
Towards an Efficient Verification Approach on
Network Configuration

Khalid Elbadawi
School of Computing

DePaul University
Chicago, IL 60604

Email: badawi@cdm.depaul.edu

Yongning Tang
School of Information Technology

Illinois State University
Normal, IL 61790

Email: ytang@ilstu.edu

James Yu
School of Computing

DePaul University
Chicago, IL 60604

Email: jyu@cdm.depaul.edu

Abstract—This paper presents our new design and implemen-
tation of a configuration verification system called ConfVS. With
the increasing complexity of network configuration, verifying
network behavior has become a highly time-consuming and error-
prone process. Much research effort has been made to tackle
this challenge. In this paper, we propose a formalization scheme
based on binary decision diagram to model the entire network
behavior specified by diverse configuration requirements (e.g.,
security policies, routing policies, and address translation rules),
and design a set of algorithms to efficiently verify the compliance
of network behavior to the requirements. Our experiments
show that ConfVS can validate thousands of network devices
configured by millions rules with ten times improved efficiency
when compared to several well-known existing solutions.

I. INTRODUCTION

Modern networks are designed and deployed to satisfy a
wide variety of competing goals related to different network
requirements, such as security vs. availability, and performance
vs. manageability [1]. These high–level goals are realized
through a complex chain of configuration commands that may
include the configuration of thousands of access control rules
from different policies such as packet filtering rules, routing
policies, and address translation. Maintaining high–level goals
is difficult because configurations are continuously revised due
to policy changes and new devices and services.

Several surveys show that misconfiguration is the most
critical threat to network operations [2], [3]. Analysis from
IT experts states that human error is responsible for 50 to 80
percent of network outages [4]. In addition, a local configura-
tion change or network failure may even inadvertently result
in a global impact on existing network services. For example,
when a network link goes down, the network may converge
into a new topology that has not been envisioned by network
administrators. This may indirectly cause illegitimate traffic
bypass security protection or legitimate packets accidentally
blocked. Thus, timely configuration verification is a highly
desirable network service to enhance network reliability and
manageability.

It is a significant challenge to verify in a timely fashion
the configurations of a network system which may consist
of hundreds or thousands of different devices with possibly
hundreds of configuration rules on each device [5]. There is a
growing consensus on the need of formal models to conduct

configuration verification in order to validate enforced network
policies. As such, many researchers have proposed formal
models of network security and reachability. The work in [6]–
[8] has focused on verifying firewall policies, while the works
in [9], [10] have focused on detecting routing misconfigura-
tion. Global verification has been discussed in [11]–[15].

This paper presents a configuration verification system
called ConfVS, which provides instant configuration diagnoses
for reachability and security compliance. ConfVS models the
whole network as a directed graph, where each vertex in
the graph represents a unidirectional connection between two
adjacent devices. This abstraction allows us to build efficient
algorithms to verify end-to-end reachability and security poli-
cies. We formalize the behavior of each policy rule using an
efficient Boolean expression represented in Binary Decision
Diagram (BDD).

Configuration verification should cover both consistency
verification and behavioral verification. Consistency verifica-
tion is related to the correctness of configuration data, while
behavioral verification is about the dynamics of IP packets
passing through a network where the packets are forwarded,
blocked, delayed, or logged. This paper is considering only
behavioral verification in terms of reachability and security
compliance. Consistency verification has been addressed in
our previous work [16].

This paper is structured as follows. We first describe our
new formalization for firewall, routing and NAT policies in
Section II. Then, we present an algorithm to compute network
reachability in Section III. Section IV discusses our evaluation
framework and results. Finally, we conclude our work in
Section V.

II. POLICY FORMALIZATION

This section presents a new set of formalization schemes for
network verification analysis of security and reachability. One
common function on most network devices is data forwarding,
from an incoming interface to an outgoing interface based on
specific Forwarding Control List (FCL). For example, FCL on
a router is its routing entries in the routing table. We focus on
three types of FCLs: filtering FCL, routing FCL and Network
Address Translation (NAT) FCL. The combined effect of these
FCLs will determine flow manipulation and network behavior.

247978-3-901882-48-7 c©2012 IFIP

Our objective is to study the effect (i.e. the actions) of these
FCLs on IP packets passing through the devices

We use BDD to represent FCLs since BDD models a
complex set as a single Boolean expression. Let us denote the
Boolean expression of a set 𝑋 as 𝐹𝑋 , which is generated from
a number of conjunctive Boolean variables 𝑡𝑖 ∈ 𝔹, 𝑖 = 1 ⋅ ⋅ ⋅𝑛
where 𝔹 ∈ {0, 1}. For example, if 𝑋 = {5}, which is a set of
a single element, then 𝐹𝑋 = 𝑡1∧¬𝑡2∧𝑡3. The only assignment
that makes 𝐹𝑋 true is 1, 0, 1 for 𝑡1, 𝑡2, and 𝑡3, respectively. In
addition, If 𝑋 and 𝑌 are two different sets, then 𝑋 ∪ 𝑌 and
𝑋∩𝑌 can be modeled as 𝐹𝑋∨𝐹𝑌 and 𝐹𝑋∧𝐹𝑌 , respectively,
in BDD.

Now, let 𝒜 be an FCL that contains a set of rules, where
each rule 𝑟 has a constraint set 𝑐 over certain IP packet header
fields along with an action 𝑎 to be taken when a network packet
matches the constraints in 𝑐. The packet header fields include
IP protocol, destination address, source address, destination
port, and source port. Note that the constraint 𝑐 represents a
set of IP packets and we define this set as a flow (denoted as
𝜋).

The Boolean expression of an FCL depends on
its type. However, the Boolean expression of an
FCL rule is unified and generated as follows. Let
𝑟 = ⟨𝑐𝑝𝑟𝑜𝑡𝑜, 𝑐𝑑𝑠𝑡𝑖𝑝, 𝑐𝑠𝑟𝑐𝑖𝑝, 𝑐𝑑𝑠𝑡𝑝𝑜𝑟𝑡, 𝑐𝑠𝑟𝑐𝑝𝑜𝑟𝑡, 𝑎⟩ be a rule
where 𝑐𝑥 is a constraint over the field 𝑥. The Boolean
expression of the rule 𝑟, denoted as 𝐹𝑟, is 𝐹𝑎 ∧ 𝐹𝑐 where
𝐹𝑐 = 𝐹𝑝𝑟𝑜𝑡𝑜 ∧ 𝐹𝑑𝑠𝑡𝑖𝑝 ∧ 𝐹𝑠𝑟𝑐𝑖𝑝 ∧ 𝐹𝑑𝑠𝑡𝑝𝑜𝑟𝑡 ∧ 𝐹𝑠𝑟𝑐𝑝𝑜𝑟𝑡. The
Boolean expression of 𝐹𝑎 depends on the FCL type.

We introduce three functions to manipulate Boolean expres-
sions, which are the projection function, its inverse function,
and the mask function. The projection function is defined as
Ψ : 𝐹𝜋 ×𝑃 → 𝐹𝑎, where 𝐹𝜋 , 𝑃 , and 𝐹𝑎 are Boolean expres-
sions for a flow, an FCL policy and an action, respectively. Ψ
is used to determine the set of actions applied to a flow 𝜋. The
inverse function, which is defined as Ψ−1 : 𝐹𝑎 × 𝑃 → 𝐹𝜋 , is
used to extract the flow given a set of actions. For example,
if 𝑃 is a firewall policy, Ψ−1(𝑓𝑎𝑙𝑠𝑒, 𝑃) returns a Boolean
expression that represents the set of denied packets (since
we model the actions accept and deny as true and false,
respectively).

The mask function is defined as 𝜏 : 𝐹 × ℎ→ 𝐹 ′ that takes
two Boolean expressions 𝐹 and ℎ as arguments, and returns a
new Boolean expression 𝐹 ′ by resetting 𝐹 at location defined
in ℎ using an existential quantifier operator. For example, if a
flow is any packet from 10.1.2.0/24 to 10.1.23.0/24, applying
the 𝜏 function of ℎ = 𝐹𝑑𝑠𝑡𝑖𝑝 = 1 to the flow will create a new
flow of any packet from 10.1.2.0/24 to any destination. In the
following, we show how to construct the formal expressions
for a filtering policy, a routing policy, and a NAT policy.

1) Firewall policy construction: The Boolean expression
of a firewall rule represents the set of packets that can pass
through the associated interface. Constructing a firewall FCL
is very crucial since it requires all IP header information of
an IP packet. To build its BDD expression with 𝑁 rules, we

use the following recursive equation:

𝑇 (𝑖) =

⎧
⎨

⎩

𝑎𝑖 → 𝑇 (𝑖+ 1) ∨ 𝐹 𝑖
𝑟 , 𝑇 (𝑖+ 1) ∧ ¬𝐹 𝑖

𝑟

if 1 ≤ 𝑖 < 𝑁
𝑎𝑖 → 𝐹 𝑖

𝑟 , 𝑓𝑎𝑙𝑠𝑒 𝑖 = 𝑁
(1)

where 𝑎 → 𝑏, 𝑐 represents if–then–else operator (If 𝑎 is true,
then 𝑏, otherwise 𝑐). The Boolean expression, say 𝑃 , is then
obtained by computing 𝑇 (1), and its effect on a flow 𝜋 can
be expressed as

𝑃 ∧ 𝐹𝜋 (2)

Recall that 𝑃 ∧𝐹𝜋 is equivalent to ‘the set of accepted packets
∩ 𝜋’.

2) Routing Policy construction: Unlike firewalls, routers do
not select next hop based on the order of routing rules, but
would rather find the longest prefix match. In addition, most
routers support load-balancing when multiple paths exist. This
implies multiple routing rules can be applied to the same flow
with their corresponding actions.

Each routing rule in the routing FCL is composed of a single
matching field, which is the destination IP address, along with
an action determined by the outgoing interface and the IP
address of the next hop. Therefore, we construct the Boolean
expression of a routing policy as follows. For each network
prefix of length 𝑚, we first construct 𝑃𝑚 and 𝑃 𝑐

𝑚 such that

𝑃𝑚 =
⋁

𝑘∈𝐼𝑚
𝐹 𝑘
𝑟 and 𝑃 𝑐

𝑚 =
⋁

𝑘∈𝐼𝑚
𝐹 𝑘
𝑐

where 𝐼𝑚 represents the set of indexes for rules that have
destination prefix of length 𝑚 and 𝐹 𝑘

𝑐 represents the Boolean
expression of the rule constraint without the action field. Recall
that 𝐹 𝑘

𝑟 = 𝐹 𝑘
𝑐 ∧𝐹 𝑘

𝑎 . Thus, 𝐹 𝑘
𝑐 = 𝐹 𝑘

𝑑𝑠𝑡𝑖𝑝 and 𝐹 𝑘
𝑎 = 𝐹 𝑘

𝑛 where 𝑛
is the outgoing interface number of the 𝑘𝑡ℎ rule. After that, we
construct the routing policy, 𝑃 , using the following recursive
equation:

𝑇𝑚 = 𝑃𝑚 ∨ (¬𝑃 𝑐
𝑚 ∧ 𝑇𝑚−1) 1 ≤ 𝑚 ≤ 32, (3)

where 𝑃 = 𝑇32 and 𝑇0 = 𝑃0 represents the default gateway
rule.

For routing verification, we would like to focus on whether
or not a flow 𝜋 can reach a specific device. In other words, if
flow 𝜋 passes through a router device, what flow will be routed
to the outgoing interface 𝑛? We answer this query using the
following expression:

𝐹𝜋 ∧Ψ−1(𝐹𝑛, 𝑃) (4)

3) NAT policy construction: Network Address Translation
(NAT) is used by a device (e.g., firewall or router) deployed
between a private and public network. There are three forms
of NAT FCLs: static NAT FCL, dynamic NAT FCL, and
overloading FAT (also known as PAT) FCL. In static NAT
FCL, each rule translates a given source IP address to another
pre-allocated source IP address. In dynamic NAT FCL, each
rule translates a group of source IP addresses to another pre-
allocated group of IP addresses. In overloading NAT FCL,

248 2012 8th International Conference on Network and Service Management (CNSM 2012): Short Paper

R2 R1

Subnet 2

R3

Subnet 1

Subnet 3

1 27 8
3

4

6 5

10 9

1

46

10 8

53

27 9

Fig. 1. A Simple network topology and its equivalent in graph model

each rule translates a group of source IP addresses to a single
pre-allocated IP address but with different source ports.

In our analysis, we do not differentiate between static
and dynamic NAT policies. Because Boolean expressions can
represent a single value or a set of values, both NAT FCLs
have the same semantic.

Basically, NAT FCL is composed of a constraint over the
source header field of an IP packet along with an action that
determines the new source address. If a flow that is traversing
from a private to public network matches the constraint, the
source IP address of each packet in the flow will be translated.
Otherwise, the flow will be passed without translation. The
device that supports NAT service also keeps a reverse trans-
lation for the flow that is traversing from public to private
network. Modeling NAT FCL requires extra bits (up to 48
bits) to express the rule’s action. This may explode in size for
certain expressions. To resolve this problem, we break an FCL
rule (𝑐 ⇝ 𝑎) into two rules: 𝑐 ⇝ 𝑖 and 𝑎 ⇝ 𝑖 where 𝑖 is the
rule index. This solution is valid because the number of rules
in NAT FCL is very small. In our implementation, we set the
maximum number of rules per FCL to 256 rules.

Let 𝒜𝑐 be the FCL that represents 𝑐→ 𝑖 and 𝒜𝑎 be the FCL
that represents 𝑎 → 𝑖. Let 𝑃𝑐 and 𝑃𝑎 represent the Boolean
expressions for 𝒜𝑐 and 𝒜𝑎, respectively. We calculate 𝑃𝑐 and
𝑃𝑎 as:

𝑃𝑐 =
𝐾⋁

𝑖

𝐹𝑖 ∧ 𝐹 𝑖
𝑐 and 𝑃𝑎 =

𝐾⋁

𝑖

𝐹𝑖 ∧ 𝐹 𝑖
𝑎,

where 𝐾 is the number of rules. Now, let 𝜋 be a flow that
traverses from private to public network and passes through a
static or dynamic NAT service. Let 𝑃 = Ψ(𝑡𝑟𝑢𝑒, 𝑃𝑐) be the
set of all packets that will be translated. The effect of NAT
service on the flow is expressed as:

𝑇 (𝑃 ∧ 𝐹𝜋) ∨ (¬𝑃 ∧ 𝐹𝜋), (5)

where ¬𝑃 ∧ 𝐹𝜋 is the set of packets that passes NAT service
without translation, and 𝑃𝑐 ∧ 𝐹𝜋 is the set of packets that
has been translated under the transformation function 𝑇 , and
𝑇 (𝑥) = 𝜏(𝑥, 𝐹𝑠𝑟𝑐𝑖𝑝)∧Ψ−1(Ψ(𝑥, 𝑃𝑐), 𝑃𝑎). In case of PAT, we
replace 𝐹𝑠𝑟𝑐𝑖𝑝 with the expression 𝐹𝑠𝑟𝑐𝑖𝑝 ∧ 𝐹𝑠𝑟𝑐𝑝𝑜𝑟𝑡.

While constructing the Boolean expressions of 𝑃𝑐 and 𝑃𝑎,
we also construct 𝑃𝑐 and 𝑃𝑎 to represent the reverse translation
when a flow is traversing from public back to private network.
A constraint over the source IP address encoded in 𝑃𝑐 and 𝑃𝑎

becomes the constraint over the destination IP address encoded

Algorithm 1 Updating Connection Expression
Input: Dev1, Inf1, Dev2, Inf2
Output: 𝐹𝜋

1: 𝐹𝜋 ← 𝑡𝑟𝑢𝑒 /* i.e. any possible flow */
/* processing outgoing interface */

2: if Dev1 has Routing then 𝐹𝜋 ← Apply Eqn 4
3: if Dev1 has NAT and Inf1 is external then 𝐹𝜋 ← Apply Eqn 5
4: if Dev1 has Filtering at Inf1 then 𝐹𝜋 ← Apply Eqn 2

/* processing incoming interface */
5: if Dev2 has Filtering at Inf2 then 𝐹𝜋 ← Apply Eqn 2
6: if Dev2 has NAT and Inf2 is internal then 𝐹𝜋 ← Apply Eqn 5
7: return 𝐹𝜋

Algorithm 2 Computing 𝒢 of vertex 𝑣 ∈ 𝑉
Input: The graph 𝐺 = ⟨𝑉,𝐸⟩ and vertex 𝑣 ∈ 𝑉

1: reset all vertices in 𝑉 that are involved in a cycle as not visited
2: 𝒢𝑣 = compute(v)

Procedure: compute(𝑣)
1: if 𝑣 is not visited then
2: mark 𝑣 as visited
3: if 𝑣 ∈ 𝑆 then
4: 𝒢𝑣 ← ℱ𝑣

5: else
6: 𝑋 ← false
7: for all 𝑢 ∈ 𝑉 such that [𝑢, 𝑣] ∈ 𝐸 do
8: compute(𝑢)
9: 𝑋 ← 𝑋 ∨ 𝒢𝑢

10: end for
11: 𝒢𝑣 ← ℱ𝑣 ∧𝑋
12: end if
13: end if

in 𝑃𝑐 and 𝑃𝑎, respectively. The inverse transformation function
is defined as 𝑇−1(𝑥) = 𝜏(𝑥, 𝐹 𝑑𝑠𝑡𝑖𝑝) ∧Ψ−1(Ψ(𝑥, 𝑃𝑎), 𝑃𝑐).

III. NETWORK BEHAVIOR VERIFICATION

We model a network topology as a directed graph 𝐺 =
⟨𝑉,𝐸⟩, where 𝑉 is the set of vertices and 𝐸 is the set of
edges. We also model each link in the network topology as
one or two unidirectional connection(s) based on the link
type, and assign each connection a universal identification
number (𝑖𝑑). These connections constitute the vertices of graph
𝐺. Therefore, a vertex 𝑣 ∈ 𝑉 represents a unidirectional
connection, and is labelled by its connection 𝑖𝑑. A directed
edge [𝑢, 𝑣] in 𝐸 is constructed when both vertices 𝑢 and 𝑣
are sharing a common device 𝑑 such that the device 𝑑 has
an incoming interface from connection 𝑢 and an outgoing
interface to connection 𝑣. Consequently, the set 𝑉 is divided
into three disjoint sets: source vertices 𝑆, sink vertices 𝑇 and
intermediate vertices 𝑀 . Note that 𝑆 and 𝑇 represent end-
to-end connections in a network topology. Therefore, for each
end host there is at least one connection 𝑣 in 𝑆, one connection
𝑢 in 𝑇 , and 𝑣 ∕= 𝑢. Figure 1 shows a network topology and its
representation in our graph model. The numbers beside links
represent connection IDs. For the horizontal link, the upper
ID has a direction from right to left, while the lower ID has a
direction from left to right. For each vertical link, the ID on
right side has a direction from up to bottom, while the ID on
the left side has a direction from bottom to up.

2012 8th International Conference on Network and Service Management (CNSM 2012): Short Paper 249

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

T
im

e
in

 (
se

cs
)

M
em

or
y

in
 (

M
B

)

Number of FW Rules (in thousands)

Time
Memory

Fig. 2. Time/Memory required to construct FW
BDDs

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2000 4000 6000 8000 10000 12000

M
em

or
y

(K
B

)

Number of links

Memory usage

Fig. 3. Memory required to construct graph model

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
in

 (
se

cs
)

Network size (# of nodes)

Construct all BDDs
Computing reachability for all nodes

Fig. 4. ConfVS performance in terms of time

For each connection, we invoke Algorithm 1 to compute
its Boolean expression ℱ . We follow the order of operations
based on specific network devices.

Let 𝒢𝑣 be a Boolean expression that represents the aggre-
gated effect when a flow traverses from source connections
towards vertex 𝑣 ∈ 𝑉 . We can obtain 𝒢𝑣 by computing the
disjunction of all paths from the source vertices to the vertex
𝑣, in which each path is computed by the conjunction of all
connection’s Boolean expressions that construct the path. For
example, 𝒢6 = ℱ6∧ℱ10 and 𝒢3 = ℱ3∧(𝒢2∨𝒢6). Algorithm 2
describes a depth first search algorithm to compute 𝒢𝑣 where
𝑣 ∈ 𝑉 . Using this algorithm, we can find, for example, what
type of packets can reach S2 starting from S3. This query can
be expressed as

𝒢10 ∧ 𝒢7.

The running time of Algorithm 2 is 𝑂(∣𝑉 ∣), ignoring the cost
of BDD operations.

Computing 𝒢 for all nodes requires applying Algorithm 2
for each sink vertex. The algorithm ensures that 𝒢𝑣 is com-
puted only once unless 𝑣 is included in a cycle. In the case
of cyclic graph, we reset those vertices that are included
in some cycle by marking them as unvisited whenever we
invoke compute(). Ignoring the cost of BDD operations,
the running time over all sink vertices using Algorithm 2 is
𝑂(∣𝑉 ∣ × ∣𝑇 ∣). Note that identifying loops in a graph can be
achieved in a linear time.

IV. IMPLEMENTATION AND EVALUATION

We implemented our model using the Erlang language along
with C and C++ languages for connecting Erlang system
with BDD package. Erlang [17] supports in-memory high-
performance database to store millions of ConfVS predi-
cates [18]. For BDD, we model FCL constraint using 104
Boolean variables and FCL action using 8 Boolean variables.
We implemented BDD expressions using BuDDy package. In
BuDDy, the BDD operation running time is linear to the size
of the resulted BDD expression.

We evaluate the performance of our model in terms of
memory and time complexities. We use the network topology
generator tool introduced in [13] to generate a random network
topology along with a set of random configuration files for
routers, NATs and firewalls.

We run our evaluation on a computer with Intel Core 2
Duo CPU 2.13GHz and 4GB of RAM. We generated 15
different scenarios with different network sizes. Five scenarios
have been configured to generate huge set of complex firewall
policies. The remaining scenarios are used to evaluate ConfVS.
The average number of nodes is 600 with 10,000 links.
The average total number of FCL rules is 100,000 rules per
network.

We first show the performance of using Equation 1. Firewall
policy is considered the most complex and costly in BDD
construction than other policies since it involves all packet
header information. Figure 2 illustrates the time and memory
required to build firewall rules. The time complexity increases
quadratically (yet close to linear) while space complexity
increases linearly. Note that our formalization scheme takes
only 115 seconds to process 200,000 rules, while the previois
work presented in [13] requires 1,100 seconds. Also, our
scheme is scalable to construct more than one million firewall
rules without exploding the BDD memory size.

Figure 3 shows the impact of the number of links in
a network on the space complexity of the ConfVS system
(excluding the space complexity in BDD package). We can
see that the space required to build the graph model is almost
linear.

The running time of our proposed algorithms is depicted in
Figure 4. As shown, the running time to build all connection’s
BDDs increases linearly while the running time to build all
𝒢’s expressions increases quadratically. As discussed before,
the running time to compute reachability for all sink vertices is
𝑂(𝑛2). For a network of size 1,100 nodes, the overall building
time is approximately 618 seconds.

V. CONCLUSION

We present a new formalization scheme, along with its
implementation in ConfVS, to address the issue of network
configuraiton verification in a large and complex network envi-
ronment where its behavior is constantly changing. ConfVS is
a graph-based model and uses Binary decision diagram (BDD)
to formally capture the network behavior. Our experiment
results show that ConfVS can handle thousands of FCL rules
more efficiently than the previous work. Moreover, ConfVS
performs incremental computation to provide an instant an-
swer to the compliance of all verification rules.

250 2012 8th International Conference on Network and Service Management (CNSM 2012): Short Paper

REFERENCES

[1] D. K. Smetters and R. E. Grinter, “Moving from the design of usable
security technologies to the design of useful secure applications,” in
Proceedings of the 2002 workshop on New security paradigms, ser.
NSPW ’02. New York, NY, USA: ACM, 2002, pp. 82–89.

[2] Z. Kerravala, “As the value of enterprise networks escalates, so does the
need for configuration management,” The Yankee Group, Jan. 2004.

[3] Arbor Networks Inc., “Worldwide infrastructure security report, volume
vi,” http://www.arbornetworks.com/report, 2010.

[4] What’s Behind Network Downtime?, “Whitepaper by juniper networks,”
http://www-05.ibm.com/uk/juniper/pdf/200249.pdf, May 2008.

[5] R. Bush, O. Maennel, M. Roughan, and S. Uhlig, “Internet optometry:
assessing the broken glasses in internet reachability,” in Proceedings of
the 9th ACM SIGCOMM conference on Internet measurement confer-
ence, ser. IMC ’09. New York, NY, USA: ACM, 2009, pp. 242–253.

[6] H. Hamed, E. Al-Shaer, and W. Marrero, “Modeling and verification
of ipsec and vpn security policies,” in Proceedings of the 13TH IEEE
International Conference on Network Protocols (ICNP’05), Washington,
DC, USA, 2005, pp. 259–278.

[7] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“Fireman: a toolkit for firewall modeling and analysis,” in Security and
Privacy, 2006 IEEE Symposium on, may 2006.

[8] M. G. Gouda and A. X. Liu, “Structured firewall design,” Comput. Netw.,
vol. 51, pp. 1106–1120, March 2007.

[9] N. Feamster and H. Balakrishnan, “Detecting bgp configuration faults
with static analysis,” in Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation - Volume 2, ser.
NSDI’05. USENIX Association, 2005, pp. 43–56.

[10] F. Wang, J. Qiu, L. Gao, and J. Wang, “On understanding transient
interdomain routing failures,” IEEE/ACM Trans. Netw., vol. 17, no. 3,
pp. 740–751, Jun. 2009.

[11] G. Xie et al., “On static reachability analysis of ip networks,” in IEEE
INFOCOM, vol. 3, 2005, pp. 2170–2183.

[12] A. R. Khakpour and A. X. Liu, “Quantifying and querying network
reachability,” Distributed Computing Systems, International Conference
on, vol. 0, pp. 817–826, 2010.

[13] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network
configuration in a box: towards end-to-end verification of network reach-
ability and security,” in Proceedings of 17th International Conference
on Network Protocols (ICNP). IEEE, Oct. 2009, pp. 123–132.

[14] S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastructure
configuration synthesis and debugging,” J. Netw. Syst. Manage., vol. 16,
no. 3, pp. 235–258, Sep. 2008.

[15] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in Proceedings of the
ACM SIGCOMM 2011 conference, ser. SIGCOMM ’11. New York,
NY, USA: ACM, 2011, pp. 290–301.

[16] K. Elbadawi and J. Yu, “High level abstraction modeling for network
configuration validation,” in GLOBECOM 2010, 2010 IEEE Global
Telecommunications Conferenc, Dec. 2010.

[17] J. Armstrong, R. Virding, and M. Williams, Concurrent Programming
in Erlang, 2nd ed. Prentice Hall International (UK), 1996.

[18] S. L. Fritchie, “A study of erlang ets table implementations and per-
formance,” in Proceedings of the 2003 ACM SIGPLAN workshop on
Erlang, ser. ERLANG ’03. New York, NY, USA: ACM, 2003, pp.
43–55.

2012 8th International Conference on Network and Service Management (CNSM 2012): Short Paper 251

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

