
AMF Configurations: Checking for Service

Protection Using Heuristics

P. Salehi, F. Khendek, A. Hamou-Lhadj

Electrical and Computer Engineering Department

Concordia University

Montréal, Canada

{pe_saleh, khendek, abdelw}@ece.concordia.ca

M. Toeroe

Ericsson Inc.

Montréal, Canada

Maria.Toeroe@ericsson.com

Abstract— AMF (Availability Management Framework) is a

middleware service that manages the availability of applications.

AMF has been defined by the Service Availability Forum (SA

Forum). An AMF configuration for an application running on

top of AMF is a logical organization of hardware and software

resources to provide and protect services. Resources, namely

components, are grouped into logical entities such as service units

and service groups and are set together at configuration time to

provide and protect services represented as component service

instances and service instances. The assignment of component

service instances and service instances to components and service

units, respectively, is performed at runtime by the AMF

middleware. However, the configuration is valid if and only if it

satisfies all AMF constraints, including the provisioning and

protection of the services. Therefore, the problem is how to

ensure at configuration time that the services will be protected at

runtime. In a previous work, we tackled this problem and proved

it to be NP-hard in general for most redundancy models. Here,

we tackle the problem of AMF configuration validation further

with heuristics using extended versions of heuristics developed

for the bin-packing problem. We consider all the redundancy

models for which the problem is NP-hard. In addition, we

propose an approach which incrementally adds resources to a

“likely” invalid configuration and transforms it into a valid one.

Keywords- High Availability; Availability Management

Framework; System Configurations; Service Protection;

Complexity; Heuristics.

I. INTRODUCTION

High availability of a system is achieved when its services
are accessible (or available) to the users 99.999% of the time
[1]. The demand for Highly Available (HA) services is
continuously growing in different domains including
telecommunications, banking and air traffic monitoring. The
Service Availability Forum (SA Forum) [2] is a consortium of
telecommunications and computing companies that has defined
several standard services/interfaces to support the development
of HA systems. Such standards aim at reducing the application
development time and cost by shifting the availability
management from applications to a dedicated middleware, and
hence enabling portability. Among the SA Forum standards,
the Application Interface Specification (AIS) [3] supports the
development of HA applications by abstracting hardware and
software resources. AIS defines several services that provide

common functionality needed in HA applications, among
which the most important one is the Availability Management
Framework (AMF) [4]. AMF manages the high availability of
applications by coordinating their redundant entities. In order
to provide and protect the services, AMF requires a
configuration that specifies the characteristics of the entities
composing the system, their types and the way they are
organized. Entities, such as components, Service Units (SU)
and Service Groups (SG), describe service providers; other
entities, like Component Service Instances (CSI) and Service
Instances (SI), describe the provided services. AMF defines
five redundancy models [4], namely the No-redundancy, the
2N, the N+M, the N-Way-Active and the N-Way redundancy
models, which vary depending on the number of SUs that can
take active and/or standby assignments and how these
assignments are distributed among the SUs.

It is necessary to provide the middleware with
configurations which are not only syntactically correct and
well-formed with respect to the AMF specification, but also
semantically correct and capable of ensuring the required level
of availability of the configured services. In our previous work
[5], we explored and discussed this issue, referred to as the SI-
Protection problem. We identified two redundancy models,
namely 2N and No Redundancy, where the problem can be
solved efficiently. We proved that in the case of N+M, N-Way
and N-Way-Active redundancy models the problem is NP-hard
in general. For these three redundancy models, we identified
some specific situations where the problem can be simplified.
In this paper, we tackle the problem further and propose a
solution for the N+M, N-Way and N-Away-Active redundancy
models that is based on heuristics. Our solution is based on
extensions to the well-known problem of bin-packing [6]. We
replace bins and objects with SUs and SIs, respectively. We
consider different types of capacity, i.e. capacity vector, unlike
the single type of capacity in the classical bin-packing problem.

Our ultimate goal is to design valid AMF configurations to
provide and protect services. When a configuration is “likely”
to be invalid because we cannot demonstrate its validity or
invalidity with our heuristics based approach, we propose to
transform it into a valid configuration by the incremental
addition of resources. Despite the fact that this may result in
over dimensioning the system, the resulting configuration is a
valid one. We discuss this method in this paper as well. In

Section II, we introduce the necessary background on AMF
configurations along with the review of related work. In
Section III, we define the SI-Protection problem and introduce
notations used throughout the paper. In Section IV, we propose
our generic approach, i.e. independently from redundancy
models, for solving the SI-Protection problem using heuristics.
In Section V, we map our approach to each of the redundancy
models: N+M, N-Way-Active, and N-Way. We present our
approach for the incremental modification of AMF
configurations in Section VI and we draw conclusions in
Section VII.

II. BACKGROUND

A. AMF Configurations

An AMF configuration [4] for a given application is a
logical organization of resources for providing and protecting
services. It consists of components grouped into SUs, which
are grouped into SGs.

TABLE I. DESCRIPTION OF AMF ENTITIES AND ACRONYMS

Entity Description

Component
Represents a hardware or software resource that

can provide a service.

Component

Service Instance

(CSI)

Represents a service workload assigned to a

component. AMF assigns workload to a

component at run-time.

Service Unit

(SU)

Groups a set of components which collaborate to

provide services.

Service Instance

(SI)

Represents a service an SU can provide. It is an

aggregation of CSIs.

Service Group

(SG)

It consists of a set of SUs. It protects according to

redundancy model the SIs assigned to these SUs.

Application

Represents a logical entity that contains one or

more SGs and combines the individual

functionalities of the constituent SGs to provide a

higher-level service.

Node
Represents a computational resource for the

deployment of artefacts.

Cluster
Represents the aggregation of the complete set of

AMF nodes in an AMF configuration.

An application consists of one or several SGs that provide
and protect services defined in terms of SIs composed of CSIs.
At runtime, for each SI configured to be protected by a given
SG, AMF assigns the active and standby states to the SUs of
that SG, according to the redundancy models. As mentioned
previously, the AMF specification defines five redundancy
models [4], namely the No-redundancy, the 2N, the N+M, the
N-Way-Active and the N-Way redundancy models. These
redundancy models vary depending on the number of SUs that
can be active and standby for the SIs and how these
assignments are distributed among the SUs. In the 2N
redundancy model one SU is active for all the SIs protected by
the SG and one is standby for all the SIs. In the N+M model, N
SUs handle the active assignments and M SUs handle the
standby assignments. N+M allows at the most one active and
one standby assignment for each SI. An SG with N-Way
redundancy model contains N SUs. Each SU can have a
combination of active and standby assignments. However, each
SI can be assigned active to only one service unit, whereas it

can be assigned standby to several service units. An SG with
N-Way-Active redundancy model has N SUs, which are only
assigned as active. It has no SU assigned as standby.
Furthermore, each of the SIs protected by this SG can be
assigned to more than one SU. Figure 1 summarizes the
different redundancy models defined in the AMF specification.

Figure 1. Redundancy models defined in the AMF specification

An AMF application may consist of different SGs with
different redundancy models. Each SU is deployed on an AMF
node and the set of all AMF nodes forms the AMF cluster.
Table I summarizes the AMF entities and their descriptions.
AMF entity types define the common characteristics among
multiple instances of the previously defined logical entities. In
AMF, all entities except the deployment entities (i.e. nodes and
clusters) have a type. For instance, Component Service Type
(CSType) is an entity type describing the common
characteristics of its CSIs. Figure 2 shows an example of AMF
configuration. In this example a cluster is composed of two
nodes (Node1 and Node2). It hosts an application consisting of
one SG protecting two SIs in a 2N redundancy model. The SG
consists of two SUs, SU1 and SU2, each composed of two
components. The distribution of the active and standby
assignments is shown in the figure. However, it is not part of
the configuration as defined by AMF, as this is decided by
AMF at runtime. For the sake of simplicity, the entity types are
not presented in this figure.

B. Bin-packing Problem

In the bin-packing problem [6], objects of different volumes
must be packed into a finite number of bins of capacity n in a
way that minimizes the number of bins used. The bin-packing
problem has many applications, such as bandwidth allocation
and creating file backup in removable media. Despite the fact
that the problem is NP-hard, optimal solutions can be produced
with sophisticated algorithms. In addition, many heuristics
have been developed. For example, the first fit algorithm
provides a fast but often non-optimal solution, which involves
placing each item into the first bin in which it fits [8]. The
algorithm can be made much more effective by first sorting the
list of objects into decreasing order [9]. This, however, still

does not guarantee an optimal solution, and for longer lists it
may increase the running time of the algorithm [10].

Figure 2. An example of AMF configuration

C. Related Work

An AMF middleware uses configurations to manage the
resources under its control. AMF configurations need to be
validated before they can be used by the AMF middleware.
One important criterion in the validation of an AMF
configuration is whether it provides the level of protection it is
designed for according to the specified redundancy model.
Indeed, a configuration is AMF compliant if and only if it
meets all the AMF requirements including the protection of
services as required. Validating the protection of services as
requested may require the exploration of all possible SI
combinations and SI-SU assignments. This is a combinatorial
and complex problem. To the best of our knowledge, except for
the traditional work on complexity [11] and our previous work
[5], we are not aware of any related work dealing with SI
protection in the context of AMF.

In our previous paper [5] we discussed the complexity of
the SI-Protection decision problem for an AMF configuration.
In the case of the 2N redundancy model and the No-
redundancy model, we have identified necessary and sufficient
conditions that can be checked in polynomial order. We also
showed that the problem is NP-hard for the N+M, the N-Way-
Active, and the N-Way redundancy models. To overcome this
complexity, due mainly to the consideration of all possible
combinations of SI-to-SU assignments, we have characterized
special cases for special sets of SIs, where necessary and
sufficient conditions have been defined and can be checked
with simple algorithms.

The bin-packing problem has already been revisited and
extended to vector bin-packing, see for instance [7, 12, 13].
Vector bin-packing is a variation of classical bin-packing in
which the capacity of bins and objects is described in terms of a
vector of capacities [7]. Several approximation algorithms have
been proposed to optimize the number of bins. Recently, Patt-
Shamir and Rawitz explored the vector bin-packing problem
with bins of variable sizes and presented an approximation
algorithm [12]. In [13] Rao et al. developed an approximation
algorithm based on the near-optimal solution of linear

programming relaxation of integer programming. These
approximation algorithms introduce a boundary guaranteeing
that their sub-optimal result will not exceed this boundary. This
boundary is expressed as a factor of the optimal solution and
the parameters (number of objects and the size of the vector) of
the problem. Furthermore, the amount of computational and
memory resources necessary for solving the problem will
increase exponentially when the boundary becomes close to the
optimal solution. For this reason, the efficiency of these
approximation algorithms will rarely prove to be practical for
large systems such as AMF configurations. Heuristics,
however, target reasonably good solutions efficiently [14].
Moreover, the main concern in abovementioned papers is the
approximation of the optimal number of bins, while in our case
we are interested in finding a possible assignment of a given set
of SIs to a given set of SUs. Therefore, based on the traditional
bin-packing problem heuristics, we devised new heuristics for
solving the SI-Protection problem taking into account the
specificities of the domain in question, i.e. SUs, SIs, and
redundancy models.

III. THE SI PROTECTION PROBLEM

An AMF configuration can be seen as a set of n of SUs
denoted by	������ = 	��
, . . . ��
�. Each SU combines a
group of components capable of supporting different CSTypes
(i.e. capable of providing the CSIs of those CSTypes). Let k
denote the total number of CSTypes supported by the SUs of
the SUList. Consequently, the provided capacity list for ��� is

defined as 〈�
� , … , ��� 〉 in which ��� ≥ 0 is an integer representing
the capacity of the SU in supporting CSIs from the CSType t.

The n SUs in the SUList need to protect a given sequence of
m SIs, denoted by ������ = 	��
, . . . ����. Similar to the
provided capacity list of SUs, for each ����������, the required

capacity list can be defined by an ordered set 〈�
� , … , ���〉
determining the required capacity of the ��� 	for each CSType.

We can assign an SI (���) to an SU (���) if and only if the

remaining capacity of ��� for all CSTypes is not less than the
capacity required by ���. It is important to note that SIs are

units of assignment and are indivisible.

The problem of SI-protection can be defined as follows: is
it possible to assign, according to the redundancy model, all the
m SIs to the given set of n SUs?

As an illustration of the SI-Protection problem, let us
consider the partial configuration in Figure 3, which displays
only the active part of an SG that consists of three SUs and
which is configured to protect two SIs with the N+M
redundancy model. Note that in this example we only consider
the capacity of the components for handling the active
workload, the ������ = 	��
, ���, ���� with the provided
capacity list of 		〈4,2,1〉, 〈3,3,1〉, 〈3,4,1〉� and the ������ =	��
, ���� with the required capacity list equal
to		〈1,2,0〉, 〈3,2,1〉�. Can the list of SUs with the provided
capacities protect the list of SIs with the given required
capacities?

Node 1 Node2

App1
SG1

SU2SU1

Component3

Component4

Component1

Component2

SI2
CSI3

CSI4

SI1
CSI1

CSI2

Active
Standby

IV. CHECKING FOR SI-PROTECTION USING HEURISTICS

In this section, we present a solution for checking the SI-
Protection for the general case of the N+M, N-Way and N-
Way-Active redundancy models using heuristics. The proposed
approach is based on heuristics developed initially for the bin-
packing problem [6].

In the case of the SI-Protection problem, the SUs can be
considered as bins and the SIs, as the objects. The capacities of
SUs/SIs are described in terms of the number of the CSIs of a
certain CSType which can be provided by SUs and form the
SIs.

Figure 3. The active part of an example of SG with N+M redundancy model

We extend the three well-known heuristics for bin-packing.
Each of these extensions takes the SUList and SIList as input
and decides if there exists a way to assign all SIs of the SIList
to the SUs of the SUList. If an algorithm succeeds in assigning
all SIs to the SUs, the answer to the problem is ‘Yes’. If it fails,
the answer could be ‘Yes’ or ‘No’. Since all these algorithms
take a sequence of SIs and assign them one by one, an
algorithm will answer ‘No’ if it fails to assign an SI at a certain
point. This may be a False negative. When all SIs are
successfully assigned to the SUs, the algorithm returns ‘Yes’ as
result. Therefore, the signature of each algorithm can be
represented as: #$$%&'()�(_+'�,�(-_&.�&(��$(/(������, ������)

It is worth noting that these extensions are generic
algorithms for deciding about the SI-Protection and do not
consider any specific redundancy model. In Section V, we
discuss the application of these algorithms to each of the
redundancy models.

To achieve better results, our approach applies all proposed
algorithms to the sequence and then determines the logical OR
of the answers. Since these algorithms are different (and
somehow based on opposite principles), the probability of a
False negative result is reduced.

A. First-Fit approach (FF)

The first approach is the First-Fit (FF) approach, where we
preserve a fixed order of SUs in the SUList during the whole
processing. To assign a given SI to an SU, we simply take the
first available SU in the SUList which can serve the SI.

Although the FF approach appears to be the easiest
heuristic to the problem, it is known to be quite effective for ,	 = 	1 (classical bin-packing).

Complexity: The assignment of each SI to each SU can be
achieved with k comparisons between the provided and
required capacities of the SU and the SI. Moreover, the number
of SUs that need to be checked before finding the appropriate
one can reach n, at the most. Considering the number of
assignments which equals the number of SIs (m), the
complexity of this approach is 2 × (× , in the worst case.

B. Best-Fit approach (BF)

This approach gives the best results in practice for the
classical bin-packing problem [9].We keep the SUs sorted in an
increasing order of remaining capacities, and find the first SU
capable of handling the load of the SI. Therefore, a given SI is
assigned to an SU which has the minimum remaining capacity
among those which have enough capacity for the SI under
consideration. Note that the list of SUs should be sorted after
each assignment. Here, the goal is to exhaust an SU as much as
possible before moving to the next. BF is occasionally referred
to as unbalanced assignment approach [9]. Since there is no
single value defined as the ‘capacity’ of each SU, the provided
capacity being represented through a list of non-negative
integers, it is necessary to come up with a single criterion for
the capacity of each SU, and to sort the SUs in the SUList
based on this criterion. In what follows, we introduce three
different criteria to represent the capacity of a given SU.

Total Capacity: Given the remaining capacity list

(〈�
� , … , ��� 〉) for a given SU (���), the total capacity is the sum
of the remaining capacities of all supported CSTypes in ���
(�'+'���4	$5	��� =	∑ �����7
).

For instance, let us consider the example of Figure 3 where
we have three SUs (��
, ���, ���) supporting three different
CSTypes and let the remaining capacity list for these SUs be 〈4,2,1〉, 〈1,1,1〉, and 〈2,4,0〉, respectively. The total capacities
for the SUs are 7, 3, and 6, resulting in the sorted list 	���, ���, ��
�. On the service side, there are two unassigned
SIs (��
, ���) with the required capacity list of 〈1,2,0〉 and 〈3,2,1〉, respectively. For assigning SI1, SU2 will be considered
first, then SU3 and finally SU1. SU1 does not have the required
capacity of each CSType, however SU3 does in fact have this
capacity.

Complexity: Sorting the SUList can be achieved in 8((log () and keeping it sorted is 8(log (). For each SI, we
need to examine at the most all the n SUs in the SUList in order
to find the proper SU. This can be done in (× , comparisons.
In addition, after the successful assignment of an SI, we need to
keep the SUList sorted. As a result, the complexity of this

approach is 2 × <(× , + 8(log ()> + 	8((log ().

SG1 (N+M Redundancy Model) (Active) (Standby)

……..

SU1

Comp1

4 CSIs of CSType1

Comp 2

2 CSIs of CSType2

Comp4

1 CSIs of CSType3

SU2

Comp4

3 CSIs of CSType1

Comp5

3 CSIs of CSType2

1 CSIs of CSType3

SU3

Comp6

3 CSIs of CSType1

4 CSIs of CSType2

1 CSIs of CSType3

SI1

1 CSIs of CSType1

2 CSIs of CSType2

0 CSIs of CSType3

SI2

3 CSIs of CSType1

2 CSIs of CSType2

1 CSIs of CSType3

Application

As a variation for this case, one may also consider the
sorting of the SIs at the beginning of the process, according to
the total required capacity and processing the SI with the
smallest capacity first or last. However, sorting SUs or SIs
according to total provided or required capacity, respectively,
does not necessarily help as it does not look into CSType
capacities which are important for the assignments.

Relative Capacity: Contrary to the total capacity criterion,
the relative capacity is defined with respect to a specific SI and
is based on the largest element of the required capacity list of
the SI. As a result, for each SI, the sorted list of SUs may

differ. For a given SI (���) with the capacity list of 〈�
� , … , ���〉,
let the index of the largest member of the required capacity list

be � = 	'�-2'.(〈�
� , … , ���〉). This means that, for ���, the

number of CSIs of CSTypet is larger than the number of CSIs
of the other CSTypes. Consequently, for ��� we need to sort the

SUList based on the �� of each SU (e.g. ��� for ���).
Let us consider again the example in Figure 3. The largest

required capacities of ��
 and ��� are 2 and 3, respectively.
Therefore, the relative capacity criterion for ��
 is �� , which
results in the sorted SUList, 	���, ��
, ����. Similarly, �
 is
the criterion for ��� and the sorted SUList is 	���, ���, ��
�.

Complexity: The complexity of the approach is very
similar to the case of total capacity. The only difference is that
the sorted list of SUs is different for each SI and thus, we need
to sort the SUList for each SI separately. Consequently, the

complexity of this approach is 2 × <(× , + 8((log ()>.
Critical Capacity: Similar to the relative capacity, this

criterion is also defined with respect to each SI. Here our
objective is to find the most critical CSType for each SI and
then sort the list of SUs based on this criterion. The most
critical CSType for each SI is the CSType which has the largest
required capacity in the SI while having the smallest provided
capacity among the SUs in the SUList. To this end, we first
determine the total capacity per CSType of the SUs as 〈��
, … , ���〉 = 	∑ 〈�
� , … , ��� 〉 = 	 〈∑ �
�
�7
 , … , ∑ ���
�7
 〉
�7
 .

Thereafter, for a given ��� with the required capacity list of 〈�
� , … , ���〉, the index of the most critical required capacity is:

? = 	'�-2'. @�
� ��
A ,… , ��� ���A B

Consequently, for ��� we need to sort the SUList based on

the �C of each SU (e.g. �C� for ���).
Going back to the example in Figure 3, the total capacity

per CSType of the SUList is 〈7,7,2〉. For ��
 based on the

calculation (〈
E , �E , F�〉), the critical required service is �� and

hence, the SUList should be sorted according to ��, which
results in the sorted list 	���, ��
, ����. With the same
calculation, the SUList for ��� is sorted based on �� and results
in 	���, ���, ��
�.

Complexity: The complexity of the critical capacity is the

same as for relative capacity, i.e.	2 × <(× , + 8((log ()>.

C. Worst-Fit approach (WF)

While this algorithm is not preferred in practice to the BF
approach, it is important as it uses a contrary approach, and
occasionally gives positive answers when BF fails. The
algorithm is more or less the same as for the BF approach the
only difference being that the SUList is sorted in a decreasing
order of capacities. In fact, the algorithm attempts to assign SIs
to the SUs in a balanced way. To sort the SUList, we can use
the exact same sorting criteria as described for the BF approach
in Section IV.B.

V. TAKING INTO ACCOUNT THE REDUNDANCY MODELS

In the previous section, we introduced three different
approaches for checking the protection of the SIs. In addition,
we have also defined three different criteria for sorting the list
of SUs that can be used for both the BF and the WF
approaches. Therefore, we presented seven different heuristic
methods for solving the SI-Protection problem that can be
applied in sequence to improve the accuracy of the solution.
However, all presented approaches target the generic case of
the SI-Protection without taking into account the features and
the specific constraints of the redundancy models. In this
section, we discuss how we map these general approaches for
the different redundancy models, N+M, N-Way, and N-Way-
Active.

A. The N+M Redundancy Model

In the N+M redundancy model, N SUs support the active
assignments and M SUs support the standbys. This model
allows at the most one active and one standby assignment for
each SI. Assuming that the standby SUs are distinguished from
active SUs, we apply our approach, the sequence of seven
heuristic methods defined previously, for the N SUs configured
to support the active assignment, considering their active
capacity. Thereafter, we apply the approach for M SUs
configured to support the standby assignment, considering their
standby capacity. We are certain that the SG can protect the SIs
if and only if the result of the method is ‘Yes’ for both N active
SUs and M standby SUs. Please note that if a “No” answer
results for either case, this may be a False negative.

B. The N-Way-Active Redundancy Model

An SG with the N-Way-Active redundancy model has N
SUs which are assigned only as active and has no SU assigned
as standby. Furthermore, each of the SIs protected by this SG
can be assigned to more than one SU as specified in the
PreferredActiveAssignments configuration attribute. In Section
IV we discussed one assignment per SI only. In order to handle
multiple assignments, whenever we consider an SI, we assign it
to PreferredActiveAssignments different SUs before proceeding
to the next SI. Every assignment is handled according to the
methods in Section IV.

C. N-Way Redundancy Model

An SG with the N-Way redundancy model contains N SUs.
Each SU can have a combination of active and standby
assignments. However, each SI can be assigned active to only
one SU while it can be assigned standby to several SUs (as
specified in the PreferredStandbyAssignments attribute). The
solution for this redundancy model is quite similar to the one

for N-Way-Active. For the single active assignment in N-Way
redundancy model, we consider the active capacity of the SUs
while, for multiple standby assignments, the standby capacity
of the SUs is taken into account. The same SU cannot be
reassigned to the same SI, neither as standby nor as active.

VI. INCREMENTAL DESIGN OF AMF CONFIGURATIONS

The validation technique specified in Section IV assigns the
SIs to the SUs and returns ‘No’ if it fails to do so for any SI. In
this case we propose to modify the invalid SG by adding
resources, namely SUs incrementally, to increase the provided
capacities.

At the point where the technique fails to assign an SI, we
add SUs to the SUList and continue the assignment process.
This process continues until all SIs are assigned or until it again
fails to assign a certain SI and requires additional SUs. At the
end of this incremental process, all SIs must be assigned to the
SUs in the augmented SUList. The number of additional SUs to
be added each time the algorithm fails in assigning a given SI
depends on the redundancy model of the SG and in some cases
on other configuration attributes.

Figure 4. Incremental AMF configuration design using BF method with

relative capacity sorting criterion

In the case of the active part of the N+M and N-Way
redundancy models only one SU should be added. For the N-
Way-Active redundancy model and the standby part of the N-
Way, the number is equal to the number of remaining
active/standby assignments of the SI in question i.e., if Q
assignments of an SI have already taken place before the failing

point, the number of additional SUs is equal to
PreferredActiveAssignments ‒ Q or
PreferredStandbyAssignments ‒ Q. More specifically, one SU
for handling the standby assignment will be added in the case
of N+M and PreferredStandbyAssignments SUs will be added
in the case of the N-Way redundancy model.

The creation of the additional SU(s) varies depending on
the applied heuristic method used. More specifically, in the BF
method the extra SU(s) for a given SI is/are identical to the first
SU in the sorted (increasing order) list of SUs in the SUList.
However, for a given SI in the WF method, the additional
SU(s) is/are identical to the first SU in the sorted (decreasing
order) list of SUs in the SUList. In other words, the additional
SU(s) for a given SI is/are identical to the best fit SU in the BF
method and identical to the worst fit SU in the WF method. In
order to sort the SUList, we use the same sorting criteria as
used in the heuristic methods.

It is worth noting that, for the case of the FF approach, the
extra SU is simply identical to the first SU in the SUList (i.e.
the first fit SU). Figure 4 shows the activity diagram for the
AMF configuration incremental design method using BF
method with the relative capacity as sorting criterion.

In order to illustrate our incremental design approach, let us
add three more SIs, ��� =	 〈3,2,1〉, ��G =	 〈2,1,0〉, and ��H =	 〈0,1,0〉 to the example in Figure 3. The SIList becomes I��
, ���, ���, ��G,, ��HJ with the required capacity list 	〈1,2,0〉, 〈3,2,1〉, 〈3,2,1〉, 〈2,1,0〉, 〈0,1,0〉�, while the SUList
remains the same. In this example, we use the BF method and
we apply the relative capacity criterion for sorting the SUList.
Figure 5 shows the steps of the approach. As shown in part (2)
of Figure 5, the SUList is sorted according to the relative
capacity criterion of ��
 (i.e. ��) in an ascending order.
Afterwards, the algorithm finds the first SU in the sorted
SUList which has the adequate capacity to support ��
, ��
, in
this case. After the successful assignment of ��
, the algorithm
proceeds to ��� by sorting the SUList according to the relative
capacity of ��� and by finding the appropriate SU to support it
(part (3) of Figure 5). As presented in part (4) of Figure 5, after
sorting the SUList, the algorithm succeeds in assigning ��� to ���. For ��G, after sorting the SUList, the algorithm fails to
find an appropriate SU capable of supporting ��G. This means
that the SG cannot protect the set of SIs configured for it and
thus the configuration is “likely” not valid. In this case, the
algorithm proceeds by adding an extra SU in order to increase
the capacity. To do so, the algorithm determines the best fit SU
among the SUs of the original SUList (see part (1) of Figure 5)
and creates an SU with the same capacity, adding it to the
SUList. As presented in part (6) of Figure 5, ��G is created
based on the ��� and is added to the SUList in order to support
the load of ���. The remaining capacity of the SUList is
sufficient to support the load of ��H and therefore it is assigned
to ��G see part (8) of Figure 5).

Incremental design

of AMF Configuration

BF method with Relative

Capacity sorting criterion
SUList_BF_RC=

SUList

All SIs are

assigned

Find the best fit SU

in SUList for SIj and

name it BFSU

Based on the Redundancy

Model Create SU(s)

identical to BFSU and add

them to SUList1

Sort the SUList with

Relative Capacity

criterion

No

Yes

Yes

Send the

SUList_BF_RC in

the output

Let SIj be the first

unassigned SI in

SIList

Sort the SUList_BF_RC

based on relative criterion

with respect to the SIj

Is it possible

to assign SIj

Assign SIj to the SU(s) in

SUList_BF_RC

No

Figure 5. An example for the incremental design approach

Figure 6. Overview of the incremental design approach

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

SU1

<4,2,1>

SU2

<3,3,1>

SU3

<3,4,1>

SI1

<1,2,0>

SI2

<3,2,1>

SI3

<3,2,1>

SI4

<2,1,0>

SU1

<4,2,1>

SU2

<3,3,1>

SU3

<3,4,1>

SI1

<1,2,0>

SI2

<3,2,1>

SI3

<3,2,1>

SI4

<2,1,0>

SU1

<3,0,1>

SU2

<3,3,1>

SU3

<3,4,1>

SI2

<3,2,1>

SI3

<3,2,1>

SI4

<2,1,0>

SI3

<3,2,1>

SI4

<2,1,0>

SU1

<3,0,1>

SU2

<0,1,0>

SU3

<3,4,1>

SI4

<2,1,0>

SI4

<2,1,0>

 c based on SISorted for 21

 c based on SISorted for 12 c based on SISorted for 13

SI5

<0,1,0>

SI5

<0,1,0>

SI5

<0,1,0>

SI5

<0,1,0>

SI5

<0,1,0>

SI5

<0,1,0>

 c based on SISorted for 14

SI5

<0,1,0>

25 based on c SISorted for

SU1 SU2 SU3

SI1 SI2 SI3 SI4 SI5

SU4

SI4

<2,1,0>

SU1

<3,0,1>

SU2

<0,1,0>

SU3

<0,2,0>

SI5

<0,1,0>

SU4

<3,3,1>

 assign SI

failed to

4

 SUList & added to SUd based on is create SU 24
 c based on SISorted for 14

SU1

<3,0,1>

SU2

<0,1,0>

SU3

<0,2,0>

SU4

<3,3,1>

SU1

<3,0,1>

SU2

<0,1,0>

SU3

<0,2,0>

SU4

<1,2,1>

SU1

<3,0,1>

SU2

<0,1,0>

SU3

<0,2,0>

SU4

<1,2,1>

SU1

<3,0,1>

SU2

<0,0,0>

SU3

<0,2,0>

In the last row of Figure 5, part (9) represents the remaining
capacity of the SUList after the successful assignment of the
entire SIList and part (10) shows the order of the active
assignment of each SI to one of the SUs of the augmented
SUList.

In order to get the best result, we run seven different
heuristics in parallel. Each one will end up with an SUList, and
the final SUList will be the list with the least number of SUs. In
other words, the final result will be the SUList with minimal
additional SUs and therefore, the resources used for protecting
services will be relatively minimized. In the case of equality
between at least two lists, one may chose the list of SUs with
minimal total capacity or the list with maximal total capacity,
depending on the design criteria of minimizing resources
further or on extendibility. However, comparing lists of SUs
with different capacities is not straightforward and further
investigations are required. Notice that having a smaller
number of SUs lowers the chances of collocating them on the
same node which better protects the SIs against node failure.
This will facilitate the management of the availability of the
applications by the AMF middleware, resulting in the increase
of protection level given a fixed number of deployment nodes.
Obtaining the original SUList as the final result indicates that
the input SG is valid and can protect its SIs without any
additional SUs. Figure 6 presents the overview of our
approach for the incremental design of AMF configurations.

VII. CONCLUSION

Ensuring the protection, at configuration time, of the
services as required and according to the specified redundancy
model (SI-Protection problem) is one of the most important
objectives and challenges in the validation of AMF
configurations.

In this paper, we have presented a heuristics based
approach to tackle the SI-Protection problem and the validation
of AMF configurations, by extending the heuristics introduced
for the well-known bin-packing problem. Our approach takes
into account the specifics of the domain, i.e. SUs, SIs, and
redundancy models.

The precision of the approach is enhanced by embedding
seven different methods in order to obtain a better result. When
the result is “Yes”, we are certain the configuration is valid.
However, when it is “No”, we are not certain if it is invalid, as
this may be a False negative. The precision of the approach
depends on different criteria, such as the number of SIs and
SUs, as well as the variation of SIs based on their required
capacities. In terms of performance, we have tested our
approach on a limited number of small scale configurations that
were generated automatically by our method [15]. However,
these configurations were not appropriate for the performance
analysis of the validation approach. In order to analyze the
performance of the approach, it is necessary to have a set of
large scale configurations. This set also needs to include a
variety of configurations in order to cover different criteria
such as the variation of SIs or SUs based on the number of
CSTypes they require/provide. Therefore, analysing the
performance and the accuracy of the approach is a complex
task which requires the implementation of a simulation
framework for different scenarios. In addition, we will be able

to introduce new heuristics focusing on the order of the SIs or
alternative sorting criteria. As future work, we will investigate
this simulation framework and perform the thorough analysis
of the precision and performance of our approach, as well as
the design of new heuristics.

As a corollary, we proposed a technique for the incremental
modification of “likely” invalid configurations into valid ones.
We believe that our technique may lead to over-dimensioned
systems, though only by adding a minimal number of extra
resources.

ACKNOWLEDGMENT

This work has been partially supported by the Natural
Sciences and Engineering Research Council (NSERC) of
Canada and Ericsson Software Research.

REFERENCES

[1] C. Oggerino, High Availability Network Fundamentals: A Practical
Guide to Predicting Network Availability. 2001: Cisco Press.

[2] Service Availability Forum™, URL: http://www.saforum.org

[3] Service Availability Forum, Service Availability Interface. Overview
SAI-Overview-B.05.01.

[4] Service Availability Forum, Application Interface Specification.
Availability Management Framework SAI-AIS-AMF-B.04.01.

[5] P. Salehi, et al. “Checking Service Instance Protection for AMF
Configurations,” in Proc. of the Third IEEE International Conference o
Secure Software Integration and Reliability Improvement, Shanghai,
China, 2009, pp. 269 - 274.

[6] E. G. Coffman, Jr. , M. R. Garey , D. S. Johnson, Approximation
algorithms for bin packing: a survey, Approximation algorithms for NP-
hard problems, PWS Publishing Co., Boston, MA, 1996

[7] J. Csirik, et al., “On the multidimensional vector bin packing” European
Institute for Advanced Studies in Management, 1990.

[8] S. Albers , M. Mitzenmacher, Average-case analyses of first fit and
random fit bin packing, Proceedings of the ninth annual ACM-SIAM
symposium on Discrete algorithms, p.290-299, January 25-27, 1998, San
Francisco, California, United States

[9] C. Kenyon, Best-fit bin-packing with random order, Proceedings of the
seventh annual ACM-SIAM symposium on Discrete algorithms, p.359-
364, January 28-30, 1996, Atlanta, Georgia, United States

[10] G. Dósa, The tight bound of first fit decreasing bin-packing algorithm is
FFD(I)≤11/9OPT(I)+6/9. In: Proc. of the 1st International Symposium
on Combinatorics, Algorithms, Probabilistic and Experimental
Methodologies (ESCAPE2007), pp. 1–11 (2007)

[11] M. R. Garey, and D. S. Johnson, Computers and Intractability, A Guide
to the Theory of NP-Completeness, W. H. Freeman and Co., San
Francisco, Calif. (1979).

[12] B. Patt-Shamir, and D. Rawitz, “Vector Bin Packing with Multiple-
Choice”, in Proc. the 12th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT), Bergen, Norway, 2010, pp. 248-259.

[13] C.S. Rao, et al., “Improved Approximation Bounds for Vector Bin
Packing”. Arxiv preprint arXiv:1007.1345, 2010.

[14] J. Pearl, “Heuristics: Intelligent Search Strategies for Computer
Problem Solving”. New York, Addison-Wesley,1984.

[15] P. Salehi, et al., “A Model Driven Approach for AMF Configuration
Generation”, in Proc of the 6th Work. on System Analysis and
Modelling, Oslo, Norway, 2010.

