insights drawn from our study, we propose a new placement-
scheme Service Deactivation Aware Placement (SDAP) and
a periodic defragmentation scheme to minimize the total
facilities costs of running all the virtual machines in the cloud.
SDAP uses the leases of the existing virtual machines in the
cloud to identify the best candidate server for placing a new
virtual machine. Using a real trace of cloud requests over a
period of 1 year, we evaluate SDAP with state of the art
placement schemes in the cloud. We observe that SDAP
outperforms First-Fit based schemes and reduces the number
of migrations by more than 30%.

The rest of the paper is organized as follows. In Section II,
we provides a model and formulation of the placement prob-
lem in cloud. We study cloud requests from a live cloud and
identify some salient characteristics in Section. III. We present
the SDAP and defragmentation algorithm in Section IV. In
Section V, we present an evaluation study using a 1 year long
trace of cloud requests to an operational cloud. We compare
our work with the related work and conclude with our key
observations in Section. VL.

II. MODEL AND PRELIMINARIES

In this section, we present the optimization problem ad-
dressed in this work.

A. Problem Formulation

We consider an enterprise cloud (extensible to public
clouds), where customers request for virtual machines (VM).
The request captures the resource requirement and a lease
period. A cloud placement algorithm creates a VM on a
target server to maximize the efficiency of the data center and
minimize the additional power and operational costs. After the
expiration of a VM’s lease, it is deallocated from the hosting
server. The deallocation actions lead to fragmentation of the
datacenter. The server thereby run at lower utilization levels
until additional VMs are allocated to it.

In order to increase the utilization, clouds may periodi-
cally defragment the cloud. During the defragmentation, VMs
are migrated from low utilization servers to high utilization
servers. If all VMs hosted on a server are deallocated or
migrated, the server can be shut down to reduce power. Hence,

defragmentation improves the overall resource utilization in
the data center and reduces power costs.

However, a VM migration incurs a cost and in real appli-
cations, such live migration costs are a major deterrent. In
this paper, we propose a novel placement algorithm such that
the total number of migrations during the ‘Defrag’ phase is
reduced. We also show that this intelligent placement proce-
dure, in addition, also reduces the average power consumed
with a higher utilization of the datacenter.

B. Server Characteristics

Each server of the datacenter is characterized by the total
amount of CPU cores and memory capacity, represented
as Cyyae and M, ., respectively. The power drawn by the
compute elements of a server are characterized by CPU power
intercept Pf and the CPU power slope P¢. PP captures
the power consumed by the server cores at idle state (or 0
utilization), while PS captures the rate at which the power
usage increases per unit CPU capacity used in the server.
Similarly, we define P/ and P" to capture the memory power
intercept and the memory power slope respectively.

The CPU power characteristics are determined by the model
and family of the server, e.g., a blade server may consume
lesser static power than a rack server and have a lower Pf.
However, it may have a higher power-proportionate and thus
a higher P¢. The memory power parameters are likewise
determined by the type of RAM used by the server, i.e., DDR2
or DDR3 etc. These parameters characterize the overall power
consumed by a server, while it is operational. Since servers
may also be switched off, we also consider the duration ON
for which a server is powered on. The ON period of a server
includes the time during which at least one active VM is placed
on it.

C. VM Characteristics

A request for a virtual machine R; is characterized by
its CPU core and memory demands, denoted by C; and M;
respectively. The request also contains information about the
lease period for the VM using its start time 7 and the end
time 7. In this work, we propose that the placement algorithm
should take into account 7, of the VM and existing VMs in
addition to the resource requirements. Placement algorithms
often consider over-commitment of the resources by sizing
each VM (workload) to an off-peak value (e.g., 95 percentile
CPU/Memory). We are oblivious to a sizing algorithm and
use any provided VM sizes as input to SDAP. Hence,
both SDAP and Defrag work independent of whether the
resources are over-committed or not.

We also use a live migration cost function to capture the
cost of migrating the VM. The live migration cost of a VM is
typically captured by a function of the current CPU utilization
of the host server and the active memory used by the VM [23],
[24].

The overall goal of the placement problem is to minimize
the total data center cost, which includes the operational cost
of the data center resources as well as the migration cost.



III. UNDERSTANDING CLOUD REQUESTS

Clouds provide a new compute model to end-users. In this
section, we study the nature of virtual machine requests made
in clouds.

For the study, we used the request log from IBM Research
Compute Cloud (RC2) [3]. IBM RC2 is a cloud computing
platform for use by the worldwide IBM Research community.
It allows users to request for virtual machines hosted on
KV M, Xen or pHyp hypervisors hosted on IBM X-Series
and P-Series blade servers. The storage for the hosts is
provisioned from a SAN. The cloud supports a large number of
users and VM instances (many hundreds). We obtained a log
of all requests made to RC2 from October, 2009 to October,
2010. Each request entry consisted of the following fields:
(1) VM ID (ii) creation date for the VM (iii) expiry date for
the VM (iv) number of cores needed by the VM and (v) the
amount of memory needed by the VM. The total number of
VM requests made over this one year period exceeded 10000.
Hence, we believe the request log is fairly representative of
typical cloud request patterns.

100 |

.
SRS Hist +
e Expcnemla\l(sﬁ:%’g; """"
b 3
oy
g 10f " +ﬁﬁ%
; HHH
: Y, H

0.1

L LN
1 10 100 1000
# of Arrivals

Fig. 1. Histogram of the number of arrivals

We first studied the arrival pattern of the requests. One of
the most important things we wanted to study was whether
requests to a cloud came in large bursts. Large bursts would
imply that the total resources used the cloud would suddenly
increase. Hence, when the requests went away, the resources
would be freed up. Hence, bursty arrival rate would require
fairly frequent defragmentation to reduce facilities cost. We
divided the entire trace into 12 hour periods and computed
the number of requests made in each 12 hour period. Fig. 1
captures the histogram of the number of arrivals. We observed
that the probability that D requests would arrive in a period
falls exponentially with D. Hence, we conjectured that the
arrival distribution is exponential in nature. To confirm this
conjecture, we also plotted an exponential distribution and
observed that an exponential distribution with o = 1.05 fitted
the distribution very well.

We next studied the distribution of the lease period for
the virtual machine requests. If the lease periods are stable,
then defragmentation is not a big issue. This is because most
requests would expire after similar times. Hence, a first-fit
mechanism can work well by always placing new virtual
machines on the first available servers. We observed that
the lease period distribution is very heavy-tailed. In fact, we
initially conjectured that, similar to many web workloads,
lease durations would fit a lognormal distribution. However,
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Fig. 2. Histogram of Lease Periods

we observed that lease periods were even more bursty than
lognormal. Hence, we fitted a power law distribution with a
high burst factor (a = 0.05) and found it to fit the distribution
well (Fig. 2). Hence, lease periods in cloud are fairly bursty.

Our study helped us to draw two very important insights.
We noted that very frequent defragmentation may not be
required since the arrivals are not bursty. However, due to high
variation in lease periods, it is important to include the service
deactivation, while coming up with a placement decision. We
next propose a placement scheme that is designed based on
these insights.

IV. ALGORITHM

In this section, we discuss the Service Deactivation Aware
Placement SDAP algorithm. The algorithm is inspired from
our workload characterization study and incorporate service
deactivation during a VM’s placement. We next present a
novel break-up of the overall data center operational resource
costs and defragmentation costs, which helps us to solve the
problem.

A. Cost Parameters

We present an alternate representation of the total data
center costs, which captures the impact of service deactivation.
The alternate representation still accurately captures total data
center costs but allow a more natural interpretation. Our
placement algorithm uses this cost model to come up with
an efficient placement. We divide the total data center cost
into four cost components.

o Operational Resource Cost (RC): The operational re-
source cost captures the operational cost of resources
used by a request VM to a server containing enough free
resources to accommodate the VM. RC' depends on the
amount of CPU cores C' and memory M requested by the
VM and is given as C' Py + M P[". If the server did not
have any VMs already placed on the server, we also add
the static power intercepts P and P to RC. This is
multiplied by the lease duration of the server to estimate
the cost during the lifetime of the VM. In this work, we
only use power to capture the resource cost. However, the
intercept-slope model can be used to capture other costs
such as space and labour.

o Skew Cost (SC'): Applications may be CPU-intensive or
memory-intensive. Skew Cost is used to capture wastage
of one resource because the server was bottle-necked by



the other resource. To reduce the wastage of resources
of the datacenter, ideally we would like each server to
have a perfect mixture of CPU and memory-intensive
applications. We define the application skew of a server
as the ratio of memory to CPU core usage. Closer the
skew is to the ratio of total memory to total number of
cores, lesser is the resource wastage. SC' computes the
resource wastage cost incurred by placing the VM on a
server and equals the cost of wasted resources.

o Power-down Cost (PC): Placing a VM on a server may
prevent the server from being switched off later. Hence,
placing a VM R; on a server leads to a loss of potential
shutdown in the future and an increase in ON period. We
capture this effect by the Power-down cost for a server.
To estimate PC, we find an existing VM on the server
with the largest end time 7). If the ending time of the
new VM’s lease 1" is greater than 7%, the server loses the
opportunity to shut down in the period T — T*. Hence,
the power-down cost is computed as (P + P ) (T: —T7).
If T? < T7, then the ON period for the server does not
change and PC equals 0.

o Defrag Cost (DC'): When a server is ‘defragmented’, we
incur the migration costs of the VMs of the server minus
the power cost used by the VM. So, if the current VM is
allocated to a server that is a candidate for the ‘Defrag’
procedure in the next period T, then we experience an
extra cost for migrating the request VM also. If the lease
time of the VM ends at time 7! before the next defrag
period Tp, then there exists no such costs. Hence, DC'
computes the potential extra migration cost by placing
the VM on a particular server. Formally, we estimate
DC as ppMC; if Tei > Tp and 0 otherwise, where pp
is the probability that the server will be ‘defragmented’.
pp is calculated empirically using a distribution of the
aggregate resource requirement.
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Cost parameters.

We elaborate the 2 new cost parameters PC' and DC' using
an example in Figure 3. In this example, we have three separate
running candidate servers (A, B, and C) with a set of existing
VMs. Consider a request for a new VM5 to be placed. The
lease time of VM5 is longer than any of the VMs allocated
to Server B. Thus, if VM5 is placed on Server B, then the
server will be denied a chance of shutting down after time 7°0.
Hence, by placing VM5 in Server B, we incur the extra cost
of running the server longer than it may be required. This is
incorporated as the Power-down cost (PC').

Similarly, we find that Server C has low utilization, and
hence forms a good candidate for defrag (high pp). Further,
VM1 in Server C expires before the defragmentation is
started at 7’1, and hence its utilization further decreases. The
defragmentation procedure would then try to migrate VM2
from Server C, and shut it down. This would improve the
efficiency of the datacenter and reduce the cost. However, if
we were to place VM5 in Server C, which has a lease period
beyond T'1, then during the defragmentation period we will
have to migrate the extra VM placed. This cost is represented
by the Defrag Cost (DC).

Server A has high utilization and hence the probability that
it will be defragmented is low. Similarly, it incurs no shut-
down cost as the ending time for V' M5 is less than an existing
VM, V M 3. Hence, Server A has no shut-down cost or Defrag
cost. Hence, a placement algorithm should prefer Server A
over both server B and server C, while placing V M5.

We next present an algorithm that uses the above cost
parameters to place VMs on a server that minimizes the sum
of all these cost parameters.

B. SDAP Algorithm

The Service Deactivation Aware Placement (SDAP) al-
gorithm helps to intelligently place application VMs into the
datacenter guided by their request and cost parameters to mini-
mize of the number of live migration during ‘Defragmentation’
procedure, while ensuring that the power cost of the data center
is minimized.

Given a request virtual machine characterized by its re-
source requirement and also the period of its lease, SDAP
initially finds all the servers in the datacenter that are candi-
dates to host the VM. That is, it recognizes the servers that at
least have the free resources to meet the demands of the VM.

For each of the servers, SDAP then calculates the total
cost that would be incurred if the VM is to be placed in it.
The total cost is obtained by the sum of the cost parameters
described earlier, i.e., RC'+SC + PC + DC. The VM is then
placed on the server which offers the minimum total cost.

It is interesting to observe that RC will be the least in the
most power efficient servers, which also have a lower idle
power consumption. Hence it ensures that the efficient servers
run at higher utilization levels. Also, unless the running servers
do not have enough resources to host the VM, new servers will
not be started, as it would additionally incur the startup cost.
This keeps the number of running servers to the minimum. SC
will be least if the CPU and memory intensive applications are
equally mixed in the target server. Minimizing PC ensures that
we minimize the ON time for the servers in the data center,
reducing the total power cost. Minimizing DC' ensures that we
place the VM on a server that is less likely to be defragmented.
Hence, we are able to minimize the number of migrations.

The cost parameters for the candidate servers is determined
by the placement of existing VMs on the server. Hence, these
parameters change with the activation or deactivation of any
VM on any server. Hence, we recompute these parameters for
each placement request.



C. Defrag Algorithm

On-demand service activation and deactivation of the virtual
machines is characterized by their lease period. After the
expiry of the lease period, the allocated resources become
free. This leads to fragmentation of resources in the servers of
the datacenter. To optimize the utilization of the servers, the
datacenter thus has to be periodically “defragmented”.

In the ‘Defrag’ procedure we first compute the defrag cost
DC of the servers that are running at the current time 7. Let
us assume that M servers are operational at time Tp. DC' for
a server is computed as the sum of the migration cost of all
running VMs on the server at time Tp. The servers are sorted
in descending order of their DC. We then scan the sorted
list and find the minimum number of servers S,,;, that have
enough CPU and memory resources to host all the VMs active
at time T'p. The first S,,,;,, servers are tagged as Receivers. We
then pick the M — S,,;, lowest utilization servers, tag them
as Donors, and start defragmentation (with the lowest utilized
server first).

The VMs on the candidate Donor server are then assumed
to be removed. We place the VM using SD AP with the can-
didate target servers restricted to the S,,;, highest utilization
servers. If the Donor servers are not able to accommodate all
the VMs due to fragmentation, the limit .S,,;, is increased
by 1 and the highest utilized Donor server is added to the
Receiver set. Once all VMs from the Donor servers are placed
on Receiver server, the corresponding placement is selected.
We then migrate the required number of VMs to achieve the
selected placement.

We conduct experiments with real datacenter production
traces, and report in later sections that the SDAP algorithm
help to reduce the migrations encountered during the ‘Defrag’
process. We also show that SDAP also leads to reduced
operational costs and increased efficiency of the datacenter.

V. EXPERIMENTS

In this section we discuss the experiments performed to
benchmark the performance of Service Deactivation Aware
Placement (SDAP) and Defrag procedure. We perform a
trace-driven evaluation of the proposed algorithms. We first
describe our experimental setup.

A. Experimental Setup
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Fig. 4. Number of active VMs with Time

We use request traces from a live production cloud, IBM
Research Compute Cloud (RC?2). For each cloud request, the

trace captures the resource demands, start time, end time and
its lease period. The trace captures all the requests made to
the cloud over a period of 1 year. We show all the active VMs
with time in the cloud in Figure 4, depicting that the cloud
is in a growing phase currently. However, there are intervals
(e.g., ttme > 8000 in Fig. 4), when the number of VMs are
mostly steady. We note that a growing cloud is an adversarial
scenario and SDAP would perform same or better when the
cloud is in steady state.

[ Family | CPU Cores [ Memory (GB) |
HS20 Blade 8 24
IBM x3200 8 24
IBM x3400 12 36
HS21 Blade 16 48
IBM x3550 32 96
IBM x3950M2 64 192

TABLE I
SERVER MODELS USED IN THE CLOUD

We simulate a datacenter scenario with 6 different server
models. We use servers across 3 generations to capture di-
versity. Further, we consider both rack and blade servers in
our evaluation setup. The various server models and their
configuration used in our evaluation is listed in Table I. Our
experimental setting also consisted of various cost parameters,
which simulate the actual costs incurred in the cloud. We
place the requests from the trace and use SDAP to place
each VM on candidate servers in the cloud. We also invoke
Defrag periodically and use the parameter Tp to capture
the defragmentation period. We list out the baseline setting in
Table II.

[ Parameter [ Base Value |
Power cost per unit (3/KwH) 0.12
Per CPU core cost ($/perhour) 0.3
Per GB memory cost ($/perhour) 0.2
Migration cost per core 0.5
Migration cost per GB 0.4
Defrag Period T 2hrs

TABLE II

BASELINE EXPERIMENTAL SETTING

To understand the relative performance of our algorithm,
we also implemented F'irst — F'it algorithm. First-Fit is
the most common algorithm used in public clouds and cap-
tures the state-of-the-art implementation techniques, hence
we benchmark the proposed procedure against it. For the
First-Fit procedure, the servers are sorted in order of their
power wastage cost and the first server in the sorted list
having enough free resources (both CPU and memory) to
accommodate the request VM is selected as the host server.
Further, the ‘Defrag’ procedure is run on both SDAP and
First-Fit to provide a fair comparison between the two.

Both the algorithms were implemented in Java and evaluated
on an Intel Core 2 Duo processor with 3 GB memory. We also



varied the parameters from the baseline setting to explore the
performance of the algorithms under a wide variety of settings.
We report the cost parameters over each defragmentation
period T and report our findings.

B. Baseline Evaluation
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Figure 5 shows the average number of cores that are
powered on per defrag period. The numbers take into account
both the cores that are being used and also those that are idle.
So, better the consolidation, lesser is the number of servers
used and hence lower is the number of cores using idle power.
SDAP and First — Fit roughly exhibits the same behaviour.
Hence, defrag reduces the power wastage to minimum in both
the procedures, eliminating fragmentation by VM deallocation
due to lease period termination. The same scenario is observed
in terms of memory usage, as shown in Figure 6.
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The salient feature of the proposed method is that it encoun-
ters lesser number of migrations during the defragmentation
phase. This is due to the initial intelligent placement of the
requests taking into account the various cost factors. These
also include the service deactivation parameter. In Figure 8 we
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Fig. 8. Migrations encountered in SDAP.

observe that we indeed witness far lesser number of migrations
as compared to the first-fit protocol, shown in Figure 7.
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Fig. 10. The cost of migrations in SDAP.

We also observed that the migrations in SDAP and
Defrag mostly took place from the servers which were
underutilized. As the migration cost of a VM is also dependent
on the current CPU utilization of the server, a low utilized
server which experience a lower live migration cost compared
to a heavily loaded one. Based on fewer number of migrations,
smart initial placement and efficient choice of servers to defrag
we incur lesser overall migration cost when compared to that
of the first-fit procedure. This can be observed from Figures 9
and 10.

Figure 11 shows that we consume lesser average power
cost compared to the competing algorithm. SD AP uses lesser
number of servers to allocate all the request VM, than the first-
fit method. Hence, we observe a lesser operational cost of the
datacenter.

C. Sensitivity Analysis

In order to experiment the robustness of our proposed algo-
rithm, in this section we vary the parameters from the baseline
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as the defragmentation period T is increased. However, the
number of migrations stabilize at approximately 80 hours.
Similarly, the power drawn by the data center may increase
if defragmentation is infrequent. However, we observe that
the power cost is stable until 7p is increased beyond 90
hours. Hence, for the above workload, a defrag periodicity
of approximately 80 - 90 hours achieves the right trade-off
between migration cost and power cost. We also note that
S D AP outperforms the first-fit algorithm for the entire range
of the experiment.
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Consolidation or ‘defragmentation’ of a datacenter is costly
in terms of computations, time as well as live migrations
taking place. Further, this procedure needs to be fired period-
ically to keep the datacenter running efficiently. If ‘Defrag’
is performed too often, it may lead to a large number of
migrations without a corresponding increase in efficiency. This
is due to the fact that the datacenter scenario has not changed
significantly from the time when defragmentation was last
performed. On the other hand, if consolidation is far and few,
mostly the datacenter will be running a large number of servers
and will also be underutilized. This leads to inefficiency and
surging operational cost.

Hence, we vary the periodicity of the ‘Defrag’ procedure to
observe the trade-off between the two situations. Figure 12
shows the variation of the number of migrations and the
migration costs incurred with the periodicity for both the
procedures. Figure 13 shows the power drawn for the same
experiment. We observe that the total migration cost reduces
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Fig. 15.

Power cost incurred.

Next, we vary the request VM sizes and observe the
migrations and power cost incurred. The results are reported
in Figures 14 and 15. We observe that as the VM sizes
increases the number of migrations increases. Since, for larger
VMs the fragmentation due to deactivation is significant and
migrations of other VM become necessary for running the
datacenter efficiently. However, as the VM request sizes further
increase, the number of migrations drop as now each server
can accommodate only a single VM on average. So, even
deactivation of a large VM may completely free up the server
which can be powered down. Hence the migrations drop and
become constant after that.

We also observe that the migration cost encountered exhibits
similar behaviour, increasing upto a certain limit with increase
in VM request sizes and then becomes constant. SDAP is
seen to observe lesser number of migrations and hence lower
migration costs than the first-fit procedure.

As the VM resource request size increases, a server can
accommodate lesser number of VMs. Hence to allocate all
the VMs, higher number of servers should be running in the
datacenter. This leads to an increase in the power cost of the
datacenter, as shown in Figure 15. Again, SD AP outperforms
First-Fit for the entire range of the experiment.
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We now vary the capacity of the servers in the datacenter.
As the size of the server increases, more VMs get packed
into each server reducing the number of servers running in the
datacenter. This leads to a decreased in the power consumption
cost in the datacenter, as shown in Figure 17.

Figure 16 shows that the migration cost decreases with
increase in server size. The number of migrations decreases
with increase in server size because we get fewer servers to
consolidate as the number of active servers are reduced. We
again observe that SDAP encounters lesser migrations, lower
migration and power cost as compared to first-fit procedure.
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Fig. 18. Effect of lease time extension on power cost incurred.

We study the effect of lease period extension of the VMs
on the total power cost in Fig. 18. Here, we extend the lease
duration for 50% of the VMs selected uniformly and randomly.
As SDAP and Defrag rely on the lease period of the VMs
for the various cost factor affecting the VM placement, we
observe an increase in the total power cost incurred by SDAP.
However, the amount of extension of the lease duration does
not seem to have any significant effect. We observe a similar
behaviour with varying number of VMs extending their lease

time. The more the number of such VMs, the larger the initial
increase in the total power consumed. However, SDAP still
performs better than First-Fit.

VI. RELATED WORK AND DISCUSSION

Automated provisioning and placement is a defining feature
of clouds today. Placement techniques in publicly available
cloud platforms focus on reducing fragmentation and use bin
packing heuristics like first-fit or best-fit. Placement in virtual-
ized data centers take a more rigorous approach to placement
and use monitored data to come up with optimized sizing
and placement [S5]. Verma et al. [21] propose Peak Clustering-
based Placement (PCP) that improves resource utilization by
placing complementary workloads together. However, all these
techniques implicitly assume that the workloads are permanent
and do not take the finite lease period of the virtual machines
into account.

Dynamic consolidation has been a popular technique to
improve resource utilization of virtualized data centers. A
dynamic consolidation approach monitors the resource usage
of all the VMs, periodically re-sizes and places them on a
minimal set of servers [20], [13], [15]. In order to transparently
reconfigure the data center, these techniques use live VM
resizing and live VM migration. Such an approach ensures that
the servers in the data centers always run at high utilization
and adapt to variation in workload demands.

Frequent adaptation of workloads in virtualized data centers
has associated overheads. Some of the dynamic consolidation
techniques model the impact of live migration on the perfor-
mance of applications and minimize the number of migrations
[20], [11]. Verma et al. model the impact of live migration
and present recommendations to minimize the impact of live
migration during consolidation [23].

Improving the power efficiency of data centers has been
another popular area of research. Most dynamic consolidation
techniques share the goal of reducing the power consumption
in data centers. Ranganathan et al. present a technique using
DVFS to budget an ensemble of blades, allowing the individual
blades to operate at higher power efficiency [17]. The Brown-
map system uses both DVFS and live migration to ensure that a
data center operate within a power budget, while maximizing
the performance of the applications [22]. However, none of
the earlier work in cloud placement or consolidation take into
account the lease periods, which can be leverage to minimize
the impact of reconfiguration.

In this paper, we present the first characterization of cloud
virtual machine requests. We propose the novel SDAP algo-
rithm to place applications in a public cloud setting. SDAP
takes into account service deactivation to come up with a
placement that minimizes the number of migrations, while
reducing the power cost of the data center. We also propose a
low-cost defragmentation procedure that uses live migration to
consolidate a cloud with the minimum number of migrations.
We perform extensive experiments to evaluate the performance
of the algorithms with state-of-the-art placement algorithms
and establish their effectiveness.
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