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Abstract—Traffic histograms play a crucial role in various net-
work management applications such as network traffic anomaly
detection. However, traffic histogram-based analysis suffers from
the curse of dimensionality. To tackle this problem, we propose
a novel approach called K-sparse approximation. This approach
can drastically reduce the dimensionality of a histogram, while
keeping the approximation error low. K-sparse approximation
reorders the traffic histogram and uses the top-K coefficients of
the reordered histogram to approximate the original histogram.
We find that after reordering the widely-used histograms of
source port and destination port exhibit a power-law distribution,
based on which we establish a relationship between K and the
resulting approximation error. Using a set of traces collected from
a European network and a regional network, we evaluate our K-
sparse approximation and compare it with a well-known entropy-
based approach. We find that the power-law property holds
for different traces and time intervals. In addition, our results
show that K-sparse approximation has a unique property that
is lacking in the entropy-based approach. Specifically, K-sparse
approximation explicitly exposes a tradeoff between compression
level and approximation accuracy, enabling to easily select a
desired settlement point between the two objectives.

I. INTRODUCTION

Traffic histograms portray the number of packets, bytes or
flows observed during a time interval for different values of a
traffic feature, such as source IP address or port number. They
play a crucial role in various network management applications
as they provide different views of traffic characteristics useful
for traffic accounting [7], traffic anomaly detection [10], and
resource provisioning [11] among other applications.

However, traffic histogram-based analysis suffers from the
curse of dimensionality. This problem is evident in the fol-
lowing example. In the European network of GEANT2 [1],
a record of 15-minute traffic data includes approximately 109

flows distributed over 216 ports and 232 IP addresses [14].
These are formidable numbers for histogram-based analysis
as they result in long vectors, which are hard to process. It is
worth highlighting that while traffic sampling is widely used
to support online traffic monitoring, it does not significantly
reduce the number of entries in a histogram.

To address the dimensionality problem, it is crucial to
develop dimensionality reduction techniques for traffic his-
tograms. Surprisingly, the literature has little work focus-
ing on dimensionality reduction of traffic histograms. The

several existing approaches, e.g. [9], [10], [12], [15], use
histogram dimensionality reduction techniques that are tailored
to specific applications. Except for [12] where a histogram
is simply summarized into a single entropy value, the other
approaches reduce the dimensionality of a traffic histogram
based on heuristics that typically involve an empirically-
selected threshold value. Specifically, the threshold value is
a relative uncertainty value in [15], a traffic volume value in
[9], and a port number, e.g., port 1024, in [10]. However,
while working well under the suggested threshold values for
their respective purposes, these approaches do not provide
explicit relationship between the selected threshold value and
the approximation error. Since the threshold value affects the
number of selected components and hence the approximation
error, which is called the “information-loss” tradeoff in this
paper, lacking a relationship for the “information-loss” tradeoff
makes the decision of using a certain threshold value highly
empirical and limits the broader applicability of traffic his-
togram analysis.

In this paper we propose a novel approach for dimen-
sionality reduction of traffic histograms called K-sparse ap-
proximation. The proposed approach is based on an explicit
relationship between the number of chosen coefficients and
the approximation error. Specifically, K-sparse approximation
reorders a traffic histogram and uses the top-K coefficients
to approximate it. Our technique has its root on the finding
that after reordering, the traffic histograms of popular features
exhibit a power-law distribution. Based on this, we establish
a relationship between the approximation error and K. Com-
pared to a state-of-the-art technique based on entropy [15],
our technique has the key advantage that it allows to easily
control the trade-off between the desired compression level
and the affordable approximation error. Using traffic traces
from several locations in a European network and from a
regional network, the proposed K-sparse approximation ap-
proach is investigated and compared with the related entropy-
based approach. In addition, we investigate the impact of
sampling under both approaches. The results are promising
showing that K-sparse approximation is useful for tackling
the curse of dimensionality in traffic histogram analysis.

The main contributions of the paper are the following:

• We propose K-sparse approximation, a novel histogram
dimensionality reduction technique that uses a (possibly
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very) small number of coefficients K to accurately ap-
proximate large histograms.

• We observe that the histograms of port numbers, when
sorted, decay according to a power law. Based on this
observation, we derive a relationship between K and the
approximation error.

• We compare K-sparse approximation with a state-of-
the-art entropy-based approach and show that K-sparse
approximation results in a more stable K.

• We illustrate that K-sparse approximation works effec-
tively both with sampled and un-sampled traffic.

The remainder is organized as follows. Sec. II introduces basic
concepts and the datasets used in the investigation in Sec. III.
Sec. IV presents the entropy-based approach. We introduce our
proposed approach in Sec. V. We expose results in In Sec. VI,
discuss related work in Sec. VII and conclude in Sec. VIII.

II. TRAFFIC HISTOGRAM AND APPROXIMATION ERROR

A traffic histogram is the distribution of the traffic volume
(in terms of flows, packets or bytes) over all possible values
or coefficients of a feature. A feature is a field in the packet
header, such as source port, or a function of some header field
values, such as the destination IP prefix. While there are many
features that may be analyzed, we focus here on source and
destination port numbers.

Specifically, consider an observation window T and a fea-
ture X , which has n possible distinct values in the range
[1, 2, . . . n]. Assume that the amount of traffic corresponding
to the i-th feature value is xi, where i = 1, . . . , n. The traffic
histogram of X for this observation window is (x1, x2, ...xn).

With a bit of abuse of notation, we shall also use X to
represent both a feature and a corresponding traffic histogram
(x1, x2, ...xn), although the correct interpretation should be
clear given the context. XK denotes the traffic histograms that
results from setting to zero all the initial n feature values, but
for K selected values. Using XK to approximate the original
traffic histogram X , the approximation error (σK) is defined
as:

σK =
||X −XK ||2
||X||2

(1)

where ||Y ||2 denotes the Euclidean norm of Y .
As it is clear from Eq. 1, the approximation error takes

values between 0 and 1. In general, the larger the subset XK ,
the lower the approximation error. Hence, there is a trade-off
between K and σK , or in other words, a trade-off between the
information kept (decided by K) and the information lost (re-
flected by σK). A “good” dimensionality reduction approach
should keep a balance between the parameters involved in the
“information-loss” trade-off, and particularly, should select a
subset XK subject to a desired approximation error.

This triggers the key research question of which K coeffi-
cients to choose among the set of all coefficients of a traffic
histogram.

To answer this question, we reorder the coefficients of a
histogram such that in the reordered histogram, denoted by

X ′ ≡ (x′

(1), ..., x
′

(n)), the coefficients are in the non-increasing
order, i.e. x′

(1) ≥ x′

(2) ≥ · · · ≥ x′

(n). With this, the following
result helps select K coefficients.

Proposition 1: In approximating X , the top K coefficients
of the reordered histogram X ′ give the least approximation
error (σK) among all possible choices of K coefficients.

Proof: Based on Eq. 1, for a given K, larger coefficients
result in smaller approximation error σK .

Formally, let X ′

K ≡ (x′

(1), ..., x
′

(K), 0...0) where
x′

(1), ..., x
′

(K) are the top K coefficients of X ′. Note that for
the corresponding K coefficients in X , the approximation
error is equivalently computed using the equation:

σK =
||X ′ −X ′

K ||2
||X ′||2

(2)

where ||X ′||2 = ||X||2 is easily verified.
For ease of expression, in the following we consider a

case where only one element in X ′

K is replaced, and the
general case can be extended from this. Specifically, con-
sider another set of K coefficients, denoted by X ′′

K ≡
(x′

(1), . . . , x
′′

(i), . . . , x
′

(K), 0...0). In X ′′

K , K − 1 components
are the same as in X ′

K . Without loss of generality, suppose
the only different element x′′

(i) is the jth (j > K) coefficient in
X ′

K . Since the K coefficients in X ′

K are the top coefficients,
we must have x′

(i) ≥ x′′

(i) = x′

(j). Then, with simple
manipulation, we have:

||X ′ −X ′′

K ||2 − ||X
′ −X ′

K ||2

= [(x′

(i) − x′

(j))
2
+ x′

(i)
2
]− x′

(j)
2

= 2x′

(i)
2
− 2x′

(i)x
′

(j) ≥ 0

with which the result follows.
The above result lays the foundation for the dimensionality

reduction approaches discussed in the next sections.

III. THE DATASET AND HISTOGRAMS OF INTEREST

The datasets used in this paper are traffic traces collected
from the GEANT2 network [1]. GEANT2 is a pan-European
backbone network that interconnects and provides Internet ac-
cess to European NRENs (National Research and Educational
Networks). The traffic traces were collected from four network
links: (1) a peering link between the Internet and the Frankfurt
router in GEANT2 (Trace A); (2) a peering link between the
Internet and the Vienna router in GEANT2 (Trace B); (3) a
peering link between the Internet and the Amsterdam router
in GEANT2 (Trace C); and (4) a peering link between the
Internet and the Copenhagen router in GEANT2 (Trace D).

The four traces were collected during a 33-day measurement
period in June – July 2011, and involve traffic flow records
recorded over 15-minute measurement time bins at a sampling
rate of 1/1000.

In this paper, we are interested in histograms of source
(srcport) and destination (dstport) port numbers over one-
day (24h) intervals. Fig. 1 displays an example histogram of
the number of flows over source ports for a 24h interval in
the measurement period. Port numbers larger than 1024 are
clipped for visibility.
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Fig. 1. Example traffic histogram

IV. THE ENTROPY BASED APPROACH

In this section, we describe the entropy based approach ini-
tially introduced in [15] to derive XK . Specifically, the entropy
based approach helps select K based on which we compute
X ′

K from the reordered traffic histogram. This approach relies
on and makes use of two concepts: sample entropy and relative
uncertainty (RU).

Consider a random variable X that may take n discrete
values. Suppose we observe X for S times. Let xi denote
the number of observed times when X takes the value i, for
i = 1, . . . , n. Then, the sample entropy of X , denoted by
H(X), is defined as follows:

H(X) = −
n∑

i=1

p(xi) log(p(xi)), (3)

and its relative uncertainty defined as:

RU(X) =
H(X)

Hmax(X)
(4)

where p(xi) = xi

S , and Hmax(X) ≡ logmin(n, S). Here,
Hmax denotes the maximum entropy of X , since 2Hmax(X)

represents the maximum possible number of unique values that
X may take.

Putting into the context of a traffic histogram, X represents
the considered feature (e.g. source port or destination port), n
denotes the maximum number of possible values of the feature,
e.g. 216 source / destination ports in IPv4, xi the number of
observed flows in a certain time interval which have source
/ destination port number i, i = 1, . . . , n; and S the total
number of observed flows in this time interval.

An important property of RU is the following (see also [15]
and references therein). In the case S ≤ n, let A denote the
subset of observed values in X , in which, p(xi) > 0 for i ∈ A.
Then, it is known that RU(X) = 1 if and only if |A| = S
and p(xi) =

1
S . In the case S > n, then RU(X) = 1 if and

only if xi =
S
n , which implies p(xi) =

1
n . Both cases tell that

if the relative uncertainty calculated from a set of observed
values xi is close to one, i.e. RU(X) ≈ 1, the random variable
X approximately has a uniform distribution over the distinct
feature values corresponding to the (non-zero subset of the)
observed xi.

In other words, RU(X) = 1 implies no variation among
(the non-zero subset of) xi. On the other hand, if few of the
observed values xi have higher probability to appear, then the
distribution of X becomes skewed and RU(X) < 1. In the

extreme case when only one observed xi has none-zero value,
RU(X) = 0.

The novel idea of the entropy based approach has its root on
the above property of RU. Particularly, it repeatedly calculates
the relative uncertainty (RU) of (x′

(K+1), x
′

(K+2), ..., x
′

(n)) ≡
R(K), starting from K = 1. The iteration stops when RU(R)
is close to 1. In other words, the entropy method focuses
on and evaluates if the remaining tail is close to uniform.
It repeats this procedure by increasing K in each step and
stops when the tail is almost uniform. Fig. 2, illustrates an
example of RU in function of the K value during one of the
measurement days. It shows that RU increases as K increases,
until it becomes relatively stable and close to 1 when K is
high, i.e, the tail of the reordered histogram is close to be
uniformly distributed.
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Fig. 2. RU as a function of the K value

As suggested in [15], we choose RU(R) > 0.9 as the stop-
ping threshold, with which the resulting K value indicates the
number of coefficients x′

(1), x
′

(2), ..., x
′

(K) used to approximate
the original traffic histogram.

A pseudo-code of this method can be found in [15] and is
reproduced in Algorithm 1, where β is a “cut-off” threshold
used in [15] to decide if the remaining set R is close to
uniformly distributed.

Fig. 3 illustrates the resulting number of K by applying the
entropy based approach on the daily traffic histograms over the
33 measurement days for the four collected traces. The figure
depicts that while the entropy based approach is effective in
reducing the dimension of the traffic histograms, the number
of coefficients found using this approach is highly variable.
For example, the number of K coefficients can dramatically
vary from several, to tens or even hundreds between successive
days within the same trace. The number also varies between
traces, as well as between features.

It is worth highlighting that the entropy based approach
does not have a targeted σK . The high variation in the
obtained K values implies that they may lead to significant
differences in the approximation error using the obtained top
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Algorithm 1 Entropy-based approach

Input: Reordered traffic distribution histogram X ′ =
(x′

(1), x
′

(2), ...x
′

(n))
Output: The value of K

1: S = ∅, R = X ′, i = 0, β = 2%
2: compute cond. prob. dist. of R and its RU(R)
3: while RU(R) ≤ 0.9 do
4: β = β × 2−i; i++
5: for x′

(j) ∈ R do
6: if p(x′

(j)) ≥ β then
7: S = S

⋃
{x′

(j)};R = R− {x′

(j)};
8: end if
9: end for

10: compute cond. prob. dist. of R and its RU(R)
11: end while
12: K = card(S)
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Fig. 3. The K value derived from the entropy-based approach

K coefficients. This motivates us to propose a new approach
for dimensionality reduction in the next section.

V. K-SPARSE APPROXIMATION

Recall the discussion in Sec. II on approximation error.
This section presents the proposed approach that provides
an explicit link between the chosen K coefficients and the
corresponding approximation error. Based on this, given a
required σK , the top K coefficients are readily found.

A. Power-Law Traffic Distribution

The key idea of the proposed approach is to ex-
plore the characteristics of the reordered histogram X ′ ≡
(x′

(1), x
′

(2), ..., x
′

(n)), x′

(1) ≥ x′

(2) ≥ · · · ≥ x′

(n). For this
purpose, Fig. 4 illustrates the traffic histograms of source and
destination ports over a 24h period from the collected traces.
To produce these figures (and similar ones in Sec. VI), traffic
histograms have been normalized (rescaled to unit norm) and
reordered such that, the histograms coefficients are sorted in
order of decaying magnitude.
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Fig. 4. Sorted traffic histograms over a 24h-period for the 4 traces

It is worth re-pointing to Fig. 1 and comparing with it.
Recall that Fig. 1 is an original traffic histogram that displays
the number of flows per feature value, arranged in the order of
the feature values. While Fig. 1 does indicate that the traffic
is only concentrated on some source ports, Fig. 4 additionally
illustrates that a power-law model is a plausible fit to the
reordered histograms, due to the linear tendency in the log-log
scale.

To get a better insight into the validity of our observation,
we conducted a linear regression to fit the reordered traffic
histograms in the log-log scale. The fitting technique is based
on the least-square error method [2]. The validity of the
approximation is indicated by the correlation coefficient (Cr)
which measures the quality of a least-square fit to the original
data. Cr is a number between -1 and 1. A Cr value equal to 1
implies a perfect linear correlation between the original data
point and the fitting data point, while a Cr value of 0 indicates
no correlation between the original data point and the fit.

Fig. 5 illustrates the correlation coefficients for each of the
24hs traffic histograms over the entire measurement interval.
The figure depicts that unlike Trace A and B, where the Cr
exceeds 0.99 for both source and destination ports histograms,
the correlation coefficients experienced for destination ports
in trace C and D are relatively lower and more fluctuating.
However, the power law fit holds for all instances of traffic
histograms during the entire measurement interval, since the
figure shows that the correlation coefficients are relatively high
(> 0.9) for all collected traces.

B. Approximation with Top K-Coefficients

Assuming that a reordered traffic histogram is drawn from
a distribution that follows a power law, one can extract a few
top K-coefficients to approximate the traffic histogram. We
present in this section the proposed methodology.

Let X ≡ (x1, x2, . . . , xn) be the traffic histogram and
its coefficients. For ease of expression in the following, we
suppose that these coefficients are normalized (against the
Euclidean norm of X) and rescaled to unit norm. In addition,
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Fig. 5. Correlation coefficients over the measurement interval

let X ′ ≡ (x′

(1), x
′

(2), . . . , x
′

(n)) represent the reordered his-
togram where the coefficients are sorted in order of decaying
magnitude (x′

(1) ≥ x′

(2) ≥ ...x′

(n)).
The observation from Fig. 4 indicates that x′

(i), (i =
1, 2, . . . ), decay according a power law:

x′

(i) ≤ G · i−α (5)

where G is a normalization constant and α is a scaling
parameter with α ≥ 1. This observation lays the foundation
for the following analysis.

A histogram X ′ with a power law decay can be approx-
imated by the first few K coefficients i.e. the top-K coeffi-
cients, by keeping the largest K coefficients and setting the
remaining to zero. The resulting histogram, denoted by X ′

K , is
a compressed representation of the original histograms X ′ and
X . We call X ′

K the top K sparse approximation. Thanks to
the rapid decay of its coefficients, in our measurement traces,
we typically have K � N under a small approximation error.

Particularly, it can be verified that the top K-sparse approx-
imation has an approximation error [5]:

σK = ||X −XK ||2 = ||X ′ −X ′

K ||2 ≤ (
s

α
)(−1/2)GK(−s)

(6)
where s = α − 1

2 , and the normalization constant G for the
power-law distribution has the following expression:

G = α− 1. (7)

The scaling parameter α can be estimated using the maximum
likelihood estimator (MLE) and is given by the following
expression [8]:

α = 1 + n

[
n∑

i=1

lnx′

(i)

]
−1

. (8)

Finally, given the scaling parameter α estimated with Eq. 8
and the normalization parameter G calculated with Eq. 7,

the following result is readily obtained with Eq. 6, which
establishes an explicit relationship between the required ap-
proximation error σK and the corresponding K number of
top coefficients:

K ≥ [
σK

( s
α )

(−1/2)G
](−

1
s ) (9)

with which, the traffic histogram is approximated by
(x′

(1), . . . x
′

(K)).
Summarizing the above discussion, we present a pseudo-

code of the proposed approach in Algorithm 2. We highlight
that while Eq. 9 provides an explicit link between K and
the approximation error, the entropy-based approach does not.
This link maintains a tuning knob for the control of the
“information-loss” tradeoff, which is a key advantage of the
proposed approach.

Algorithm 2 K-sparse approximation approach

Input: Reordered normalized traffic histogram: X ′ =
(x′

(1), x
′

(2), . . . , x
′

(n)); required approximation error σK

Output: The value of K.

α = 1 + n
[ ∑n

i=1 lnx
′

(i)

]
−1

G = α− 1
K ≥ [ σK

( s
α )(−1/2)G

](−
1
s ); s = α− 1

2

C. Stability of the Scaling Parameter

The scaling parameter α controls the approximation / com-
pression performance as indicated by Eq. 9 and Eq. 7. A
higher (lower) scaling parameter increases (decreases) the
compressibility of a histogram. In the following, we give
insights into the characteristics of this parameter.

Fig. 6 illustrates the scaling parameter’s cumulative distri-
bution functions for reordered 24-hour histograms of source
and destination ports over the entire measurement interval and
for all collected traces. The figure indicates that the scaling
parameter varies for different 24-hour time intervals, features,
and datasets. However, the variation is small.
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Fig. 6. Scaling parameter distributions
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The mean and standard deviation of the estimated scaling
parameters are presented in Table I. Interestingly, the table
shows that the estimated scaling parameters exhibit relative
stability over time with low standard deviation. In addition,
Table I indicates that the traffic distribution over source ports
experiences for all traces faster decay with larger scaling
parameter than that for destination ports. This means that
traffic is concentrated on a larger number of top destination
ports rather than source ports. Moreover, the table shows that
the collected traces exhibit different compressibility levels.
The number of flows per destination port has the slowest
decay, i.e, the smallest scaling parameter, for trace D and the
highest scaling parameter for trace A. In contrast, the variation
of the scaling parameter for histograms of source ports is much
smaller.

TABLE I
ESTIMATED MEAN AND STANDARD DEVIATION FOR THE SCALING

PARAMETERS FOR THE FOUR TRACES

Feature Trace A Trace B Trace C Trace D

SrcPort 2.61± 0.22 2.13± 0.11 1.79± 0.38 2.28± 0.21

DstPort 2.13± 0.11 1.58± 0.08 1.06± 0.09 0.96± 0.03

To further investigate the impact of the scaling parameter on
the resulting K value, we illustrate in Table II the mean and
the standard deviation (STD) of the K values resulting from
both entropy and our sparse approximation with a targeted
approximation error of 20% (σK = 0.2). The Table shows that,
except for trace C, the K values derived from our method in
all traces experience a lower standard deviation in comparison
to those derived from the entropy-based method. For example
the relative standard deviation (RSD) for the K values derived
from entropy in trace D is in the order of 105% while it is
just in the order of 21% with our method. Due to the high
experienced STD, we investigate, in Fig. 7, the behavior of
the K values derived from our approach (σK = 0.2) for
destination port traffic histograms per 24h over the whole
measurement period in trace C. The figure clearly illustrates a
daily pattern where the resulting K value generally decreases
during week days while it increases during the weekend.
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Fig. 7. Daily pattern for the K value in trace C for dst port

It is worth highlighting that Fig. 6, Table I and Table II
all show that the scaling parameter and as a consequence
the resulting K value are relatively stable over time. This is
exciting and has a significant implication in practice: One may
use the scaling parameter estimated in the past to pre-decide
how many top K coefficients to keep in approximating the

current histogram.

VI. UNDERSTANDING K-SPARSE APPROXIMATION

In this section we investigate the performance of K-
sparse approximation and compare it with the entropy-based
approach. The focused performance aspect is the trade-off
between the selected K and the resulting approximation error.

A. K-Sparse Approximation v.s. Entropy-Based
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Fig. 8. K value as a function of the approximation error (GEANT2)

In Fig. 8, we plot the curves of the number K decided from
K-sparse approximation in function of the approximation error
(σK) for the four traces and for both source and destination
port histograms. To obtain these curves, we vary σK in the
interval [0.21, 0.01] and calculate for each σK the required
value of K based on Eq. 9 for each 24h traffic histogram
over the measurement period. Since K varies due to small
variations in the scaling parameter, as discussed in Sec. V-C,
we plot in Fig. 8 the mean of obtained K in function of σK .

To get an overview of how well K-sparse approximation
performs, we additionally draw in Fig. 8 the curves of K as a
function of the approximation error directly calculated using
Eq. 1, for the four traces and for both source and destination
port histograms. These curves are drawn by varying the K
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TABLE II
MEAN AND STANDARD DEVIATION OF K FOR ENTROPY AND SPARSE APPROXIMATION USING FOUR DIFFERENT TRACES

Approach Feature Trace A Trace B Trace C Trace D

Entropy
Srcport 1.09± 0.38 4.39± 2.25 24.48± 3.06 3.45± 1.75

Dstport 2.78± 0.78 2.69± 0.8 21.12± 5.75 97.66± 103.45

Sparse approximation (σK = 0.2)
Srcport 2.26± 0.23 2.58± 0.15 2.87± 3.6 2.68± 0.54

Dstport 2.87± 0.29 4.97± 0.7 25.41± 16.62 35.76± 7.62

value in the obtained range while calculating for each K the
corresponding σK using Eq. 1 for each 24h traffic histogram
over the whole measurement period. One has to note that
the actual approximation error varies within each of the 24-h
traffic histograms; for this reason, we plot in Fig. 8 the mean
of the obtained σK . We refer these curves the ideal tradeoff
curves.

To compare with the entropy-based approach, we also draw
in Fig. 8 the average value of K decided with Algorithm 1
for an RU threshold of 0.9. Since the entropy-based approach
does not provide an explicit relationship between the number
of coefficients and σK , we calculate the actual approximation
error using Eq. 1 directly.

Fig. 8 illustrates that while the required number K of top
coefficients increases when the targeted approximation error
increases, it generally remains very small for reasonably low
approximation error. For example, with only K = 7 top coef-
ficients, which corresponds to only 0.01% of all coefficients,
we can achieve an approximation error of 1% for source port
traffic histograms in trace A, while for destination ports in
trace D, which exhibit the worst compressibility among all
traces, 16 coefficients result in an error of approximately 20%.

Fig. 8 additionally shows that the curve of K as a function
of the approximation error obtained using our approach closely
matches with the curve of the ideal trade-off calculated using
Eq. (1). In general, the proposed approach gives a bit conser-
vative number of coefficients for a reasonable approximation
error e.g. 5%, but the difference is small, e.g. only one
coefficient difference for all source port traffic histograms.
Note that, a bit conservative (yet very close) estimation of
K is what is desired, ensuring the targeted estimation error.

However, if the targeted approximation error is too small,
e.g. smaller than 5% for destination ports in traces C and D, the
proposed approach may experience performance degradation.
In particular, in such a case, K sparse approximation may
give a too optimistic number of coefficients in comparison
to the number actually required to achieve the ideal tradeoff.
For example, to achieve an approximation error of 3% for
destination port histograms in trace C, 668 top coefficients are
calculated from the proposed approach, while the calculation
directly from Eq. 1 gives more than a thousand coefficients to
achieve the same approximation error. This is caused by an
inaccurate power-law fit. Indeed, in all traces as shown in Fig.
4, the lower-tail of the distribution deviates from the power-
law model, inducing a performance degradation in the K
sparse approximation approach as the number of coefficients
increases (or the approximation error decreases). This can also
be seen in Fig. 5, which shows that, though the power law fit is

excellent for most cases where the fitting coefficient is above
0.99, the fit for destination port histograms of trace C and D,
though still very good with fitting coefficient better than 0.9,
is not as good. One possible way to circumvent this limitation
is to introduce more parameters in the approximation. For
example, with different scaling parameters, one may model the
histogram using double power-law distribution [13] to bound
both the upper and lower tails of the reordered histogram. We
let further analysis of this more sophisticated model in future
work.

Finally, Fig. 8 shows that the entropy-based approach only
gives a single point. In some cases, while it gives very few
coefficients (small K values), the corresponding approxima-
tion error can be very high. For example, with the entropy-
based approach only one coefficient in average is required to
approximate the traffic per source port histogram in trace A,
which results in a σK close to 18%. Our approach suggests, on
the other hand, that extracting 7 coefficients, for example, pre-
serves the low dimensionality of the approximated histogram
while reducing σK to 1%. Without an explicit relationship
between K and σK , it is challenging to use the entropy-
based approach, particularly when the approximation error is
a concern. In contrast, K-sparse approximation provides such
a relationship enabling to easily dimension K when a certain
approximation error is targeted.

B. Impact of Sampling

To reduce the processing and storage overhead, today’s
commercial routers apply random packet sampling. Typically,
the sampling rate can be as low as 0.1% in large, e.g,
GEANT2, and medium size networks.

So far we evaluated the proposed K-sparse approximation
approach using sampled traffic flow data. In this section, we
investigate the validity of our approach on non-sampled flow
data and the impact of sampling on the power-law observation
and as a consequence on the choice of K. To this end, we use
an one-month dataset of non-sampled traffic flow data from a
lightly loaded campus network at the Norwegian University of
Science and Technology (NTNU). We applied random traffic
sampling at a rate of 0.1% on the collected dataset, then we
investigated the behavior of the traffic histograms as well as
the approximation quality of the number K of coefficients.

Fig. 9 shows the impact of sampling on source and des-
tination port traffic histograms over a 24-hour period for
the NTNU dataset. The figure illustrates that while sampling
slightly shortens the tail of the distribution, the histogram after
sampling matches closely with the histogram without sam-
pling. In addition both histograms exhibit an approximately
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Fig. 9. Sorted traffic histograms over a 24h period (NTNU)
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Fig. 10. The K value as a function of the approximation error (NTNU)

linear decay in the log-log scale, implying that power-law
is a plausible fit for histograms under both sampling and
non-sampling. Sampling does not violate the assumption of
a power law decay of the reordered traffic histograms.

In Fig. 10 we plot the value K resulting from the pro-
posed approach, when varying the approximation error within
[0.21,0.01], and that from the entropy-based approach with
respectively no sampling and with a sampling rate of 0.1%.
Fig. 10 indicates that a histogram of sampled traffic gener-
ally requires fewer top coefficients than non-sampled traffic
to achieve the same approximation error. Our investigation
exposes the increase of the scaling parameter with sampling as
the main reason for this observation. For example the average
scaling parameter for non sampled srcport traffic histograms
over the month of measurement, is in the order of 1.09, while
in the order of 1.41 for sampled srcport traffic histograms. An
increase in the scaling parameter induces more compressible
histograms thus lower number of coefficients are required
for approximation. On the other hand, the performance of
the entropy-based approach is not affected by sampling, e.g,
around 20 coefficient achieve 4% approximation error.

Similarly to Fig. 8, Fig. 10 finally depicts that our approach
allows to control the trade-off between the allowable error
and the desired compression level, while the entropy-based
approach does not.

VII. RELATED WORK

Traffic histograms have been often used for traffic analysis.
However they suffer from the curse of dimensionality issue.
This is challenging to deal with and has thus witnessed
some commercial and research activities. Several approaches
investigated this issue, setting intuitively a threshold (5-10%
of the total amount of traffic) to infer significant resource
consumption, the top takers or applications over the network
[9] [3] [4]. While this has been shown effective to reach

their target, they have ignored the discussion about their
choice to that particular threshold, making their analysis
purely empirical. Other approaches have faced the issue for
anomaly detection [12] [10] [6]. To this end, the authors
of [10] have proposed for traffic histogram analysis to keep
the well known source and destination ports, and remove
the components that remain constant, which are associated
to unused feature values, to reduce the dimensionality of the
considered traffic histograms; in [10], the authors further apply
Principal Component Analysis (PCA) to transform the traffic
histogram into another basis where the top few components are
used for the histogram approximation under that basis. While
their approach was shown able to reduce the dimension of
traffic histograms over source and destination ports around 10
times, it seems missing various traffic anomalies which use or
target random unknown port numbers. On the other hand, the
authors of [6], have proposed an aggregation strategy using
hash functions to reduce traffic histogram’s dimension. Their
approach was shown promising providing a lossless com-
pression technique for traffic histogram analysis. However, it
suffers from a serious weakness: a mapping between the hash
function and the original histogram is required, which adds
an additional non negligible processing overhead. Tangentially
related, the authors of [12] propose sample entropy technique
to summarize traffic histograms into one value. Entropy has
been widely adopted for traffic anomaly detection; however
it was shown to coarsely model the properties of traffic
histograms thus ineffective to detect a wide range of traffic
anomalies [10]. An extension of sample entropy using relative
uncertainty, has been proposed and thoroughly discussed in
[15]. We believe that K sparse approximation complements
these approaches while overcoming their weakness providing
the missing link between the “information” and “loss” in traffic
histogram dimensionality reduction.

VIII. CONCLUSION

In this paper, we propose K-sparse approximation: a novel
and effective traffic histogram dimensionality reduction tech-
nique that uses only a small number of coefficients to approx-
imate large traffic histograms. It is based on the observation
that ordered traffic histograms of source and destination ports
decay according to a power law. This has enabled us to derive
an explicit relationship between K and the approximation
error. We evaluate our technique using several traces from
different locations and show that the power-law observation
is consistent and that a very small number of coefficients are
sufficient to approximate histograms with a reasonably small
error. Compared to the entropy-based technique, K-sparse
approximation is more flexible as it enables to directly control
the trade-off between the allowable error and the desired
compression level. We have also investigated our technique
under sampling and found that sampling does not violate our
power-law observation. These findings illustrate that K-sparse
approximation is a promising technique for traffic histogram
dimensionality reduction, which we believe will motivate its
application and further use.
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