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Abstract— AMF (Availability Management Framework) is a 

middleware service that manages the availability of applications. 

AMF has been defined by the Service Availability Forum (SA 

Forum). An AMF configuration for an application running on 

top of AMF is a logical organization of hardware and software 

resources to provide and protect services. Resources, namely 

components, are grouped into logical entities such as service units 

and service groups and are set together at configuration time to 

provide and protect services represented as component service 

instances and service instances. The assignment of component 

service instances and service instances to components and service 

units, respectively, is performed at runtime by the AMF 

middleware. However, the configuration is valid if and only if it 

satisfies all AMF constraints, including the provisioning and 

protection of the services. Therefore, the problem is how to 

ensure at configuration time that the services will be protected at 

runtime. In a previous work, we tackled this problem and proved 

it to be NP-hard in general for most redundancy models. Here, 

we tackle the problem of AMF configuration validation further 

with heuristics using extended versions of heuristics developed 

for the bin-packing problem. We consider all the redundancy 

models for which the problem is NP-hard. In addition, we 

propose an approach which incrementally adds resources to a 

“likely” invalid configuration and transforms it into a valid one. 

Keywords- High Availability; Availability Management 

Framework; System Configurations; Service Protection; 

Complexity;  Heuristics. 

I.  INTRODUCTION 

High availability of a system is achieved when its services 
are accessible (or available) to the users 99.999% of the time 
[1]. The demand for Highly Available (HA) services is 
continuously growing in different domains including 
telecommunications, banking and air traffic monitoring. The 
Service Availability Forum (SA Forum) [2] is a consortium of 
telecommunications and computing companies that has defined 
several standard services/interfaces to support the development 
of HA systems. Such standards aim at reducing the application 
development time and cost by shifting the availability 
management from applications to a dedicated middleware, and 
hence enabling portability. Among the SA Forum standards, 
the Application Interface Specification (AIS) [3] supports the 
development of HA applications by abstracting hardware and 
software resources. AIS defines several services that provide 

common functionality needed in HA applications, among 
which the most important one is the Availability Management 
Framework (AMF) [4]. AMF manages the high availability of 
applications by coordinating their redundant entities. In order 
to provide and protect the services, AMF requires a 
configuration that specifies the characteristics of the entities 
composing the system, their types and the way they are 
organized. Entities, such as components, Service Units (SU) 
and Service Groups (SG), describe service providers; other 
entities, like Component Service Instances (CSI) and Service 
Instances (SI), describe the provided services. AMF defines 
five redundancy models [4], namely the No-redundancy, the 
2N, the N+M, the N-Way-Active and the N-Way redundancy 
models, which vary depending on the number of SUs that can 
take active and/or standby assignments and how these 
assignments are distributed among the SUs. 

It is necessary to provide the middleware with 
configurations which are not only syntactically correct and 
well-formed with respect to the AMF specification, but also 
semantically correct and capable of ensuring the required level 
of availability of the configured services. In our previous work 
[5], we explored and discussed this issue, referred to as the SI-
Protection problem. We identified two redundancy models, 
namely 2N and No Redundancy, where the problem can be 
solved efficiently. We proved that in the case of N+M, N-Way 
and N-Way-Active redundancy models the problem is NP-hard 
in general.  For these three redundancy models, we identified 
some specific situations where the problem can be simplified. 
In this paper, we tackle the problem further and propose a 
solution for the N+M, N-Way and N-Away-Active redundancy 
models that is based on heuristics. Our solution is based on 
extensions to the well-known problem of bin-packing [6]. We 
replace bins and objects with SUs and SIs, respectively. We 
consider different types of capacity, i.e. capacity vector, unlike 
the single type of capacity in the classical bin-packing problem.    

Our ultimate goal is to design valid AMF configurations to 
provide and protect services. When a configuration is “likely” 
to be invalid because we cannot demonstrate its validity or 
invalidity with our heuristics based approach, we propose to 
transform it into a valid configuration by the incremental 
addition of resources. Despite the fact that this may result in 
over dimensioning the system, the resulting configuration is a 
valid one. We discuss this method in this paper as well. In 



Section II, we introduce the necessary background on AMF 
configurations along with the review of related work. In 
Section III, we define the SI-Protection problem and introduce 
notations used throughout the paper. In Section IV, we propose 
our generic approach, i.e. independently from redundancy 
models, for solving the SI-Protection problem using heuristics. 
In Section V, we map our approach to each of the redundancy 
models: N+M, N-Way-Active, and N-Way. We present our 
approach for the incremental modification of AMF 
configurations in Section VI and we draw conclusions in 
Section VII. 

II. BACKGROUND 

A. AMF Configurations 

An AMF configuration [4] for a given application is a 
logical organization of resources for providing and protecting 
services. It consists of components grouped into SUs, which 
are grouped into SGs.  

TABLE I.  DESCRIPTION OF AMF ENTITIES AND ACRONYMS 

Entity Description  

Component 
Represents a hardware or software resource that 

can provide a service.  

Component 

Service Instance 

(CSI) 

Represents a service workload assigned to a 

component. AMF assigns workload to a 

component at run-time. 

Service Unit   

(SU) 

Groups a set of components which collaborate to 

provide services. 

Service Instance 

(SI) 

Represents a service an SU can provide. It is an 

aggregation of CSIs.  

Service Group 

(SG) 

It consists of a set of SUs. It protects according to 

redundancy model the SIs assigned to these SUs.  

Application 

Represents a logical entity that contains one or 

more SGs and combines the individual 

functionalities of the constituent SGs to provide a 

higher-level service.  

Node 
Represents a computational resource for the 

deployment of artefacts. 

Cluster 
Represents the aggregation of the complete set of 

AMF nodes in an AMF configuration. 

 

An application consists of one or several SGs that provide 
and protect services defined in terms of SIs composed of CSIs. 
At runtime, for each SI configured to be protected by a given 
SG, AMF assigns the active and standby states to the SUs of 
that SG, according to the redundancy models.  As mentioned 
previously, the AMF specification defines five redundancy 
models [4], namely the No-redundancy, the 2N, the N+M, the 
N-Way-Active and the N-Way redundancy models. These 
redundancy models vary depending on the number of SUs that 
can be active and standby for the SIs and how these 
assignments are distributed among the SUs. In the 2N 
redundancy model one SU is active for all the SIs protected by 
the SG and one is standby for all the SIs. In the N+M model, N 
SUs handle the active assignments and M SUs handle the 
standby assignments. N+M allows at the most one active and 
one standby assignment for each SI. An SG with N-Way 
redundancy model contains N SUs. Each SU can have a 
combination of active and standby assignments. However, each 
SI can be assigned active to only one service unit, whereas it 

can be assigned standby to several service units. An SG with 
N-Way-Active redundancy model has N SUs, which are only 
assigned as active. It has no SU assigned as standby. 
Furthermore, each of the SIs protected by this SG can be 
assigned to more than one SU. Figure 1 summarizes the 
different redundancy models defined in the AMF specification. 

 
Figure 1.  Redundancy models defined in the AMF specification 

An AMF application may consist of different SGs with 
different redundancy models. Each SU is deployed on an AMF 
node and the set of all AMF nodes forms the AMF cluster. 
Table I summarizes the AMF entities and their descriptions. 
AMF entity types define the common characteristics among 
multiple instances of the previously defined logical entities. In 
AMF, all entities except the deployment entities (i.e. nodes and 
clusters) have a type. For instance, Component Service Type 
(CSType) is an entity type describing the common 
characteristics of its CSIs. Figure 2 shows an example of AMF 
configuration. In this example a cluster is composed of two 
nodes (Node1 and Node2). It hosts an application consisting of 
one SG protecting two SIs in a 2N redundancy model. The SG 
consists of two SUs, SU1 and SU2, each composed of two 
components. The distribution of the active and standby 
assignments is shown in the figure. However, it is not part of 
the configuration as defined by AMF, as this is decided by 
AMF at runtime. For the sake of simplicity, the entity types are 
not presented in this figure. 

B. Bin-packing Problem 

In the bin-packing problem [6], objects of different volumes 
must be packed into a finite number of bins of capacity n in a 
way that minimizes the number of bins used. The bin-packing 
problem has many applications, such as bandwidth allocation 
and creating file backup in removable media. Despite the fact 
that the problem is NP-hard, optimal solutions can be produced 
with sophisticated algorithms. In addition, many heuristics 
have been developed. For example, the first fit algorithm 
provides a fast but often non-optimal solution, which involves 
placing each item into the first bin in which it fits [8]. The 
algorithm can be made much more effective by first sorting the 
list of objects into decreasing order [9]. This, however, still 



does not guarantee an optimal solution, and for longer lists it 
may increase the running time of the algorithm [10].  

 
Figure 2.  An example of AMF configuration 

C. Related Work 

An AMF middleware uses configurations to manage the 
resources under its control. AMF configurations need to be 
validated before they can be used by the AMF middleware. 
One important criterion in the validation of an AMF 
configuration is whether it provides the level of protection it is 
designed for according to the specified redundancy model. 
Indeed, a configuration is AMF compliant if and only if it 
meets all the AMF requirements including the protection of 
services as required. Validating the protection of services as 
requested may require the exploration of all possible SI 
combinations and SI-SU assignments. This is a combinatorial 
and complex problem. To the best of our knowledge, except for 
the traditional work on complexity [11] and our previous work 
[5], we are not aware of any related work dealing with SI 
protection in the context of AMF. 

In our previous paper [5] we discussed the complexity of 
the SI-Protection decision problem for an AMF configuration.  
In the case of the 2N redundancy model and the No-
redundancy model, we have identified necessary and sufficient 
conditions that can be checked in polynomial order. We also 
showed that the problem is NP-hard for the N+M, the N-Way-
Active, and the N-Way redundancy models. To overcome this 
complexity, due mainly to the consideration of all possible 
combinations of SI-to-SU assignments, we have characterized 
special cases for special sets of SIs, where necessary and 
sufficient conditions have been defined and can be checked 
with simple algorithms.  

The bin-packing problem has already been revisited and 
extended to vector bin-packing, see for instance [7, 12, 13]. 
Vector bin-packing is a variation of classical bin-packing in 
which the capacity of bins and objects is described in terms of a 
vector of capacities [7]. Several approximation algorithms have 
been proposed to optimize the number of bins. Recently, Patt-
Shamir and Rawitz explored the vector bin-packing problem 
with bins of variable sizes and presented an approximation 
algorithm [12]. In [13] Rao et al. developed an approximation 
algorithm based on the near-optimal solution of linear 

programming relaxation of integer programming.  These 
approximation algorithms introduce a boundary guaranteeing 
that their sub-optimal result will not exceed this boundary. This 
boundary is expressed as a factor of the optimal solution and 
the parameters (number of objects and the size of the vector) of 
the problem. Furthermore, the amount of computational and 
memory resources necessary for solving the problem will 
increase exponentially when the boundary becomes close to the 
optimal solution. For this reason, the efficiency of these 
approximation algorithms will rarely prove to be practical for 
large systems such as AMF configurations. Heuristics, 
however, target reasonably good solutions efficiently [14]. 
Moreover, the main concern in abovementioned papers is the 
approximation of the optimal number of bins, while in our case 
we are interested in finding a possible assignment of a given set 
of SIs to a given set of SUs. Therefore, based on the traditional 
bin-packing problem heuristics, we devised new heuristics for 
solving the SI-Protection problem taking into account the 
specificities of the domain in question, i.e. SUs, SIs, and 
redundancy models.   

III. THE SI PROTECTION PROBLEM 

An AMF configuration can be seen as a set of n of SUs 
denoted by	������ = 	��
, . . . ��
�. Each SU combines a 
group of components capable of supporting different CSTypes 
(i.e. capable of providing the CSIs of those CSTypes). Let k 
denote the total number of CSTypes supported by the SUs of 
the SUList. Consequently, the provided capacity list for ��� is 

defined as 〈�
� , … , ��� 〉 in which ��� ≥ 0 is an integer representing 
the capacity of the SU in supporting CSIs from the CSType t.   

The n SUs in the SUList need to protect a given sequence of 
m SIs, denoted by ������ = 	��
, . . . ����. Similar to the 
provided capacity list of SUs, for each ����������, the required 

capacity list can be defined by an ordered set 〈�
� , … , ���〉 
determining the required capacity of the ��� 	for each CSType.  

We can assign an SI (���) to an SU (���) if and only if the 

remaining capacity of ��� for all CSTypes is not less than the 
capacity required by ���. It is important to note that SIs are 

units of assignment and are indivisible.  

The problem of SI-protection can be defined as follows:  is 
it possible to assign, according to the redundancy model, all the 
m SIs to the given set of n SUs? 

As an illustration of the SI-Protection problem, let us 
consider the partial configuration in Figure 3, which displays 
only the active part of an SG that consists of three SUs and 
which is configured to protect two SIs with the N+M 
redundancy model. Note that in this example we only consider 
the capacity of the components for handling the active 
workload, the ������ = 	��
, ���, ���� with the provided 
capacity list of 		〈4,2,1〉, 〈3,3,1〉, 〈3,4,1〉� and the ������ =	��
, ���� with the required capacity list equal 
to		〈1,2,0〉, 〈3,2,1〉�. Can the list of SUs with the provided 
capacities protect the list of SIs with the given required 
capacities?  

Node 1 Node2

App1
SG1

SU2SU1

Component3

Component4 

Component1 

Component2 

SI2
CSI3

CSI4

SI1
CSI1

CSI2

Active 
Standby



IV. CHECKING FOR SI-PROTECTION USING HEURISTICS 

In this section, we present a solution for checking the SI-
Protection for the general case of the N+M, N-Way and N-
Way-Active redundancy models using heuristics. The proposed 
approach is based on heuristics developed initially for the bin-
packing problem [6]. 

In the case of the SI-Protection problem, the SUs can be 
considered as bins and the SIs, as the objects. The capacities of 
SUs/SIs are described in terms of the number of the CSIs of a 
certain CSType which can be provided by SUs and form the 
SIs.  

 
Figure 3.  The active part of an example of SG with N+M redundancy model 

We extend the three well-known heuristics for bin-packing. 
Each of these extensions takes the SUList and SIList as input 
and decides if there exists a way to assign all SIs of the SIList 
to the SUs of the SUList. If an algorithm succeeds in assigning 
all SIs to the SUs, the answer to the problem is ‘Yes’. If it fails, 
the answer could be ‘Yes’ or ‘No’. Since all these algorithms 
take a sequence of SIs and assign them one by one, an 
algorithm will answer ‘No’ if it fails to assign an SI at a certain 
point. This may be a False negative. When all SIs are 
successfully assigned to the SUs, the algorithm returns ‘Yes’ as 
result. Therefore, the signature of each algorithm can be 
represented as:  #$$%&'(	)�(_+'�,�(-_&.�&(��$(/(������, ������) 

It is worth noting that these extensions are generic 
algorithms for deciding about the SI-Protection and do not 
consider any specific redundancy model. In Section V, we 
discuss the application of these algorithms to each of the 
redundancy models. 

To achieve better results, our approach applies all proposed 
algorithms to the sequence and then determines the logical OR 
of the answers. Since these algorithms are different (and 
somehow based on opposite principles), the probability of a 
False negative result is reduced. 

A. First-Fit approach (FF) 

The first approach is the First-Fit (FF) approach, where we 
preserve a fixed order of SUs in the SUList during the whole 
processing. To assign a given SI to an SU, we simply take the 
first available SU in the SUList which can serve the SI. 

Although the FF approach appears to be the easiest 
heuristic to the problem, it is known to be quite effective for ,	 = 	1 (classical bin-packing).  

Complexity: The assignment of each SI to each SU can be 
achieved with k comparisons between the provided and 
required capacities of the SU and the SI. Moreover, the number 
of SUs that need to be checked before finding the appropriate 
one can reach n, at the most. Considering the number of 
assignments which equals the number of SIs (m), the 
complexity of this approach is 2 × ( × , in the worst case. 

B. Best-Fit approach (BF) 

This approach gives the best results in practice for the 
classical bin-packing problem [9].We keep the SUs sorted in an 
increasing order of remaining capacities, and find the first SU 
capable of handling the load of the SI. Therefore, a given SI is 
assigned to an SU which has the minimum remaining capacity 
among those which have enough capacity for the SI under 
consideration. Note that the list of SUs should be sorted after 
each assignment. Here, the goal is to exhaust an SU as much as 
possible before moving to the next. BF is occasionally referred 
to as unbalanced assignment approach [9]. Since there is no 
single value defined as the ‘capacity’ of each SU, the provided 
capacity being represented through a list of non-negative 
integers, it is necessary to come up with a single criterion for 
the capacity of each SU, and to sort the SUs in the SUList 
based on this criterion.  In what follows, we introduce three 
different criteria to represent the capacity of a given SU. 

Total Capacity:  Given the remaining capacity list 

(〈�
� , … , ��� 〉) for a given SU (���), the total capacity is the sum 
of the remaining capacities of all supported CSTypes in   ��� 
(�'+'���4	$5	��� =	∑ �����7
 ). 

For instance, let us consider the example of Figure 3 where 
we have three SUs  (��
, ���, ���) supporting three different 
CSTypes and let the remaining capacity list for these SUs be 〈4,2,1〉, 〈1,1,1〉, and 〈2,4,0〉, respectively. The total capacities 
for the SUs are 7, 3, and 6, resulting in the sorted list 	���, ���, ��
�.  On the service side, there are two unassigned 
SIs (��
, ���) with the required capacity list of 〈1,2,0〉 and 〈3,2,1〉, respectively. For assigning SI1, SU2 will be considered 
first, then SU3 and finally SU1. SU1 does not have the required 
capacity of each CSType, however SU3 does in fact have this 
capacity. 

Complexity: Sorting the SUList can be achieved in 8(( log () and keeping it sorted is 8(log (). For each SI, we 
need to examine at the most all the n SUs in the SUList in order 
to find the proper SU. This can be done in ( × , comparisons. 
In addition, after the successful assignment of an SI, we need to 
keep the SUList sorted. As a result, the complexity of this 

approach is 2 × <( × , + 8(log ()> + 	8(( log (). 

SG1 (N+M Redundancy Model) (Active)      (Standby)

……..

SU1

Comp1

4 CSIs of CSType1

Comp 2

2 CSIs of CSType2

Comp4

1 CSIs of CSType3

SU2

Comp4

3 CSIs of CSType1

Comp5

3 CSIs of CSType2

1 CSIs of CSType3

SU3

Comp6

3 CSIs of CSType1

4 CSIs of CSType2

1 CSIs of CSType3

SI1

1 CSIs of CSType1

2 CSIs of CSType2

0 CSIs of CSType3

SI2

3 CSIs of CSType1

2 CSIs of CSType2

1 CSIs of CSType3

Application



As a variation for this case, one may also consider the 
sorting of the SIs at the beginning of the process, according to 
the total required capacity and processing the SI with the 
smallest capacity first or last. However, sorting SUs or SIs 
according to total provided or required capacity, respectively, 
does not necessarily help as it does not look into CSType 
capacities which are important for the assignments. 

Relative Capacity:  Contrary to the total capacity criterion, 
the relative capacity is defined with respect to a specific SI and 
is based on the largest element of the required capacity list of 
the SI.  As a result, for each SI, the sorted list of SUs may 

differ. For a given SI (���) with the capacity list of 〈�
� , … , ���〉, 
let the index of the largest member of the required capacity list 

be � = 	'�-2'.(〈�
� , … , ���〉). This means that, for ���, the 

number of CSIs of CSTypet is larger than the number of CSIs 
of the other CSTypes. Consequently, for ��� we need to sort the 

SUList based on the �� of each SU (e.g. ��� for ���). 
Let us consider again the example in Figure 3. The largest 

required capacities of ��
 and ��� are 2 and 3, respectively. 
Therefore, the relative capacity criterion for ��
 is �� , which 
results in the sorted SUList, 	���, ��
, ����. Similarly, �
 is 
the criterion for ��� and the sorted SUList is 	���, ���, ��
�. 

Complexity: The complexity of the approach is very 
similar to the case of total capacity. The only difference is that 
the sorted list of SUs is different for each SI and thus, we need 
to sort the SUList for each SI separately. Consequently, the 

complexity of this approach is 2 × <( × , + 8(( log ()>. 
Critical Capacity: Similar to the relative capacity, this 

criterion is also defined with respect to each SI. Here our 
objective is to find the most critical CSType for each SI and 
then sort the list of SUs based on this criterion. The most 
critical CSType for each SI is the CSType which has the largest 
required capacity in the SI while having the smallest provided 
capacity among the SUs in the SUList. To this end, we first 
determine the total capacity per CSType of the SUs as 〈��
, … , ���〉 = 	∑ 〈�
� , … , ��� 〉 = 	 〈∑ �
�
�7
 , … , ∑ ���
�7
 〉
�7
 . 

Thereafter, for a given ��� with the required capacity list of 〈�
� , … , ���〉, the index of the most critical required capacity is: 

? = 	'�-2'. @�
� ��
A ,… , ��� ���A B 

Consequently, for ��� we need to sort the SUList based on 

the �C of each SU (e.g. �C�  for ���). 
Going back to the example in Figure 3, the total capacity 

per CSType of the SUList is 〈7,7,2〉. For ��
 based on the 

calculation (〈
E , �E , F�〉), the critical required service is �� and 

hence, the SUList should be sorted according to ��, which 
results in the sorted list 	���, ��
, ����.  With the same 
calculation, the SUList for ��� is sorted based on �� and results 
in 	���, ���, ��
�. 

Complexity: The complexity of the critical capacity is the 

same as for relative capacity, i.e.	2 × <( × , + 8(( log ()>. 

C. Worst-Fit approach (WF) 

While this algorithm is not preferred in practice to the BF 
approach, it is important as it uses a contrary approach, and 
occasionally gives positive answers when BF fails. The 
algorithm is more or less the same as for the BF approach the 
only difference being that the SUList is sorted in a decreasing 
order of capacities. In fact, the algorithm attempts to assign SIs 
to the SUs in a balanced way. To sort the SUList, we can use 
the exact same sorting criteria as described for the BF approach 
in Section IV.B. 

V. TAKING INTO ACCOUNT THE REDUNDANCY MODELS   

In the previous section, we introduced three different 
approaches for checking the protection of the SIs. In addition, 
we have also defined three different criteria for sorting the list 
of SUs that can be used for both the BF and the WF 
approaches. Therefore, we presented seven different heuristic 
methods for solving the SI-Protection problem that can be 
applied in sequence to improve the accuracy of the solution. 
However, all presented approaches target the generic case of 
the SI-Protection without taking into account the features and 
the specific constraints of the redundancy models. In this 
section, we discuss how we map these general approaches for 
the different redundancy models, N+M, N-Way, and N-Way-
Active.  

A. The N+M Redundancy Model   

In the N+M redundancy model, N SUs support the active 
assignments and M SUs support the standbys. This model 
allows at the most one active and one standby assignment for 
each SI. Assuming that the standby SUs are distinguished from 
active SUs, we apply our approach, the sequence of seven 
heuristic methods defined previously, for the N SUs configured 
to support the active assignment, considering their active 
capacity. Thereafter, we apply the approach for M SUs 
configured to support the standby assignment, considering their 
standby capacity. We are certain that the SG can protect the SIs 
if and only if the result of the method is ‘Yes’ for both N active 
SUs and M standby SUs. Please note that if a “No” answer 
results for either case, this may be a False negative.  

B. The N-Way-Active Redundancy Model 

An SG with the N-Way-Active redundancy model has N 
SUs which are assigned only as active and has no SU assigned 
as standby. Furthermore, each of the SIs protected by this SG 
can be assigned to more than one SU as specified in the 
PreferredActiveAssignments configuration attribute. In Section 
IV we discussed one assignment per SI only. In order to handle 
multiple assignments, whenever we consider an SI, we assign it 
to PreferredActiveAssignments different SUs before proceeding 
to the next SI. Every assignment is handled according to the 
methods in Section IV. 

C. N-Way Redundancy Model 

An SG with the N-Way redundancy model contains N SUs. 
Each SU can have a combination of active and standby 
assignments. However, each SI can be assigned active to only 
one SU while it can be assigned standby to several SUs (as 
specified in the PreferredStandbyAssignments attribute). The 
solution for this redundancy model is quite similar to the one 



for N-Way-Active. For the single active assignment in N-Way 
redundancy model, we consider the active capacity of the SUs 
while, for multiple standby assignments, the standby capacity 
of the SUs is taken into account. The same SU cannot be 
reassigned to the same SI, neither as standby nor as active.  

VI. INCREMENTAL DESIGN OF AMF CONFIGURATIONS 

The validation technique specified in Section IV assigns the 
SIs to the SUs and returns ‘No’ if it fails to do so for any SI. In 
this case we propose to modify the invalid SG by adding 
resources, namely SUs incrementally, to increase the provided 
capacities.  

At the point where the technique fails to assign an SI, we 
add SUs to the SUList and continue the assignment process. 
This process continues until all SIs are assigned or until it again 
fails to assign a certain SI and requires additional SUs. At the 
end of this incremental process, all SIs must be assigned to the 
SUs in the augmented SUList. The number of additional SUs to 
be added each time the algorithm fails in assigning a given SI 
depends on the redundancy model of the SG and in some cases 
on other configuration attributes.  

 
Figure 4.  Incremental AMF configuration design using BF method with 

relative capacity sorting criterion 

In the case of the active part of the N+M and N-Way 
redundancy models only one SU should be added. For the N-
Way-Active redundancy model and the standby part of the N-
Way, the number is equal to the number of remaining 
active/standby assignments of the SI in question i.e., if Q 
assignments of an SI have already taken place before the failing 

point, the number of additional SUs is equal to 
PreferredActiveAssignments ‒ Q or 
PreferredStandbyAssignments ‒ Q. More specifically, one SU 
for handling the standby assignment will be added in the case 
of N+M and PreferredStandbyAssignments SUs will be added 
in the case of the N-Way redundancy model. 

The creation of the additional SU(s) varies depending on 
the applied heuristic method used. More specifically, in the BF 
method the extra SU(s) for a given SI is/are identical to the first 
SU in the sorted (increasing order) list of SUs in the SUList. 
However, for a given SI in the WF method, the additional 
SU(s) is/are identical to the first SU in the sorted (decreasing 
order) list of SUs in the SUList. In other words, the additional 
SU(s) for a given SI is/are identical to the best fit SU in the BF 
method and identical to the worst fit SU in the WF method. In 
order to sort the SUList, we use the same sorting criteria as 
used in the heuristic methods. 

It is worth noting that, for the case of the FF approach, the 
extra SU is simply identical to the first SU in the SUList (i.e. 
the first fit SU). Figure 4 shows the activity diagram for the 
AMF configuration incremental design method using BF 
method with the relative capacity as sorting criterion.  

In order to illustrate our incremental design approach, let us 
add three more SIs, ��� =	 〈3,2,1〉, ��G =	 〈2,1,0〉, and ��H =	 〈0,1,0〉 to the example in Figure 3. The SIList becomes I��
, ���, ���, ��G,, ��HJ with the required capacity list  	〈1,2,0〉, 〈3,2,1〉, 〈3,2,1〉, 〈2,1,0〉, 〈0,1,0〉�, while the SUList 
remains the same. In this example, we use the BF method and 
we apply the relative capacity criterion for sorting the SUList. 
Figure 5 shows the steps of the approach. As shown in part (2) 
of Figure 5, the SUList is sorted according to the relative 
capacity criterion of ��
 (i.e. ��) in an ascending order. 
Afterwards, the algorithm finds the first SU in the sorted 
SUList which has the adequate capacity to support  ��
, ��
, in 
this case. After the successful assignment of ��
, the algorithm 
proceeds to ��� by sorting the SUList according to the relative 
capacity of  ��� and by finding the appropriate SU to support it 
(part (3) of Figure 5). As presented in part (4) of Figure 5, after 
sorting the SUList, the algorithm succeeds in assigning ��� to ���. For ��G, after sorting the SUList, the algorithm fails to 
find an appropriate SU capable of supporting ��G. This means 
that the SG cannot protect the set of SIs configured for it and 
thus the configuration is “likely” not valid. In this case, the 
algorithm proceeds by adding an extra SU in order to increase 
the capacity. To do so, the algorithm determines the best fit SU 
among the SUs of the original SUList (see part (1) of Figure 5) 
and creates an SU with the same capacity, adding it to the 
SUList. As presented in part (6) of Figure 5, ��G is created 
based on the ��� and is added to the SUList in order to support 
the load of ���. The remaining capacity of the SUList is 
sufficient to support the load of ��H and therefore it is assigned 
to ��G see part (8) of Figure 5).  
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Figure 5.  An example for the incremental design approach 
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In the last row of Figure 5, part (9) represents the remaining 
capacity of the SUList after the successful assignment of the 
entire SIList and part (10) shows the order of the active 
assignment of each SI to one of the SUs of the augmented 
SUList.   

In order to get the best result, we run seven different 
heuristics in parallel. Each one will end up with an SUList, and 
the final SUList will be the list with the least number of SUs. In 
other words, the final result will be the SUList with minimal 
additional SUs and therefore, the resources used for protecting 
services will be relatively minimized. In the case of equality 
between at least two lists, one may chose the list of SUs with 
minimal total capacity or the list with maximal total capacity, 
depending on the design criteria of minimizing resources 
further or on extendibility. However, comparing lists of SUs 
with different capacities is not straightforward and further 
investigations are required. Notice that having a smaller 
number of SUs lowers the chances of collocating them on the 
same node which better protects the SIs against node failure. 
This will facilitate the management of the availability of the 
applications by the AMF middleware, resulting in the increase 
of protection level given a fixed number of deployment nodes. 
Obtaining the original SUList as the final result indicates that 
the input SG is valid and can protect its SIs without any 
additional SUs.  Figure 6 presents the overview of our 
approach for the incremental design of AMF configurations. 

VII. CONCLUSION 

Ensuring the protection, at configuration time, of the 
services as required and according to the specified redundancy 
model (SI-Protection problem) is one of the most important 
objectives and challenges in the validation of AMF 
configurations. 

In this paper, we have presented a heuristics based 
approach to tackle the SI-Protection problem and the validation 
of AMF configurations, by extending the heuristics introduced 
for the well-known bin-packing problem. Our approach takes 
into account the specifics of the domain, i.e. SUs, SIs, and 
redundancy models.  

The precision of the approach is enhanced by embedding 
seven different methods in order to obtain a better result. When 
the result is “Yes”, we are certain the configuration is valid. 
However, when it is “No”, we are not certain if it is invalid, as 
this may be a False negative. The precision of the approach 
depends on different criteria, such as the number of SIs and 
SUs, as well as the variation of SIs based on their required 
capacities. In terms of performance, we have tested our 
approach on a limited number of small scale configurations that 
were generated automatically by our method [15]. However, 
these configurations were not appropriate for the performance 
analysis of the validation approach. In order to analyze the 
performance of the approach, it is necessary to have a set of 
large scale configurations. This set also needs to include a 
variety of configurations in order to cover different criteria 
such as the variation of SIs or SUs based on the number of 
CSTypes they require/provide. Therefore, analysing the 
performance and the accuracy of the approach is a complex 
task which requires the implementation of a simulation 
framework for different scenarios. In addition, we will be able 

to introduce new heuristics focusing on the order of the SIs or 
alternative sorting criteria. As future work, we will investigate 
this simulation framework and perform the thorough analysis 
of the precision and performance of our approach, as well as 
the design of new heuristics.  

As a corollary, we proposed a technique for the incremental 
modification of “likely” invalid configurations into valid ones. 
We believe that our technique may lead to over-dimensioned 
systems, though only by adding a minimal number of extra 
resources. 
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