
Scissors: Dealing with Header Redundancies in
Data Centers through SDN

Kalapriya Kannan
IBM Research India New Delhi, INDIA

Email: kalapriya@in.ibm.com

Subhasis Banerjee
IIIT-Delhi, New Delhi, INDIA

Email: subhasis@iiitd.ac.in

Abstract—Growing concern for reduced power dissipation, cost
and latency demands in next generation Data Centers (DC)
motivates us to revisit header optimizations. Headers contribute
to about 30-40% of DC traffic and is responsible for equal
proportion of consumed power. This amounts to significant
overhead on per byte transfer of payload. In the past, highly
inflexible switches have limited the focus of header optimizations
primarily on end-host or edge network routers. Further, strict
compliance to protocols by switches/routers along the path have
limited the segments of headers that can be optimized. Recent
evolution of Software Defined Network (SDN) brings in several
opportunities to control over switches. We believe that if SDN’s
finer handle to the switching devices is exploited, it can help deal
with header information.

In this paper, we exploit the capabilities of SDN and introduce
a new functionality that can effectively replace the redundant and
repetitive header information with shorter unique identity. We
present Scissor that trims the headers lower in the protocol stack.
As a replacement for routing, we introduce the notion of Flow-
ID, where all packets belonging to a flow are identified using
this unique Flow-ID. We leverage the capabilities of the SDN to
dynamically allow switching devices to route the packets based on
the Flow-IDs. Our approach of trimming header at the switching
devices leaves the hosts unmodified making it highly adoptable
for DC environment. We show that our approach can decrease
switch fabric power consumption by a factor of 2.5 compared to
an existing L2 switch and reduce the latency by about 30% for
a significant fraction (around 30-50%) of the network traffic.

I. INTRODUCTION

Latency, Power and Cost have been the top three critical
optimization parameters for DCs and will continue to be so
with ever increasing demand in the future. Independently these
parameters have set very stringent bounds. The increasing
mandate to handle higher capacities and sophisticated network
management functions have increased the cost of networking
devices. A modern DC Cisco Switch providing traffic clas-
sification is at least twice as expensive as those with just
switching capabilities [1]. This trends is likely to continue
with even stringent bounds. There is a pressing need to address
these growing concerns in a combined manner to achieve any
meaningful gain.

The aforementioned parameters are well connected, an
association that is less exploited in network optimization
techniques. For instance, shrinking latency demands have
made Ternary Content Addressable Memory (TCAM) an
indispensable part of networking devices, but has higher

power costs. In this paper we identify redundancy, especially
header redundancies which constitute about 30-40% of DC
traffic, to have the potential to provide combined gains on
power, latency and cost. Headers have an impeding effect on
latencies, endorsing effect on the complexities of processing
thereby increasing power and cost. We believe that performing
optimizations on such voluminous redundant data will provide
more than miniature gains along these parameters.

In the past, header redundancies have been often revisited
by researchers [2], [3] but have remained confined to selected
categories of networks. This has been partly due to underlying
transport protocol requirements and partly due to highly inflex-
ible and rigid switching devices. For the same reasons, end-to-
end negotiations have been adopted so that the communicating
parties are a-priori aware of the compression and the decom-
pression protocol. We believe that the recent introduction of
the SDN [4] will unravel the inflexible switching limitations
allowing more fine-grained control on handling of flows and
packets at the switching devices.

In this work we exploit the benefits of OpenFlow [5], a
standard for SDN by providing a framework: Scissor, our
new functionality that trims down the packet headers much
lower in the protocol stacks transparent to the end hosts. As
a replacement, we provide shorter tag called Flow-ID and
all routing is performed on the basis of these tags. Such
a mechanism removes the overhead of the headers on the
network and saves the real estate required for storing the
flow information on hardware devices. Our approach works
within the capability of the SDN framework and does not add
additional functional or management overhead. We show that
this trimming can provide overall gains of latency, power in
DC and significant reduction to premium silicon real estate
thereby lowering associated costs.

The paper is organized as follows. In Section II, we present
some of the observation in DC through analyzing the DC
traces in the background study. We briefly describe the power
and latency in Section III. In Section IV, we present Scissors
that leverages SDN to trim the header information. Expected
gains using Scissors are evaluated and presented in Section
V. We review existing literature in the context of header
compressions/optimization and highlight the main differences
in Section VI. We finally present our conclusions in Section
VII.978-3-901882-48-7 c⃝ 2012 IFIP

295978-3-901882-48-7 c©2012 IFIP

II. BACKGROUND

We present the impact of the header availability through
observations made in the DC traffic. In an attempt to compute
the overhead associated with transferring per byte of payload
we estimate the payload to header ratio: # of bytes in payload /
of bytes in header. We use the DC traces presented in [6] to
observe the per byte payload overhead. Fig. 1 shows the CDF
plot of the overhead. It can be seen that around 40% of the
packets contain zero bytes of payload (packets carrying only
the header’s). Only 30-40% of the packets are fully loaded
packets.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Payload to header ratio

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

Fig. 1. CDF of overhead of header

As observed, significant portion being just headers motivates
us to optimize the headers. Headers contain the necessary
information for the switches to determine the routes and
actions to be performed on the packets. All the information
required by the router for determining actions are available in
the first packet of the flow. Repeatedly performing the same
actions on the subsequent packets of the flow is duplicative and
leaves scope for optimization. We believe these optimizations
will improve both the lantency (as it is function of network
load) and power (as headers are the single most component
responsible for complex processing at the switches).In rest of
the paper, we use OpenFlow and SDN interchangeably.

III. POWER AND LATENCY MODELS

We model the (a) power consumption and (b) end-to-end
latencies for a flow.

A. Power Dissipation in Switching Fabric

Power dissipation by the switching fabric is a function of
operations and the underlying hardware/software associated
with performing these operations. In order to understand the
functional units of a switching device we refer to a pipeline
reference architecture provided in [7]. Functionally it consists
of a header parser, a input arbiter, a lookup operation, a
mediator, a packet editor and the output ports out of which
the lookup operation (that involves several memory operations)
lie in the critical path of the switching device. Among these
functional units the lookup operation is the dominating factor
in terms of power consumption compared to other operations
e.g., header parsing and packet forwarding to output ports.

Power Due to Lookup Operations (𝑃𝑙𝑝): The extracted
fields from the header are used to perform a lookup operation
for a matching entry in the flow table. Two kinds of memory
structures are often used in implementing a hardware table:

SRAM and TCAM. SRAMs offer low-power operations and
are typically used for storing exact match entries where the
lookup can be performed by asserting address line (wordline)
and reading the corresponding bitlines. The latencies are
higher for SRAM and therefore are lesser preferred than
the TCAM. TCAMs are used to implement lookup tables
and packet classifications in hardware. TCAM’s are used for
achieving high-speed lookup times which are important for
achieving line rates in high performance networks. However,
they are notoriously power-hungry. A TCAM operation can
consume about 150 times more power than an equivalent
operation in SRAM. A combination of SRAM and TCAM is
typically used in modern day switches to store tables. Power
is dependent on the nature of operation performed on these
tables and is either a write or search operation. Therefore the
total power consumption can be written as follows:

𝑃𝑙𝑝 = 𝐸𝑠−𝑠𝑒𝑎𝑟𝑐ℎ𝑁𝑙𝑝+𝐸𝑠−𝑤𝑟𝑁𝑖𝑛+𝐸𝑡−𝑠𝑒𝑎𝑟𝑐ℎ𝑁𝑙𝑝+𝐸𝑡−𝑤𝑟𝑁𝑖𝑛

(1)
where 𝑁𝑙𝑝 and 𝑁𝑖𝑛 are the number of lookup and insert

operations performed per second, 𝐸𝑠−𝑠𝑒𝑎𝑟𝑐ℎ and 𝐸𝑠−𝑤𝑟 are
the energy associated with search and write of an entry in
the SRAM, 𝐸𝑡−𝑠𝑒𝑎𝑟𝑐ℎ and 𝐸𝑡−𝑤𝑟 are the energy associated
with search and write of an entry in TCAM. SRAM and
TCAM search and write operations are functions of bitline
size (number of cell columns) and word length (number of
rows).

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑙𝑝 ∗𝑁𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 (2)

where 𝑁𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 denotes number of switches along the path
of the flow.

B. Latency in L2 Layer Networks

There are several sources of latency in L2 Layer network
for a packet. They are (a) store and forward latency, (b) switch
fabric latency, (c) queuing latency out of which store and
forward latency is dominating factor being dependent on the
number of bits being transmitted.

Store and Forward Latency (𝐿𝑠𝑓): Store and Forward
(SF) latency refers to the basic operating principle of the L2
level switch. The switch stores the packets in its buffer until
the entire frame is received. A few modern day switches start
processing and transmission to output port even before the
packet is completely received. The switch then processes the
headers for identifying a destination. The latency introduced
by this is proportional to the the size of the frame and inversely
proportional to the bit rate as follows:
𝐿𝑠𝑓 = 𝐹𝑆

𝐵𝑅 where 𝐹𝑆 is the frame size in bits, 𝐵𝑅 is the
bit rate in bits/sec.

IV. SCISSORS FOR DEALING WITH HEADER

REDUNDANCIES

We introduce the notion of “Flow-ID”. Flow-ID is a numeric
identifier. This is used as a replacement for headers. However,
some fields in the original header (e.g., Internet header, total

296 2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference

Fig. 2. System showing Flow-ID utilization through different steps.

length, IP identification etc.) that varies with each packet of
the flow are retained in the modified header along with the
Flow-ID. In the switch table, the flow entry can be reduced
to the size of the ‘Flow-ID’ and associated actions. It should
be noted that, apart from the fields representing a flow, switch
stores other fields such as counters, priority fields etc. which
remain as-is as they are dynamically utilized for each packet.
Table I show an example mapping of flow entires to their
corresponding Flow-ID’s. All routings are performed based
on the Flow-ID’s.

TABLE I
EXAMPLE MAPPING OF FLOW INFORMATION TO Flow-ID

Flow information Flow-ID
in port = 1, dl vlan = 0xffff, dl vlan pcp = 0x00,dl src
= 00:00:00:00:00:0b, dl dst = 00:00:00:00:00:0c, nw src =
10.0.0.11, nw dst = 10.0.0.12, icmp type = 8, icmp code =
0, actions = output:2

001

The programming control provided by the SDN makes it
viable for us to design a system that can be benefited from
Flow-ID’s. We propose Scissor framework that combines the
flexibility provided by SDN along with Flow-ID’s to deal
with redundant header information. Fig. 2 shows the Scissor
architecture consisting of the controller, OpenFlow switches
and host machines.

In OpenFlow the first packet of a new flow arriving at an
interface of a switch (Step 1 of Fig. 2)is forwarded to the
controller (Step 2). The controller generates a Flow-ID for
the flow and stores it in its local reference table as illustrated
in Step 3. The controller responds back to the switch with
an OpenFlow action message consisting of the actions to be
performed on the packets of the flow as demonstrated in Step
4 of the Figure. In Scissor, we augment the ‘action’ part of
the rule with a boolean ’SCISSOR’ flag. If the flag is clear,
the switch performs the standard actions on the packets and
Scissor operation is bypassed. For instance, the flag is set to
be clear if the destination address is connected to the same
switch. Otherwise (SCISSOR flag set), the switch performs
the Scissor operations on the packets and output it to specific
port as given in the action part.

Scissor operation consists of two parts (a) replacement of
the header information with Flow-ID and (b) trimming down
the packet headers before it is forwarded to the output port.

Leaving aside the ‘preamble’ and ‘start of delimiter’ fields
in the Ethernet Frame, the Flow-ID is stored in 2 bytes of
the frame. The ‘preamble’ and the ‘start of delimiters’ are
used by the link layers for purpose of determining frame
boundaries and are left intact. Trimming down of the header
is performed by a specific micro-architectural hardware that
selectively discards bits of the header before forwarding it
to the output port. Reduction can be achieved up to 254
bits in the header. This includes 144 bits from the Ethernet
frame (Ethernet Src[6 bytes], Ethernet Dst[6 bytes], Ethernet
Type [2 bytes], VLan Tag [4 bytes]), 76 bits of data in IP
header (IPv4 Src address[4 bytes], IPv4 destination address[4
bytes], IPv4 type [2 bytes] and IPv4 [6 bits]) and about 32
bits of TCP header (TCP Src Port [2 bytes], TCP Dest Port
[2 bytes]). Only selected fields (those that are extracted as
part of flow information in the controller) from IP and TCP
can be trimmed, as this information is made available by the
controller at the egress switch to reconstruct the packet fully
before delivering it to the end host.

The controller sends a flow insert operation to all the
switches along the path of the packet (Step 5 of Fig. 2). This
flow entry consists of a “Flow-ID” and associated actions to it.
When a packet arrives at the intermediate switches, the ’Flow-
ID’ is extracted from the header and is matched against the
entries in the flow table (proactively installed by the controller
on the switches). These switches do not perform any scissor
operations and do not require any additional hardware. They
perform the normal operations of a OpenFlow switch except
that they extract the Flow-ID’s from the header and search for
a matching entry in the lookup tables.

For the egress switches, the controller sends a flow insert
operation that contains the “Flow-ID” and actions to replace
the specific fields of the packet with the information extracted
as flow at the IS before forwarding it to output port. Step 6
in Figure illustrates the flow insert operation specified by the
controller to the egress switch. These values are inserted at
specific bit positions and packet is forwarded to the output
port to deliver to the end hosts (Step 7).

Example Demonstration: In Fig. 2 let us assume that host
ℎ1 initiates a communication (a flow) to ℎ2 . The figure also
shows a sample packet being generated from ℎ1 to ℎ2. For a
flow, the Ingres Switch (IS) is the switch through which the
packet enters into the network and Egress Switch (ES) is the
switch by which it exits out of the network. Shown below are
the fields of the packet with the values populated. For sake of
brevity we only show a few fields that are common to a flow
such as ‘Src IP’ and ‘Src MAC’, ‘Dst IP’ and ‘Dst MAC’ and
few fields such as IP Checksum and Identification number that
are unique to a packet.

Src MAC = aa:aa:aa:aa:aa:aa Dst MAC= bb:bb:bb:bb:bb:bb
......

Src IP = 10.10.10.10 Dst IP = 10.10.10.20
IP checksum IP Identification field

......
Src Port= 5555 Dst Port = 6666
TCP checksum TCP sequence number

payload

2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference 297

We refer to this packet as ‘f1:p1’. At the IS, the selected
fields from the header of ‘f1:p1’ is extracted and is used for
locating a matching entry in the flow table. As this is the
first packet of a new flow, the lookup will result in a miss
and the packet is forwarded to the controller. The controller
extracts the flow entry (Src and Dst IP addresses, Src and
Dst TCP Port) and generates a corresponding Flow-ID ‘001’.
The controller sends a flow insert operation to the IS along
with ‘SCISSOR’ bit set. Figure below shows the flow entry
in the IS.

Flow entry in the IS
cookie = 0, duration sec = 0s, duration nsec = 0s, table id = 1, priority
= 32768, n packets = 0, n bytes = 0, idle timeout = 60,hard timeout
= 0,in port = 1, nw src = 10.10.10.10, nw dst = 10.10.10.20, dl src =
aa:aa:aa:aa:aa:aa, dl dst = bb:bb:bb:bb:bb:bb, ether type = ip, actions =
’SCISSOR’, mod dl dst[]:0x00001, output:3

Bit size of the ‘Flow-ID’ is set to hold maximum number of
active flows at any point in time. As shown in [6] the number
of active flows is about 10000. Therefore, number of bits for
storing Flow-ID can be set to 16 bits (Byte aligned). This
is a static value and is incremented by the controller for each
incoming new flow. The flows are stored at the controller along
with its mapping to ‘Flow-ID’ in a map table. The IS trims
the header information.

In SDN, controller is assumed to have complete knowledge
of the network state and so are the paths for the flows. The
controller also sends the ‘Flow-ID’ along with the actions to
all the switches on the path except the ES. The flow entry in
the intermediate switches is shown below. It should be noted
that as the Ethernet header field (Dst MAC address) will carry
the Flow-ID, the match is set against the Dst MAC address.
Although the MAC address is 6 bytes, the packet header parser
should be modified to select only two bytes to extract the
Flow-ID.

Flow information in the intermediate switches
cookie = 0, duration sec = 0s, duration nsec = 0s, table id = 1,
priority = 32768, n packets = 0, n bytes = 0, idle timeout = 60,
hard timeout=0,in port = 1, dl dst[] = 0x001, actions = output:3

When an intermediate switch receives a packet with the
header containing a Flow-ID, it extracts the Flow-ID from
the header and performs a lookup operation on the flow table
for Flow-ID match. As this will result in a hit the actions
associated with the entries are applied to the packet. All
intermediate routing are performed based on the Flow-IDs.
When a packet arrives at an ES, the packet have to be
reconstructed before dispatching it to the end-host. The
packet is reconstructed with the information that has been
extracted by the controller at the Ingress (other bits remains
intact and is carried in the header along the path) and made
available at the ES. A packet similar to the one originated by
the source host is dispatched to the end-hosts.

Scissor Hardware

Fig. 3 illustrates the implementation of Scissor micro-
architecture as part of packet editor (refer to the pipeline
reference architecture in [7].). As described in the previous
section, the scissor operates only on packets for which ‘SCIS-
SOR’ flag is set. The hardware consists of a buffer that
temporarily holds the packet along with the complete header.

Packet Editor

Scissor

SRAM

EGRESS TCAM

INGRESS TCAM

Header Parser

ARBITER

FLOW−ID

FLOW − ID

MUX−1

MUX−N

FLOW HDR.

.

.. .

Packet
Buffer

HeaderPayload

CONTROLLER

Controller

to set candidate
flag for Scissor
Operation

Bypass Scissor if not a candidate flow

O/P PORT

Out buffer

FLOW−ID FROM CONTROLLER
SEL

SEL

Fig. 3. Scissor hardware shown in context of reference switch architecture
given in [7].

A set of Multiplexers (MUX-1, .. MUX-N) are used to select
appropriate field that are to be retained by Scissor. SEL signal
that controls the selection of bits from the header is predefined
(as the fields to be retained are known apriori). Multiplexers
select only the required fields and copy it into a output buffer
along with the payload. The assigned Flow-ID is copied at
the selected bits of the buffer (2 bytes following the frame
delimiter) and the packet is ready to dispatch through the
output port. The power consumption by these multiplexer are
negligible compared to the hardware flow table operations.
Intermediate switches / core switches contain TCAM array
that has entries with Flow-ID.

An edge switch acts both as ingress for one set of flow
and egress for another set of flows. When a packet arrives,
the header either contains a Flow-ID (as an egress) or a full
header (as an ingress). This will require two flow tables,
one with Flow-IDs and another with unmodified flow entries.
We propose to use two separate TCAMs (Egress TCAM and
Ingress TCAM as shown in Fig. 3) each capable of storing half
of the target number of entries. One TCAM stores the Flow-ID
and associated action and the other stores the flow entry with
complete header along with SCISSOR flag. The edge switch
as directed by the controller either performs a SCISSORS
operations (where it cuts down the header information [IS])
or insert operation (for those packets containing Flow-ID
[ES]) where the extracted flow information is inserted into the
original position for reconstructing the packets. Due to these
separate TCAMs, power gains on the edge switches are lesser
than 50% than those obtained from the core switches.

V. ASSESSMENT AND EVALUATION

Our objective is to measure the following: (a) Power gain
due to the reduced number of bits for storing the Flow-ID in
the hardware tables and operations performed on it, (b) end-to-
end latency gain obtained due to reduction of packet size being
transferred. Measurement of the end-to-end latency and power
gain require fine grained flow level data traces both at the
switches and the end hosts. In [8] it has been established that
obtaining such fine grained flow level details and related data
traces are difficult due to expensive instrumentation required

298 2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference

TABLE II
CHARACTERISTICS OF DC TRAFFIC USED FOR SIMULATION ON THE TOPOLOGIES

Flow character-
istic

Range of values/Distribution

Cloud DC Enterprise DC University DC
Flow Inter arrival time 80% < 1ms 2-3% < 10𝜇s and 80% < 1 ms 4 ms - 40 ms
Flow duration 80% < 11 secs 80% < 10-11 secs 80% < 10-11 secs
Flow of traffic 80% within racks 40-90% leave the rack 60-90% leave the rack
Flow sizes < 10 KB < 10 KB < 10 KB

Packet Size 40-30% < 200 Bytes
30 % < 1 Byte, 30-40% < 200 Bytes, 30-40% >
1200 Bytes

30 % < 1 Byte, 30-40% < 200 Bytes, 30-40% >
1200 Bytes

Packet inter arrival times Weibull Lognormal Weibull

TABLE III
NUMBER OF OPERATIONS PERFORMED IN A BIN OF 1 SEC IN A L2 LAYER SWITCH

Packet category Operation type
Number of occurrence

Cloud DC Enterprise DC University DC
Edge Switches Core Switches Edge Switches Core Switches Edge Switches Core Switches

packet of an existing flow Lookup ≈ 35000-40000 ≈ 19000-21000 < 20000 < 50000 < 20000 ¡50000
Packet of new flow Insert ≈ 1200-1300 ≈ 800-850 < 900 ≈ 1200 < 900 ≈ 1200

on the servers/switches. We resort to simulation of DC traffic
given the flow characteristics of real world DCs. For all our
experiments we consider the switch-to-switch measurements.

A. Simulation Setting

We consider three configurations for our experiments: (a)
L2 based switching device consisting of 60 bit (48 bit for
source MAC + 12 bit for VLAN tag) flow entry, (b) OpenFlow
standard based switching device consisting of 356 bits flow
entries (15 tuple flow entries) and (c) Scissor based switching
device consisting of 16 bits flow entries. We have considered
three different topologies (Fat tree (taken from [9], 2-tier multi
rooted tree and multi-tiered multi rooted tree presented in [6])
representing diverse set of DC environments such as Enterprise
DC, University DC and Cloud DC’s. Flows are generated by
our simulator according to traffic characteristics for various
DC’s adopted from the existing studies presented in [6] [10]
and is presented in Table II.

B. Power Gain

We simulate the arrival of packets at the switches based on
the distribution presented in Table II. According to Equation
2 we require the number of packets that requires lookup
and insert operations. Table III shows the number of packets
arriving at a switch representing a new flow (first packet of a
new flow) and that of an existing flow.

We use TCAM modeling tool available in [11] to observe
the power consumption for different sizes. We fix the number
of flow entries to 100000 and measure the power consumption
for varying sizes of bit-line. We use traffic characteristics of
3 different DC environments (shown in Table III) to simulate
the TCAM power consumption. Table IV shows the power
consumed by various operations of TCAM. It can be seen
that power consumed varies significantly with the size of the
TCAM (both the number of entries and the bit-line). The
power consumed to perform a write/insert operation with 16
bits is about 4 times lower than the 60 bit and 15 times lower
than the 356 bit entry. A lookup/search operation with 16 bits
can consume about 4 times lesser than 60 bit and 13 times
lesser than the 356 bit entry.

Fig. 4 (a) presents the power consumption (according to
Equation 2) on the core and Fig. 4 (b) show the power
consumption at edge switches for Enterprise and Univ DC’s.
At the core switches, a L2 switching fabric would consume
about 2.5 times more power and a OpenFlow enabled switch
will consume about 12 times more compared to a Scissor
switch. Therefore, in core switches Scissor switch gives best
power saving. This gains are lower in the edge switches as
the power saving is obtained only for the egress flows. In
Enterprise / Univ DC’s around 40-90% of traffic leaves top
of the rack switch and therefore the overall gains would be
about 35% of the best case (saving of 12 W with respect to
the best case of 35 W in core switch). For the Cloud DC’s
around 75% of the traffic would be observed within the rack,
where no scissoring operation will be performed. Therefore
the observed power gains is only about 20% of the best case.

TABLE IV
TCAM POWER CONSUMPTION FOR VARYING BIT-LINE SIZES, # OF FLOW

ENTRIES = 100,000

Operation L2 sw. (nJ) SDN sw. (nJ) Scissor sw. (nJ)

Write/Insert 195167 792677 56614
Search/Lookup 447065 1807142 131685

C. Latency Reduction

Latency is a function of network load. We consider band-
width of 10 Gbps for computing the bit rates supported by the
links. We measure the time taken for the flows to complete
based on the number of switches that the packets traverses
and assuming a constant queuing delay for all packets at
the switches. Fig. 5 plots the CDF of flows and the latency
reduction in Enterprise / Univ DC and Cloud DC environment.
It can be observed that in the case of Enterprise / University
environments about 40-50% of the flows experience no gains
(as 30-40% is within the racks) in latencies. Flow traversing
outside the top of rack switch which constitutes about 60-
90% have reduced latencies by about 10-30% compared to
non-scissors environment. In case of the Cloud DCs around
70-85% of the flows do not experience reduced latencies. This
is primarily due to the fact that around 70% of the traffic being
intra-rack and does not traverse the network. The traffic that

2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference 299

0 20 40 60 80 100 120
0

10

20

30

40

P
ow

er
 c

on
su

m
pt

io
n

(in
 W

at
t)

Core switch power consumption for TCAM

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0

0.1

0.2

Time (in sec)

P
ow

er
 c

on
su

m
pt

io
n

(in
 W

at
t)

Core switch power consumption for SRAM

356 b lookup
60 b lookup
16 b lookup

356 b lookup
60 b lookup
16 b lookup

TCAM

SRAM

(a) Power consumption at the core switches for Enterprise and Univ DC’s)

0 20 40 60 80 100 120
0

5

10

15

20

25

P
ow

er
 c

on
su

m
pt

io
n

(in
 W

at
t)

Edge switch power consumption for TCAM

0 20 40 60 80 100 120
0

0.1

0.2

0.3

Time (in sec)

P
ow

er
 c

on
su

m
pt

io
n

(in
 W

at
t)

Edge switch power consumption for SRAM

50% 356b lookup+Scissor
50% 60b lookup+Scissor

50% 356b lookup+Scissor
50% 60b lookup+Scissor

(b) Power consumption at the edge switches for Enterprise and Univ DC’s

Fig. 4. Power consumption at the core and edge switches

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% Reduction in latency

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f f
lo

w
s

30% traffic within rack − Univ
70% traffic within rack − Cloud

Fig. 5. Cumulative percentage of the flows and corresponding latency
reduction due to trimming of headers by Scissors

traverses the network (30%) shows reduction of latency again
by about 15-20%. These gains are highly significant especially
when the latency bounds are stringent.
D. Cost of Signaling

Scissors do not add additional stress on the signaling
required to setup the rules for header trimming. According
to OpenFlow specification [4], the first packet of flow is
sent to the controller. The controller is assumed to be a
logically centralized entity that provides every switch with
the actions required to be performed on the packets of the
flow. In our case, the action is associated with inserting a
Flow-ID, instructions to trim the header, routing according to
the Flow-ID, restoring back the header. Therefore the number
of operations involved in signaling does not change due to
Scissors functionality. However, currently the action consisting
of trimming the headers requires specialized hardware to
selectively output bytes of data to the output ports in the
ingress switch and inserting specific bytes of data in the packet
at the egress switch. These operations incur negligible latency
and power (as shown in the Section (IV)).

VI. RELATED WORK

In this section we position our work among related systems,
which we classify under the following three categories: header
compressions, deduplication and dynamic routing systems. A
survey of header compression work have been presented in
[12]. ROHC [13], IPHC [14] attempt to compress the segments

of header (IP headers/ TCP header segment). ROHC and
IPHC operate by exploiting the repetitiveness found in the
information carried in the header. Compression technique have
also been applied to latency sensitive applications such as
multimedia data [15]. In [15], the RTP headers have been
identified to have redundant information and latency gains
have been shown by compressing them. We distinguish our
work along three different ways. Firstly, tagging helps re-
moving header redundancies much lower in the protocol stack
while retaining routing capabilities. Secondly, our approach is
performed transparently in the network. Such an architecture
would be highly beneficial to DC environments where several
thousands of end-hosts run critical applications. Ultimately,
our work is complimentary to those approaches that deal with
the redundancy through compressions techniques.

De-duplication techniques have not only been confined to
the headers but have been applied to segments of payload
in [16] [17]. Such techniques identifies repeating payload
segments in packets and eliminate them through indexing.
Our approach applies similar concept to extract the header
information with the support of emerging SDN framework.
In [18] dynamic addresses are assigned to nodes and routing
is performed based on these addresses. However, the focus
of such work have been to provide transparent routing for
migrating nodes and is not applied in the context of the header
redundancies. Our approach is along those lines of providing
dynamic tags for routing the packets while keeping our focus
on removing redundant headers.

VII. CONCLUSIONS

In an attempt to have combined gains on power, latency and
cost we have identified header redundancy as an optimization
target. We propose Scissor that deals with the redundant
header information by trimming them at the lower most stack.
This provides significant reduction in the size of the header
information. Scissor exploits the emerging SDN framework
and utilizes OpenFlow a standard for SDN to eliminate the re-
dundant header information. Scissors shows significant latency
improvement (as high as 30%) while switch fabric power gain
can be about 2.5 times of a standard L2 switch.

300 2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference

REFERENCES

[1] “The Total Economic Impact of Cisco Catalyst Access Switches,”
http://www.cisco.com/en/US/prod/collateral/switches/C11-698012-
00 Cisco Access Switching Forrester TEI Study.pdf.

[2] M. Degermark, M. Engan, B. Nordgren, and S. Pink, “Low-loss tcp/ip
header compression for wireless networks,” in Proceedings of the 2nd
annual international conference on Mobile computing and networking,
ser. MobiCom ’96. New York, NY, USA: ACM, 1996, pp. 1–14.
[Online]. Available: http://doi.acm.org/10.1145/236387.236388

[3] K.-s. Kim, M.-s. Kang, and I.-t. Ryoo, “Header compression
of rtp/udp/ip packets for real time high-speed ip networks,”
in Proceedings of the 1st international conference on Advances
in hybrid information technology, ser. ICHIT’06. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 576–585. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1782654.1782716

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, mar 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[5] “The OpenFlow Switch Specification,”
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf.

[6] T. Benson, A. Akella, and D. A. Maltz, “Network traffic
characteristics of data centers in the wild,” in Proceedings of
the 10th annual conference on Internet measurement, ser. IMC ’10.
New York, NY, USA: ACM, 2010, pp. 267–280. [Online]. Available:
http://doi.acm.org/10.1145/1879141.1879175

[7] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and
N. McKeown, “Implementing an openflow switch on the netfpga
platform,” in Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ser. ANCS
’08. New York, NY, USA: ACM, 2008, pp. 1–9. [Online]. Available:
http://doi.acm.org/10.1145/1477942.1477944

[8] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” SIGCOMM Comput. Commun.
Rev., vol. 40, no. 1, pp. 92–99, jan 2010. [Online]. Available:
http://doi.acm.org/10.1145/1672308.1672325

[9] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“Towards a next generation data center architecture: scalability
and commoditization,” in Proceedings of the ACM workshop on
Programmable routers for extensible services of tomorrow, ser.
PRESTO ’08. New York, NY, USA: ACM, 2008, pp. 57–62. [Online].
Available: http://doi.acm.org/10.1145/1397718.1397732

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement
conference, ser. IMC ’09. New York, NY, USA: ACM, 2009, pp. 202–
208. [Online]. Available: http://doi.acm.org/10.1145/1644893.1644918

[11] “TCAM Delay and Power Model,” http://www.cs.ucsb.edu/ arch/mem-
model/.

[12] T. C and F. G, “A review of ip packet compression techniques,” in
PGNet, 2003.

[13] C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu,
L.-E. Jonsson, R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson,
A. Miyazaki, K. Svanbro, T. Wiebke, T. Yoshimura, and H. Zheng,
“Robust header compression (rohc): Framework and four profiles,”
United States, 2001.

[14] M. Degermark, B. Nordgren, and S. Pink, “Ip header compression,”
1999.

[15] P. Fortuna and M. Ricardo, “Header compressed volp in ieee 802.11,”
Wireless Commun., vol. 16, no. 3, pp. 69–75, jun 2009. [Online].
Available: http://dx.doi.org/10.1109/MWC.2009.5109466

[16] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in network traffic: findings and implications,” in Proceedings of the
eleventh international joint conference on Measurement and modeling
of computer systems, ser. SIGMETRICS ’09. ACM, 2009, pp. 37–48.

[17] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker,
“Packet caches on routers: the implications of universal redundant
traffic elimination,” in Proceedings of the ACM SIGCOMM 2008
conference on Data communication, ser. SIGCOMM ’08. New
York, NY, USA: ACM, 2008, pp. 219–230. [Online]. Available:
http://doi.acm.org/10.1145/1402958.1402984

[18] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable
fault-tolerant layer 2 data center network fabric,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 4, pp. 39–50, aug 2009. [Online]. Available:
http://doi.acm.org/10.1145/1594977.1592575

2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference 301

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

