
 Cross-Layer Cluster-Based Data Dissemination for

Failure Detection in MANETs

David Kidston and Li Li

Canada Communications Research Centre

Ottawa Canada

{david.kidston, li.li}@crc.ca

Walee Al Mamun and Hanan Lutfiyya

Department of Computer Science

The University of Western Ontario

London, Canada

{walee, hanan}@csd.uwo.ca

Abstract— Node failures may be frequent in MANETs, but there

can be many different causes for those failures. Nodes may lose

power, crash, or simply move out of range of other nodes in the

network. Identifying the root cause is complicated by a lack of

fixed monitoring and analysis infrastructure. Past research has

focused on monitoring using either ping, heartbeat, or gossip-

based approaches, which can incur significant network wide

overhead. This paper proposes a novel k-hop cluster based data

dissemination scheme that can piggyback on routing messages for

more efficient detection of failures including node disconnection.

In this scheme, nodes forward their neighbour-hood observations

to a per-cluster failure detector based on the observed spanning

tree. Simulations show that detecting disconnected nodes using a

cross-layer implementation of the data dissemination scheme is

more efficient while an application layer implementation is faster.

This effect is more pronounced in sparse networks.

Keywords- cross-layer, data dissemination, network efficiency,

failure detection, MANET

I. INTRODUCTION

A mobile ad hoc network (MANET) is an autonomous

system of mobile nodes connected by wireless links. Wireless

links provide lower bandwidth and higher error rates

compared with fixed networks. These nodes may be resource

constrained, have limited battery power, and because of

mobility must continuously monitor and react to changes in

their transmission neighbourhood.

The combination of self-organization and resource

constraints suggests the need for self-management and

adaptation. One aspect of this is recognising and being able to

react to system behaviour that deviates from the desired

behaviour. This is referred to as a failure or symptom. The

cause of a failure is a fault or a root cause. A symptom by

itself should not necessarily be used to determine a corrective

action since a symptom may be explained by more than one

fault. Fault localization is the process of taking a set of

observations of system state and using these observations to

determine a fault.

Fault localization in MANETs is complicated by its dynamic

topology. At a given point of time t, the topology of the

MANET can be described as a directed graph Gt = (Vt,Et)

where Vt is the set of nodes and Et is the set of links at time t.

For any two nodes u,v Vt, (u,v) Et, if the transmitter of u

can reach v. The nodes u and v are said to be one hop

neighbours. MANET topologies may change for a variety of

reasons other than node mobility: a node’s battery may be

down, a node’s radio transmitter may fail, a node may be

shutdown, etc.

Previous research in failure detection in MANETs typically

used either a unicast heartbeat-based data dissemination

approach, which has high network-wide bandwidth overhead,

or more recently a gossip-based dissemination approach with

increased delay [4]. Previous work in this area has provided

only limited analysis of the impact of mobility on data

dissemination for the detection of faults.

This paper proposes a novel protocol for data dissemination

within a cluster such that all observations are received at the

cluster head with minimal overhead. The detector acts as a

cluster head for a cluster where no node is more than k-hops

away (k-cluster). By building a spanning tree rooted at the

detector, changes in connectivity detected by any node can be

quickly and efficiently collected for further analysis at the

detector using a data gathering protocol. This allows decision-

making to be carried out by the cluster head since it has the

information to build models that provide a global perspective

of system behaviour. We have simulated two related

approaches to this scheme. The first is a standalone

implementation which produces its own messaging. The

second uses extensions to Ad hoc On Demand Distance Vector

(AODV) routing protocol. By adding a detection extension

header to existing routing messages, the protocol can operate

with even lower overhead.

The remainder of the paper is organized as follows. We

continue in Section II with an overview of the related work on

data dissemination schemes for failure detection in MANETs.

Section III provides a description of our proposed data

dissemination scheme. Section IV introduces a case study

based on detecting nodes that lose connection to the rest of the

network. In Section V we describe the Qualnet-based

simulation of this case study and evaluate the two approaches

of our proposed scheme. The paper ends in Section VI with a

summary and a discussion of future work.

II. RELATED WORK

There is considerable previous work on failure detection in

MANETs. The following is a discussion of work focusing on

information collection and dissemination techniques.

A) Ping- and Heartbeat-Based Approaches

Ping-based architectures for network fault detection use

detector nodes to send “are you alive?” messages to which

receiving nodes must reply within a certain amount of time or

be considered as failed. The selection of detector and receiver

nodes can be fixed in advance, dynamically assigned [9], or

randomised [1]. These solutions are easy to implement but

have the disadvantage of having both a ping and reply per

monitored node that must traverse limited bandwidth and

error-prone links.

Fault detection can be achieved with half the transmission

overhead using a heartbeat architecture where receiver nodes

send unsolicited “I’m alive” messages to detector nodes. A

detector that does not receive a heartbeat after a certain

timeout considers the sender to have failed. In MANETs

heartbeat based architectures often have multiple detectors that

collaborate in an overlay [8], where detectors with a defined

set of nodes to monitor periodically sense each other’s

heartbeat messages as well, or in a fully distributed manner

[13], where each receiver sends heartbeat messages towards

the sender, recruiting other nodes on the path to localise where

a failure occurs.

If we take the example network on the left in Figure 2, a

ping-based architecture would require that the cluster head

(node A) send a ping message to nodes B, C, D, E, F, and G

and then a reply is sent back from each node to A. A

heartbeat-based approach would require all other nodes to

periodically send updates directly to A. Our approach reduces

the number of heartbeat messages needed by using a spanning

tree to aggregate information from each node as probes are

forwarded towards the detector. This increased message

efficiency comes at the cost of potentially increased detection

delay.

B) Cluster-Based Approaches

A method for detector nodes to collaborate and reduce

messaging overhead is to divide the network into dynamic

clusters such that each detector is close to the monitored

nodes. For example, in the scheme described in [16], all nodes

first broadcast a heartbeat message and then a digest message

summarising each nodes view of who was heard in the first

phase. This is followed by a health status update from the

cluster head identifying the failed nodes based on the analysis

of the digest messages. Since messages are confined to the

local cluster, this provides more efficient messaging. This

solution assumes static single-hop cluster membership (no

mobility). Our approach explicitly considers the case of both

multi-hop clusters and node mobility. This allows us to

determine if a node has failed as opposed to becoming

disconnected from the MANET (see case study).

The data collection module in [5] uses a cluster head election

approach to identify a single detector node. It builds a tree for

collecting information from normal nodes and aggregating

before sending it towards the detector in a similar fashion to

our work. The difference in this case is that this work focuses

on intrusion detection while we are focusing on node failures.

C) Gossip-Based Approaches

Yet another method for multiple detectors to collaborate is to

use the gossip (epidemic) protocol to globally distribute and

evaluate heartbeat messages. Gossip protocols typically

broadcast information from the local node and from any gossip

from other nodes it has heard about within its one-hop

neighbourhood. Failure detection work that uses some form of

gossip protocols MANETS includes [2], [3], [5], and [15].

Most related work in this area assumes a static topology (no

mobility) allowing the global network information to converge

in a reasonable amount of time. However, the work in [2]

takes a broadcast-based approach that can deal with limited

mobility. Using a 1-hop reliable broadcast, this method is able

to detect both hard and soft faults in MANETs. By comparing

the outcomes to proscribed test tasks returned by different

units (neighbouring nodes), faults in those units can be

detected. While this method works well for detecting errors in

individual nodes, it does not scale up to network wide failures

and is not appropriate for detecting node disconnection

III. DATA DISSEMINATION SCHEME

This section describes our approach for data dissemination

by the cluster head. The approach is based on the construction

of a spanning tree for the nodes in a cluster. Topological and

other failure related information is gathered using this tree.

The approach is briefly described in this section.

 The decision on how to respond to a failure is based on the

type of fault. This analysis is assigned to specific nodes, which

collect regional or global information for informed analysis.

We will refer to this node as a detector and we will assume

that each detector is associated with a set of nodes. Since the

detector makes the decisions on how to respond to failures, all

observations should be sent at least to the detector node and

not necessarily all other nodes.

A) Construction of the Spanning Tree

The spanning tree construction algorithm is presented in

Figure 1. Each node executes this algorithm. Line 1 indicates

that the node is waiting for an event, which in this case is

message arrival. The spanning tree construction is initiated

when the cluster head sends a HELLO message to its one hop

neighbours. Each node has variables that represent the node’s

parent and the node’s children. When a node, u, receives a

HELLO message from its neighbour (line 3:), it checks to see

if it has a parent. If a node receiving the HELLO message has

no parent it designates the sender of the HELLO message as

its parent and sends its parent an OK message (line 6:). A

node’s parent is the node that it receives its first HELLO

message from. When a node receives an OK message (line

11:) it adds that node to its child set. A node knows it is a leaf

node if it does not receive any OK messages within a pre-

defined interval time in response to the HELLO messages it

sent. We refer to this pre-defined interval as the OK timeout.

Algorithm 1 Spanning Tree Construction Algorithm

SpanningTreeConstruction(event)

Input: event

1: Switch (event)

2: //node v sends a HELLO message

3: CASE: HELLO message

4: if (parent(u) == nil) {

5: parent(u) = v;

6: Send OK message to node v;

7: Send HELLO message one-hop

 to neighbours (except parent)

8: }

9: N(u)t = N(u)t v

10: //node u received an OK message from v

11: CASE: OK message

12: Child(u) = Child(u) v

Figure 1: Spanning Tree Construction

Figure 2 shows a network with seven nodes: A, B, C, D, E,

F, G. The left hand side of the figure shows the links between

nodes in the network. All links represent one hop neighbours.

Assume that node A is the cluster head. The cluster head

initiates the construction of the spanning tree by sending a

HELLO message to its one hop neighbours which are nodes B

and C. Nodes B and C send back an OK message and set their

parent variable to node A. All subsequent HELLO messages

received by node B and node C are discarded. Thus both node

B and node C have as its parent the node A and the children of

node A are nodes B and C. This is seen in the right hand side

of Figure 2. Nodes B and C both send a HELLO message

since the HELLO message from node A is the first HELLO

message received. Node C sends a HELLO message to its one

hop neighbours nodes: D, E and F. Node B sends a HELLO

message to its one hop neighbour nodes: D and G. Assume

that node C’s HELLO message arrives before B’s HELLO

message at node D. Node D sets its parent variable to node C

and sends an OK message to node C. Node D discards node

B’s HELLO message. Assume that node C’s HELLO message

arrives first at nodes E and F. Both nodes set their parent

variables to node C and send OK messages back to node C.

All other HELLO messages received by nodes E and F will be

discarded. If node D’s HELLO message arrives at node G

before node B’s HELLO message then node B’s HELLO

message is discarded and node G sets its parent attribute to

node D and node G sends an OK message to node D.

Figure 2: Network and Spanning Tree

It is possible for an alternative spanning tree to be

determined. For example if node B’s HELLO message is

received by node G before node D’s HELLO message then

node G will set its parent to node B and send an OK message

to node B. Graphically the right hand side of Figure 2 would

have a link from node B to node G instead of there being a

link between node D and node G. Thus the spanning tree

depends on the order of arrival of HELLO messages.

B) Data Gathering

In this section we describe the algorithm for data gathering.

This is presented in Figure 3. At the end of construction of the

spanning tree each node determines if it is a leaf node or not.

After a pre-defined period of time a leaf node sends its

neighbourhood information to its parent using a REPORT

message. The REPORT message consists of the one-hop

neighbours of the sending node. For a leaf node, u, the

neighbourhood information is in the form of (u, N(u)t).

Algorithm 2 Data Gathering Algorithm

DataGathering(event)

Input: event

1: T = ;

2: Switch (event)

3: //node u receives a REPORT message (m) from v

4: CASE: REPORT MESSAGE

5: if (parent(u) != nil) {

6: T = T extractNeighbourhoodSets(m);

7: Child(u) = Child(u)\v;

8: if (Child(u) == nil)
9: Send REPORT message with

 T (u, N(u)t) to parent(u);

10: }

Figure 3: Data Gathering Algorithm

When a node receives a REPORT message from one of its

children it extracts the neighbourhood information using the

extractNeigbhourhoodSets function (line 6:). When a node

receives REPORT messages from all its children it sends a

REPORT message with its neighbourhood set as well as all the

neighbourhood sets received from its children preprocessed to

reduce the information sent (lines 7: to 10:).

This process ends with the cluster head that determines the

topology from the neighbourhood sets it has received. We note

that for each v N(u)t information that characterizes the link

A

A

B

A

C

A

F

A

D

A

E

A

G

A

A

A

B

A C

A

F

A D

A E

A

G

A

(u,v) can also be sent e.g., the number of incoming and

outgoing packets.

As an example, consider the network and spanning tree

presented in Figure 2. The leaf nodes are B, G, E, F whose

neighbourhood sets are represented as (B, {A, D, G}), (G, {B,

D}), (E, {C, D, F}) and (F, {C, E}), respectively. When node

D receives the neighbourhood set from node G it sends {(D,

{B, C, E, G}), (G, {B, D}). When C receives all the

neighbourhood sets from each of its children (nodes D, E, F) it

sends {(C, {A, D, E, F}), (D, {B, C, E, G}), (G, {B, D}), (E,

{C, D, F}), (F, {C, E})} to node A.

C) Topology Construction

The cluster head can construct the cluster’s topology from

the neighbourhood sets. We note that it is possible that for two

nodes u and v, that u N(t)t but v N(u)t. The reason for this

is that messages may be lost. We assume that in constructing

the topology that a link is said to exist between u and v if and

only if u Nv(t)t and v Nu(t)t.

IV. CASE STUDY

In this section we describe how the data dissemination

protocol was used to detect that a node has either moved out of

range or has gone down. Further cross-layer work will be

required to distinguish between these two cases. We start with

a discussion of how nodes no longer visible within a cluster

can be detected. Assume that the cluster head node maintains

Gt = (Vt,Et) for different values of t. Dt+i = Vt\Vt+i (where i > 0)

is the set of nodes in Gt but not in Gt+i. A simple definition of

loss of visibility of a node u is if it is in Dt+1. However, it is a

possible that a message is lost since UDP is the typical

transport protocol used in MANETS. If an OK message is lost

and there is only one node within transmission range then the

node would be considered to no longer visible. In the next

construction of the spanning tree the node may be visible. A

node, u, is considered not visible if u Dt+j for each value of j

between 1 and n. We refer to each construction of the

spanning tree as an iteration. The value of n represents the

number of iterations before a node is considered not visible.

For example, assume that in the network presented in Figure

2 that node G moves. Node G may temporarily not be visible

due to lost OK messages e.g., node G may be visible at Dt but

not at Dt+1 due to a loss of OK messages. Node G may become

visible again at t+2 and hence will not be in Dt+2.

Note that sometimes the reported neighbourhood set of

nodes is not completely accurate since nodes move. It is

possible that a node will report an incorrect neighbourhood

set. The topology may need multiple iterations to determine

the correct topology.

V. SIMULATION AND MEASUREMENTS

In this section, we analyse the performance of the data

dispersion protocol based on a Qualnet simulation of the two

implementations. The parameters used in these simulations are

presented in Table 1.

Parameter Value(s)

Antenna Type Omni directional

Channel Frequency 2.4 GHz

Pathloss Model Two ray

Maximum Propagation Range 400m

Radio Type 802.11b

Data Rate 2mbps

Routing Protocol AODV

AODV Hello Message Interval 1 second

Scenario Area 1500 x 1500m

Node Count 10, 30, 50

Number of runs 15

Percentage of Nodes Moving 10%

Table 1: Simulation Parameters

Simulations ran with 10, 30 and 50 node networks. 10% of

the nodes in each case are mobile (random waypoint model)

which is typically found in tactical MANETs. The results

should apply to higher rates of mobility. Nodes were placed

within close proximity for the 30 node scenario and more

dispersed for the 10 and 50 node scenarios. Each experiment

was repeated 15 times and the average outcome is given in the

results. The spanning tree constructed five times in each

scenario.

A) Implementation

For simulation, we have developed two versions of the data

dissemination protocol. First, the cross-layer implementation

makes use of the HELLO messages found in the AODV

routing protocol to construct the spanning tree. We chose to

start with AODV since it is best suited for resource

constrained environments. AODV periodically sends HELLO

messages to determine link connectivity as part of its route

maintenance process. There are two issues that had to be

addressed in this implementation. First, it may be desirable to

construct the spanning tree only for every N AODV HELLO

messages. This is a configurable parameter in our

implementation. The second issue is that not all AODV

HELLO messages get an OK message in response. To deal

with this we added a reply flag bit to the AODV HELLO

message. If the bit is one then this indicates that an OK

message should be returned. The frequency of setting this bit

to one is also a configurable parameter.

Second, an application layer based implementation

independent of any lower level network protocols was used for

comparison. All HELLO, OK and REPORT messages are

produced independently.

B) Performance Results

The metric that we used to evaluate efficiency is the number of

messages generated during the simulation. These are protocol-

specific. The results for the application-layer implementation

do not include any lower-layer packets. The results for the

cross-layer protocol does not include the packets generated for

the HELLO messages of the AODV routing protocol since

these messages are already being generated for routing

purposes. It does include the OK messages and the REPORT

messages since these are not part of the AODV protocol.

Figure 4 shows that the total number of packets generated

for 10, 30 and 50 node scenarios. For 10 and 30 nodes, the

timeout for the OK message was 10 seconds. When this

timeout was used in the 50 node case the spanning tree could

not be fully constructed and the information the cluster head

received was incomplete. Increasing the timeout to 20 seconds

eliminated this problem. Doubling the simulation time allowed

five spanning trees to be constructed as in the previous cases.

Figure 4: Total number of Generated Packets -

Application-Layer

At any point in time the number of packets received is

cumulative since the start of the simulation. The x-axis

represents time while the y-axis represents packets generated.

As can be seen in the graph the number of generated packets

increases in a step-wise fashion. Note that although the graph

trends are similar for each case the number of packets

generated and received is smaller for the 50 node case

compared to the 30 node case. The reason is that the cluster

was less dense and thus the average number of edges per node

was higher for the 30 nodes case. The average number of one

hop neighbours for the 10 node scenario was 2, for the 30 node

scenario 15, and for the 50 node scenario 8.

It should be noted that each scenario shows a sharp increase

in packets generated at the start of the simulation. This

represents packets generated in the initialization of the

protocol simulation, and not in the discovery protocol.

While the results in Figure 4 are for the application-level

implementation, Figure 5 shows results for the cross-layer

implementation. The cross-layer implementation exhibits a

similar trend, but with a lower overhead. Again, note the

closeness of the lines for the 30 node and 50 node cases. This

is again due to the low node density of the 50 node case

requiring fewer messages.

Figure 5: Total packets generated – Cross-Layer

Another view of overhead is seen with a comparison of the

average number of packets received by each node. This is

presented in Table 2.

Scenario 10 nodes 30 nodes 50 nodes

Cross-Layer

Implementation
24 36 32

Application

Implementation
36 101 52

Table 2: Packets Received per Node

As can be seen, the cross-layer implementation produces

fewer packets than the application-layer implementation both

globally and per-node. The reason is that the application-layer

and the cross-layer implementations both generate packets for

the routing protocol HELLO messages. However, the

application-layer protocol generates separate HELLO

messages for the spanning tree construction and thus increases

the total number of packets generated. The only additional

messages needed for the cross-layer implementation are the

OK messages. A comparison of the average time taken to

construct the spanning tree is presented in Table 3.

Scenario 10 nodes 30 nodes 50 nodes

Cross-Layer

Implementation
2.59 4.12 8.03

Application

Implementation
0.83 3.69 4.98

Table 3: Spanning Tree Construction Times (seconds)

As we can see in the table, for the 30 node scenario the

spanning tree construction time is similar for both

implementations. The reason is that for a very dense graph

both implementations of the spanning tree construction take

about same amount of time. However, if the graph is less

dense, as in the 50 node scenario, the cross-layer approach is

two times slower. For a sparser graph, e.g. 10 nodes, the cross-

layer approach is three times slower. This suggests that if the

graph is very dense, the cross-layer may become more

responsive. A dense graph implies that a node has many

edges. Since the 50 node scenario had fewer edges it

generated fewer messages.

Node density also explains the results seen in Figure 5. The

reason is that the cross-layer implementation uses the HELLO

messages of the AODV protocol. When a node receives an

AODV HELLO message it must wait until the routing

protocol is ready to send out its AODV HELLO message. In

the application-layer protocol the application-layer sends out

its HELLO messages immediately after receiving HELLO

message.

The reason why density helps is that the network diameter is

typically smaller which means that the length of paths is

smaller. If the network is dense then the diameter of the graph

is small so spanning tree construction takes less time for the

AODV implementation than if the nodes were more sparse.

C) Detection of Single Node Movement

The next part of our analysis focuses on the number of

iterations used to detect a node becoming not visible. One of

the reasons that a node may not be briefly visible is because of

a lost message. Thus, it may not be feasible to consider a node

down unless it is not visible for multiple iterations. The

experiments show that on average the number of iterations

needed to detect that a node is not visible is one iteration for

10 nodes, two iterations for 30 nodes and three iterations for

50 nodes. This is to be expected since a larger number of

nodes imply a larger number of packet losses. The average

number of iterations needed to determine node movement

(assuming that 10% of nodes have moved) was one iteration

for 10 nodes and 30 nodes and two iterations for 50 nodes.

This may suggest that node movement within a cluster

requires fewer iterations to determine (and hence less time). A

node u that moves within a cluster may move out of range of

one node but within the range of another node. Thus u is still

visible although the actual topology calculated by the cluster

head may be incorrect. Note that the results for the application

layer and cross-layer implementation were the same.

D) Detection Correctness - Topology

 In the case of ten nodes one node was allowed to move.

This node moved within the first two iterations before moving

out of transmission range of all nodes of the network. The

node moved for the first two iterations. For the ten node

scenario all node movement was correctly detected in all

fifteen runs of the simulation in the third iteration without

knowledge of a correct initial topology. Each node’s

movement was detected in the next iteration of the algorithm.

In the case of thirty nodes three nodes were allowed to

move. Among these three nodes, one node moved out of range

and the other two nodes moved to other parts of the network.

Nodes moved for the first two iterations. Among the fifteen

runs we were able to detect the movements in 11 cases without

correct initial topology. With correct initial topology we

detected the movement correctly 14 out of 15 cases. We failed

to detect the movement correctly in one case that is due to the

limited five iterations used. We present a summary in Table 4.

 Detected Failed to Detect

Correct Initial

Topology
14 1

Incorrect Initial

Topology
11 4

Table 4: Detection Rate

We determined the movement in the next iteration in 73% of

the runs. We detected the movement in the second next

iteration in 18% of the runs and in the third next iteration in

9% of the simulation runs.

VI. CONCLUSIONS AND FUTURE WORK

 In this paper we have proposed a novel cross-layer protocol

for data dissemination within a cluster such that observations

are received at the cluster head with minimal overhead. This

protocol is used to collect cluster-wide topology information at

a detector node that acts as a virtual cluster head where the k-

cluster is a sub-network of nodes of interest for failure

monitoring.

Simulations show that by building a spanning tree rooted at

the detector, changes in topology detected by any node can be

more efficiently collected for further analysis using a cross-

layered implementation. An application layer implementation,

which produces its own messaging, was found to have higher

overhead but was faster and more accurate at detecting nodes

that have moved out of range of the k-cluster. These effects

were magnified in networks with lower node density.

The work presented in this paper considers only a single k-

cluster. However, the results suggest that having multiple

clusters may be feasible for larger networks. For future work

we will be investigating inter-cluster head communication of

topological information. While this will increase the network

side detection overhead, we expect it to remain an

improvement over centralised detection schemes. Another

alternative we are planning to investigate is the use of a

localised broadcast to track down potentially disconnected

nodes such as the scheme presented in [6]. We will also

incorporate the splitting of large clusters as needed based on

the work presented in [14].

We are also investigating the use of other protocols such as

OLSR and NHDP as a substitute for AODV. Finally, we are

investigating how this scheme can be used to detect and

respond to and distinguish between different types of failure

([7], [11])) using cross-layer information (e.g., SNR values

[12]) and policy-based response.

ACKNOWLEDGEMENT.

This work was supported by Defence R&D Canada (DRDC).

REFERENCES.

[1] T. Chandra, G. Goldszmidt and I. Gupta “On Scalable and

Efficient Distributed Failure Detectors”, Proceedings of ACM

symposium on Principles of Distributed Computing, 2001.

[2] S. Chessa and P. Santi, “Comparison-based system-level fault
diagnosis in ad hoc networks”, Proceedings of IEEE Symposium

on Reliable Distributed Systems, 2001, pp. 257-266.

[3] M. Elhadef and A. Boukerche, “A Failure Detection Service for
Large-Scale Dependable Wireless Ad-Hoc and Sensor Networks”,

The Second international Conference on Availability Reliability,

and Security, 2007.
[4] M. Elhadef and A. Boukerche, “A Gossip-Style Crash Faults

Detection Protocol for Wireless Ad-Hoc and Mesh Networks,”
Proceedings of the IEEE Performance Computing and

Communications Conference (IPCCC), 2007, pp. 600-605.

[5] M. Elhadef, A. Boukerche and H. Elkadiki, “Performance Analysis
of a Distributed Comparison-Based Self-Diagnosis Protocol for

Wireless Ad-Hoc Networks” MSWiM’06, 2006.

[6] O. F. Gonzalez, M. Horwath and G. Pavlou, “Detection And
Accusation of Packet Forwarding Misbehavior In Mobile Ad-Hoc

Networks”, Journal of Internet Engineering, Vol. 2, No. 1, June

2008, pp. 181-192.
[7] A. Hadjiantonis, A. Malatras, G. Pavlou, “A Context-Aware,

Policy-Based Framework for the Management of MANETS”,

Proceedings of the Seventh IEEE International Conference on
Policies for Distributed Systems and Networks, 2006.

[8] D. Khedher, R. Glitho and R. Dssouli, “A Novel Overlay Based

Failure Detection Architecture for MANET Applications”,
Proceedings of IEEE International Conference on Networks, 2007,

pp. 130-135.

[9] D. Liu and J. Payton, “Adaptive Fault Detection Approaches for
Dynamic Mobile Networks,” IEEE Consumer Communications

and Network Conference, 2011, pp. 735-739.

[10] M. Natu and A. Sethi, “Intrusion Detection System to Detect
Wormhole using Fault Localization Techniques”, Proc.

WORLDCOMP SAM'07, International Conference on Security

and Management, June 2007.
[11] M. Nodine, G. Levin, K. Kurachik, D. Woelk, Y. Lin, R. Chadha,

J. Chaing, K.Moeltner, Y.Kumar, S. Ali, R. Bauer, “Distributed

Diagnosis of Network Faults and Performance Problems for
Tactical Miltary Networks”, IEEE Military Communications

Conference (MILCOM 2010), pp. 1647-1652.

[12] M. Nodine, G. Levin K. Kurachik, D. Woelk, Y. Lin, R.Chadha, J.
Chaing, K. Moeltner, T. D’Silva, and Y. Kumar, “Issues with and

Approaches to Network Monitoring and Problem Remediation in

Military Tactical Networks”, IEEE Military Communications
Conference (MILCOM 2009), pp. 1-7.

[13] R. Sivakami and G.M.K. Nawaz, “Reliable Communication for

MANETs in Military through Identification and Removal of
Byzantine Faults,” International Conference on Electronics

Computer Technology, 2011, pp. 377-381.

[14] W. Song, S. Rehman, H. Lutfiyya, “A Scalable PBNM Framework

for MANET Management”, IEEE/IFIP International Conference

on Integrated Network Management, 2009

[15] N. Sridhar, “Decentralized Local Failure Detection in Dynamic
Distributed Systems”, Proceedings of the 25th IEEE Symposium

on Reliable Distributed Systems, pp. 143-154, 2006.

[16] A. Tai, K. Tso, W. Sanders, “Cluster Based Failure Detection
Service for Large-Scale Ad Hoc Wireless Network Applications”,

Proceedings of IEEE/IFIP International Conference on Dependable

Systems and Networks, 2004, pp. 805-814.

