
DCSim: A Data Centre Simulation Tool for Evaluating Dynamic Virtualized
Resource Management

Michael Tighe, Gaston Keller, Michael Bauer, Hanan Lutfiyya

Department of Computer Science
The University of Western Ontario
London, ON, N6A 5B7, CANADA

Email:{mtighe2;gkeller2;bauer;hanan}@csd.uwo.ca

Abstract—Computing today is shifting from hosting services
in servers owned by individual organizations to data cen-
tres providing resources to a number of organizations on a
shared infrastructure. Managing such a data centre presents
a unique set of goals and challenges. Through the use of
virtualization, multiple users can run isolated virtual machines
(VMs) on a single physical host, allowing for a higher server
utilization. By consolidating VMs onto fewer physical hosts,
infrastructure costs can be reduced in terms of the number
of servers required, power consumption, and maintenance.
To meet constantly changing workload levels, running VMs
may need to be migrated (moved) to another physical host.
Algorithms to perform dynamic VM reallocation, as well as
dynamic resource provisioning on a single host, are open
research problems. Experimenting with such algorithms on
the data centre scale is impractical. Thus, there is a need for
simulation tools to allow rapid development and evaluation of
data centre management techniques. We present DCSim, an
extensible simulation framework for simulating a data centre
hosting an Infrastructure as a Service cloud. We evaluate
the scalability of DCSim, and demonstrate its usefulness in
evaluating VM management techniques.

Keywords-Cloud, Data Centre, Simulator, Virtualization, In-
frastructure as a Service

I. INTRODUCTION

One of the biggest trends in computing today is the move-

ment of processing from servers owned and operated by

individual organizations to large-scale data centres, provid-

ing on-demand computing resources for many organizations

on a shared infrastructure. An Infrastructure as a Service

(IaaS) Cloud allows users to provision servers as needed,

paying only for what they require. Even large services,

such as Netflix, are hosted by the likes of Amazon’s EC2

Cloud service [1]. For an organization, moving computing

into an IaaS cloud promises to reduce infrastructure costs,

improve scalability, and offload the responsibility of server

administration and maintenance.

The provider of the IaaS faces its own set of challenges

in managing its data centre. Resources should be used in

the most efficient way possible in order to reduce operating

costs. Typically, a server makes poor use of its resources,

operating at far below its maximum capacity. Since even an

efficient server can consume 50% of its peak power usage

when idle [2], underutilized servers represent a significant

waste of power. Virtualization can be employed in order to

help remedy this situation. Virtualization is a technology that

allows multiple Virtual Machines (VMs) to run on a single

host system, providing the illusion that each has control of

a physical machine. By packing many VMs onto a single

host, its resources can be more fully utilized, thus saving on

power, infrastructure, and maintenance costs. Furthermore,

a host’s resources can be overcommitted, such that more re-

sources are promised to each VM than are actually available.

This can enable significantly higher utilization, but if one

or more VMs exhibit an increase in their resource needs, it

may lead to a situation where the host does not have enough

resources to satisfy all of the demand. In this case, a VM

must be migrated (moved) to a different host that has enough

available resources to satisfy the VM’s demand. Determining

which VMs should be migrated, when, and to which host,

is a non-trivial task. Not only must they meet the needs of

client VMs, but they must balance them against power and

cost considerations, adding further complexity.

Algorithms for dynamic resource management in the data

centre have proven difficult to evaluate due to the scale and

complexity of the infrastructure on which they are intended

to run. As such, simulation is becoming accepted as a means

of rapidly evaluating new techniques at a speed and scale

not possible with real implementations. Once a technique

has been evaluated and fine-tuned using a simulation, further

experimentation can be performed using a real infrastructure,

albeit very likely on a much smaller scale.

There is currently a lack of easily customizable and

extensible simulation tools that model a virtualized, multi-

tenant data centre. Furthermore, there is a need for a tool that

provides an application model to simulate the interactions

and dependencies between VMs working together as a single

service (e.g. a multi-tiered web application). Even if man-

agement algorithms only treat VMs as ‘black boxes’, with

no knowledge of their applications, it is still important to

model these applications within the simulation to drive VM

behaviour and resource utilization. That being said, some

IaaS providers (such as Amazon EC2 [3]) offer advanced

978-3-901882-48-7 c© 2012 IFIP

385978-3-901882-48-7 c©2012 IFIP

services, such as auto-scaling and dynamic load balancing,

thus presenting an even stronger case for a detailed appli-

cation model within the simulation tool. Other features of

virtualization, such as a work conserving CPU scheduler

used in modern hypervisors, resource allocation and VM

migration and replication must also be available. Finally,

host power states (on, off, suspended) must be modelled

with appropriate transition times between states. We present

a new simulator, DCSim (Data Centre Simulator), designed

specifically to address these requirements. DCSim is an

extensible simulation framework designed to study VM

management in a data centre providing an IaaS Cloud.

The remainder of the paper is organized as follows:

Section II presents related work in data centre and cloud

simulation. Section III presents the architecture and com-

ponents of DCSim. Section IV presents the metrics that

DCSim collects to evaluate the performance of the data

centre. Section V presents three experiments designed to

evaluate the scalability and usefulness of DCSim. Finally,

Section VI presents conclusions and a list of future work.

II. RELATED WORK

GreenCloud [4] is a packet-level data centre simulator

designed to evaluate the energy costs of data centre oper-

ation. Built as an extension to the network simulator Ns-

2 [5], it utilizes a highly detailed simulation of network

communication. As a low level network simulation, it ex-

ecutes slower than event-based simulations. Although it has

a detailed workload model, it does not include any modelling

of virtualization. As such, it is not suitable for virtualized

resource management research.

MDCSim [6] is a data centre simulation platform designed

to simulate large scale, multi-tier data centres. It focuses on

data centre architecture and cluster configuration, measuring

both performance and power metrics. The simulator models

a data centre running a three-tiered web application (web,

application and database tiers), with the ability to modify and

evaluate the configuration of each tier. Again, virtualization

is not considered, nor are multiple tenants of the data centre.

Also, it is built using a commercial product and is therefore

not publicly available.

GDCSim (Green Data Centre Simulator) [7] aims to

simulate both the management and physical design of a data

centre, examining the interactions and relationships between

the two. The goal is to fine-tune the interactions between

management algorithms and the physical layout of the data

centre, such as thermal and cooling interactions with work-

load placement. Resource management considers HPC (High

Performance Computing) job placement and scheduling,

power modes, and cooling settings. Transactional workloads

(such as a web server) are modelled using a single workload,

load-balanced across the data centre. Multiple tenants of the

data centre and virtualization technology are not considered.

CloudSim [8] is a toolkit for simulating a data centre

hosting a virtualized IaaS Cloud. Multiple users can create

VMs within the data centre. It also provides the ability to

simulate multiple data centres operating as a federation, that

are capable of coordinating resource allocation. CloudSim

implements an HPC-style workload, with Cloudlets (jobs)

submitted by users to VMs for processing. It can be used

to simulate a transactional, continuous workload such as a

web server or other service [9], but it lacks a detailed model

of such an application.

DCSim differs from GreenCloud, MDCSim, and GDCSim

in that it is focused on a virtualized data centre providing

IaaS to any multiple tenants, similar to CloudSim. It differs

from CloudSim in that it focuses on transactional, contin-

uous workloads. As such, DCSim provides the additional

capability of modelling replicated VMs sharing incoming

workload as well as dependencies between VMs that are

part of a multi-tiered application. SLA achievement can

also be more directly and easily measured and available to

management elements within the simulation.

III. DCSIM ARCHITECTURE & COMPONENTS

DCSim (Data Centre Simulator) is an extensible data

centre simulator implemented in Java, designed to provide

an easy framework for developing and experimenting with

data centre management techniques and algorithms. It is an

event-driven simulator, simulating a data centre offering IaaS

to multiple clients. It focuses on modelling transactional,

continuous workloads (such as a web server), but can be

extended to model other workloads as well. Figure 1 outlines

the main components of DCSim. The primary class is

the DataCentre, which contains Hosts, VMs, and various

management components and policies.

DataCentre consists of a set of Host machines, which

themselves contain a set of VMs. DataCentre and Host

instances are governed by a set of policies and managers,

which determine how they operate within the simulation

and provide extensible and customizable points to insert

new management algorithms and techniques. Default imple-

mentations of all abstract classes are available, so that the

simulator user can pick and choose which components to

extend for their specific research needs. The components of

DCSim are described in detail throughout the rest of this

section.

A. Hosts and Virtual Machines

In DCSim, a data centre consists of a set of interconnected

physical host machines governed by a set of management

policies. The purpose of the data centre is to host a set of

Virtual Machines (VMs) on its physical hosts, each with

its own dynamically changing resource needs driven by

an external workload. We typically consider VMs to be

running continuous, transactional servers, such as a web

server. The basic details about each VM, such as its initial

386 6th International DMTF workshop on Systems and Virtualization Management (SVM 2012) / CNSM 2012

Figure 1: DCSim Architecture

resource requirements, are contained within the VMDescrip-

tion. Each host can have several VMs sharing its resources,

all contributing to the overall utilization of the host. Hosts

also have a Virtual Machine Manager (VMM). In a real

system, the VMM (or hypervisor) handles the operation of

the virtualized server and provides the ability to manage a

host’s VMs. In DCSim, the resource utilization of the VMM

is modelled using a special VM that is present on each host.

VM Allocation: Each host maintains a collection of

VMAllocations, which represent a set of resources allocated

to a single VM. In the case of a migration of a VM from

a source host to a target host, the target host creates a

new VMAllocation to reserve resources for the incoming

VM, but the VM does not actually reside in the new

VMAllocation until the migration is complete. Once the

migration is complete, the VM is moved and its original

VMAllocation on the source host is deallocated.

Overcommitting Resources: In order to make the most use

of a host’s resources, a host may promise more resources to

its set of VMs than it actually possesses, in the hope that the

VMs will not require their full requested allocation at the

same time. Overcommitting of CPU is supported by major

virtualization technologies (such as KVM [10], Xen [11] and

VMWare ESX [12]), and as such, is supported in DCSim.

Host Utilization: If a host’s resources are being highly

utilized, at or above some threshold (say, 85% of available

resources), then the host is considered stressed. A stressed
host is in an undesirable state, as any increase in resource

requirements of a hosted VM (due to an increase in workload

level) could result in one or more VMs not being allocated

enough resource to handle their workload. In a real-world

scenario, this would be equivalent to dropped requests or a

compromised response time, leading to SLA (Service Level

Agreement) violations.

On the other hand, a host with very few of its resources

in use (say, less than 50%) is considered underutilized. This

is also an undesirable situation, as it may be possible to run

the set of VMs in a smaller number of hosts, thus allowing

some hosts to be suspended to conserve power. Management

policies can be developed to handle such situations, as

described in Section III-C.

Host State: Each host may be in one of three primary

states: On, Off, or Suspended, as well as transitional states

between those three. A host in the On state operates

normally. When a host is Off or Suspended, any VMs it

is hosting will not be allowed to execute. Furthermore,

in the Suspended state, a host consumes a small amount

of power, and in the Off state, a host host consumes no

power. The time required to transition between each state is

configurable.

Power Consumption: Each host contains a PowerModel

which defines how much power it consumes given its current

CPU utilization. DCSim uses the SPECpower benchmark

[13] data to build power models, which provides power

consumption levels of real servers in 10% CPU utilization

intervals. We use these values and calculate intermediary

values using linear interpolation.

B. Resource Managers & CPU Scheduling

On each host, its CPU, memory, bandwidth and stor-

age are each managed by a separate ResourceManager

(CpuManager, MemoryManager, BandwidthManager, and

StorageManager, respectively). The resource managers’ task

is to manage the allocation of resources to VMs. For

example, when a VM wants to migrate to a host, it is

the responsibility of the resource managers to determine

if enough resource is available, and to allocate it for the

incoming VM.

CPU is allocated in shares, with each core having a

specified number of shares available, depending on the

relative computing capacity of the processor. Within the

simulation, CPU is treated as a single scalar value, with

the total CPU capacity being the sum of the capacity of all

of the CPU cores available on the host. This is a reasonable

simplification as modern virtualization technologies perform

load balancing of VMs across processors to make full use

of all available capacity. Memory and storage are allocated

in MB, and bandwidth in Mb/s.

Resource managers can allocate a static amount of re-

source to a VM, change the allocation of resources dynam-

ically, as well as handle resource overcommitting, to suit

particular management policies or goals. All four resource

managers can be extended to suit the needs of a specific

experiment.

While the CpuManager handles allocation of CPU, the

CPUScheduler is responsible for actually scheduling the

running of VMs on the host. There are several ways in

which VMs can be scheduled to execute. The most basic

6th International DMTF workshop on Systems and Virtualization Management (SVM 2012) / CNSM 2012 387

method is to only allow a VM to use at most its allocated

number of CPU shares. This can lead to a waste of CPU

resources, as any shares left unused by a VM cannot be used

by another. The more common method is to allow other VMs

to make use of these unused shares. This is referred to as

a work conserving scheduler. DCSim currently implements

a fair-share CPU scheduler, which gives each VM an equal

opportunity to use CPU resources. This is similar to the

scheduling method used by KVM [10] (which uses the Linux

scheduler).

There is also a physical upper limit on the amount of

CPU a VM can use. Each VM is created with a specific

number of virtual cores, which the operating system of the

VM interprets as real physical CPU cores. It is therefore

not possible for a VM to consume more CPU than the full

capacity of the number of virtual cores it contains, as this

would require parallel execution of a single virtual core on

more than one physical core.

C. Data Centre Management Policies

DCSim provides the ability to create Management Policies

to manage hosts and VMs to achieve the goals of the data

centre. DCSim requires that the data centre has at least one

policy: the VMPlacementPolicy. The VM placement policy

controls how a VM is initially placed in the data centre.

That is, the first time that the VM is instantiated, this policy

determines on which host it should be run. DCSim provides

a simple policy, Most Loaded Host First, which chooses the

host with the highest utilization that still has space for the

incoming VM, without pushing it into the stressed utilization

range.

Other management policies can be created by extending

the ManagementPolicy abstract class, and executed during

the simulation at a regular interval. For example, a policy

could be created to dynamically reallocate VMs to relieve

stress situations or consolidate load onto fewer hosts. When

a host becomes stressed, one or more VMs may need to be

migrated to another host to ensure that there are resources

available to meet the demand of each VM. Similarily, when a

host becomes underutilized, its VMs could be migrated away

so that it can be suspended to conserve power. Determining

which VM to migrate, when, and to which host, is similar

to the m-dimensional knapsack problem, which is NP-

hard [14], except it must be performed continuously on

a dynamic system, and consider other constraints such as

VM dependencies, migration bandwidth considerations, and

balancing power savings with potential SLA violations.

The development and evaluation of data centre manage-

ment policies to perform tasks such as VM reallocation is the

primary motivator behind the development of DCSim. Any

number of management policies may be active within the

simulation, allowing for experimentation with a combination

of several policies that can cooperate or even compete with

each other for the achievement of their goals.

Figure 2: DCSim Application Model

D. Application Model

The resource needs of each VM in DCSim are driven

dynamically by an Application, which varies the level of

resources required by the VM to simulate a real workload.

The Application class is abstract and can be extended to

implement different types of applications, but the primary

application model implemented in DCSim mimics a contin-

uous, transactional workload, such as a web server. Figure

2 outlines the basic components of the application model.

Each component of the application model can be extended

to implement the desired behaviour.

At the highest level, the Service class encapsulates all of

the elements of the application model for a single service

running in the cloud. A service can be, for example, a multi-

tiered web application, with multiple applications running in

separate VMs in each tier, serving requests from an external

workload. Service contains an instance of the Workload

class, which specifies a time varying level of incoming work,

which in the case of our web application example, can

be thought of as requests. The number of requests (work

units) per second changes dynamically based on trace inputs,

which specify the workload level on a fixed time interval

(for example, every 100 seconds). Workload values from

traces are normalized to the range [0, 1], so that they may

be easily scaled to the desired size but still maintain the

relative changes in workload.

Service contains one or more ServiceTier objects, which

represent tiers of the application and are specified in con-

secutive order. A single tier consists of a LoadBalancer and

one or more identical Application instances. Each instance

of the Application runs on a single VM, which can be

located on any host in the data centre. Incoming work

from the workload is sent to the first tier, and shared by

the load balancer amongst all of the applications within

the tier. Within each individual application, the incoming

requests are translated into an amount of resources that are

required to satisfy them. If there are not enough resources

available to the VM running the application, some requests

will be dropped, which is considered an SLA violation. The

successfully completed work of the first tier (possibly less

than the incoming work from the workload if the VMs in

388 6th International DMTF workshop on Systems and Virtualization Management (SVM 2012) / CNSM 2012

the tier are underprovisioned) feeds the incoming work of

the second tier, and so on. The final tier returns work to the

Workload which records the number of requests completed.

The number of VMs in each tier (running application

instances) and their placement in the data centre can be

adapted dynamically by VM management policies, which

were discussed earlier. Any number of services can be

defined and instantiated to run within the data centre.

E. Migration and Replication

VMs in DCSim can be both migrated to another host and

replicated to split incoming work between multiple VMs. To

perform a migration, the memory of a VM must be copied

from the source host to the target host. As such, the time to

complete a migration is calculated as the amount of memory

in use by the VM divided by the available bandwidth for

migration. A CPU overhead is added to the VMM running

in both the source and target host for the duration of the

migration, which can be configured as desired. For our

current work, we assume a CPU overhead of 10% of the

current utilization of the migrating VM. Additionally, a 10%

performance penalty is attributed to the VM and recorded as

an SLA violation [15]. See Section IV for more information

about the SLA Violation metric. The 10% SLA penalty

does not, however, affect the amount of work completed

by the VM. The work is considered delayed, hence the

SLA violation, but is still completed and forwarded to any

subsequent service tiers.

Replication of a VM can be performed to split the incom-

ing workload of a service tier. When a new replica is created,

the application running on the VM is added to the tier’s

load balancer and begins receiving a share of the workload.

When a replica is shut down, the application is removed from

the load balancer. Note that each application has a fixed

resource overhead in addition to the resources required to

process incoming work. As such, adding additional replicas

to a service tier has the negative consequence of increasing

the total overhead of the tier.

IV. DCSIM METRICS

The following section outlines the metrics currently being

computed by DCSim for each simulation.

SLA Violation: A Service Level Agreement (SLA) defines

some quality of service that the cloud client expects to

receive from the cloud provider, such as a response time

below a certain threshold. DCSim reports the percentage of

total incoming work in which SLA was violated. When a

VM requires more resources than is available to it, some

incoming work cannot be completed. DCSim considers this

to be an SLA violation, and the amount of work not

completed is added to the total SLA violation amount.

Additionally, while a VM is in the process of migrating

to another host, an SLA violation of 10% of completed

work is recorded to account for the performance degradation

experienced by migrating VMs.

Active Hosts: DCSim records the minimum, maximum,

and average number of hosts that are active (hosting at

least one VM) at any given time during the simulation.

This can provide some insight as to how well a dynamic

VM reallocation policy is consolidating load, with smaller

number typically considered more desirable.

Host-hours: Host-hours is the combined total of the active

time of every host in the simulation. That is, if 10 hosts were

active for 30 simulation minutes each, then 5 host-hours

were used. This gives a combined measure of the number

of hosts that were required to meet the workload demand

throughout the entire simulation run.

Active Host Utilization: One of the goals of VM consol-

idation is to increase the overall utilization of each physical

host, so that resources are not wasted. DCSim measures the

CPU utilization of all hosts that are currently in the On
state. The higher the average utilization, the more efficiently

resources are being used.

Number of Migrations: Dynamic VM reallocation is

achieved by migrating a VM from one host to another.

Unfortunately, in terms of resource consumption, migrations

are not free. It is therefore important to keep track of the

number of migrations that a given algorithm triggers. If

similar results can be achieved by one algorithm with fewer

migrations than another, then the former algorithm may be

considered superior.

Power Consumption: Reducing power consumption has

become a top priority for data centre operators, both for cost

reduction and environmental motivations. Power consump-

tion is calculated for each host, as described in Section III-A,

and the total kilowatt-hours consumed during the simulation

are reported.

Simulation and Algorithm Running Time: DCSim reports

on the time it took to run the simulation; as well as the

average, maximum, and minimum execution time of man-

agement policies. This facilitates comparing the overhead of

different algorithms.

V. EVALUATION

Three experiments were run to evaluate DCSim. The first

was intended to evaluate the scalability and overhead of

the simulator. The second and third demonstrate DCSim’s

capabilities and usefulness in evaluating VM management

policies and techniques.

A. Data Centre Configuration

All three experiments share some common configuration

characteristics.

Hosts: Two different real-life servers were modelled for

use in the simulation: the HP ProLiant DL160G5 and the

ProLiant DL360G5. Both have 2 CPUs with 4 cores each

(8 cores total), and 16GB of memory. The DL160G5’s

6th International DMTF workshop on Systems and Virtualization Management (SVM 2012) / CNSM 2012 389

Size 1 2 3 4
Cores 1 1 1 2

Core Capacity 1500 2500 3000 3000
Memory 512MB 1GB 1GB 1GB

Table I: VM Sizes

processor runs at 2.5GHz and the DL360G5’s processor runs

at 3GHz, and as such their core capacities have been set to

2500 and 3000 shares, respectively. Their power consump-

tion has been modelled using data from the SPECpower

[13] benchmark. Both hosts are configured to have a 10Gb/s

Ethernet connection, and a 1TB hard disk. The VMM of

each host is configured to consume 300 CPU shares.

Host resource managers are configured such that CPU can

be overcommitted, and the other three resources are allocated

statically. A fair-share CPU scheduler was used, as described

in Section III-B. Hosts are considered stressed when their

CPU utilization is greater than 85%, and underutilized when

below 50%.

VMs: Four different VM sizes have been defined, and are

described in Table I. All four VM sizes require 100Mb/s of

bandwidth and 1GB of storage.

Each VM runs an Application modelling a single, inde-

pendent web server, fed by its own Workload instance. Each

workload uses one of the following 5 traces as its input: the

ClarkNet HTTP trace, EPA HTTP trace, or SDSC HTTP

trace from the Internet Traffic Archive [16], or two job types

from the Google Cluster Data trace [17]. Workload traces

shorter than the duration of the experiment were looped, and

each application’s workload began its trace at a randomly

chosen offset time. Each application requires 1 CPU share

to complete 1 request, plus a fixed overhead of 200 shares.

The incoming workloads were scaled such that at their peak

value, the total CPU consumption of the application would

be equal to the size of the VM (as defined in Table I).

Memory, bandwidth and storage usage remained fixed. VMs

were initially placed in random order using the Most Loaded
Host First VMPlacementPolicy.

B. Performance and Scalability

The first experiment is aimed at evaluating the scalability

of the simulator. As the purpose of a simulator is to provide

results both faster and on a larger scale than can be done

with a real implementation, a reasonable execution time

is vital. Six different experiments were performed with

various numbers of hosts and VMs, and the time to run the

simulation was measured. The first three experiments use a

4:1 VM-to-host ratio and scale up with each experiment. The

last three experiments fix the number of hosts and increase

only the number of VMs. Each simulation was run for 10

simulated days, with a basic Management Policy executing

every 10 minutes to perform dynamic VM reallocation, as

described in Section III-C. The experiments were performed

1 2 3 4 5 6
Hosts 100 1000 10000 1000 1000 1000
VMs 400 4000 40000 5000 6000 7000

Time 9s 130s 3597s 189s 256s 318s

Table II: Scalability & Overhead Experiment

on a typical desktop workstation, with an Intel Core i7 930

processor and 6GB of RAM.

Table II lists the results averaged over 5 repetitions. The

Hosts and # VMs columns indicate the total number of

hosts and VMs present in each experiment. The Time column

lists the actual time in seconds to run the simulation. As

we can see, execution time scales well with the size of

the simulation. Simulations involving 1000 hosts and 4000

VMs only require slightly more than 2 minutes to execute,

while simulations as large as 10000 hosts and 40000 VMs

can still be executed in approximately 1 hour. Furthermore,

increasing the ratio of VMs to hosts does not appear to

disproportionately increase the running time. There are a

number of other factors that determine the execution time

of the simulation, such as the frequency of simulation events,

but this experiment adequately represents typical usage.

C. Dynamic VM Allocation

The second experiment is designed to demonstrate DC-

Sim’s usefulness in evaluating VM management techniques.

The primary mechanisms for VM management in DCSim

are the VMPlacementPolicy and ManagementPolicy. A basic

Management Policy to perform dynamic VM reallocation

using a greedy, First Fit heuristic algorithm has been imple-

mented. Hosts that are not hosting any VMs are shut down to

conserve power. Each experiment was run for 10 days, with

200 hosts and 400 VMs. An equal number of the two host

types was created, as well as an equal number of each VM

size. Each VM was attached to a random workload trace,

such that each trace was used by an equal number of VMs.

We compare the simulator under three allocation strategies.

Strategy 1 - Static Peak Allocation: Each VM is statically

allocated enough resources to meet its peak level of resource

demand. That is, it will never require any more resources

than it is allocated at the start of the experiment. No dynamic

re-allocation is performed. This represents a safe provision-

ing, ensuring that there is enough allocated resource to

handle any possible workload level, while performing no

dynamic reallocation.

Strategy 2 - Static Average Allocation: Each VM is

statically allocated enough resources to meet its average

level of resource demand, as calculated from the workload

traces used. This is a conservative allocation, allocating

only enough resource to handle the average case but not

enough to handle peaks in resource demand. As with the

Fixed Peak Allocation experiment, no dynamic reallocation

is performed.

390 6th International DMTF workshop on Systems and Virtualization Management (SVM 2012) / CNSM 2012

Static Peak Static Avg Dynamic
Migrations 0 [0] 0 [0] 18547 [737]

Avg. Active Hosts 58.2 [0.4] 24 [0.4] 36.4 [0.46]
Host Utilization 48.8% [0.3] 94.6% [1.4] 77% [0.5]
Kilowatt-hours 2804.1 [13.5] 1431.1 [12.3] 2009.9 [9.4]
SLA Violation 0% [0] 21.4% [0.34] 0.8% [0.05]

Table III: Dynamic Allocation Results

Strategy 3 - Dynamic Allocation: Each VM is initially

provisioned its peak resource requirements, but in an attempt

to reduce resource consumption while still meeting demand,

VMs are dynamically reallocated using the VM management

policy described above. The policy is executed every 10

minutes.

Results

The experiment was repeated 5 times for each policy.

Each experiment is different due to the random offset in

the workload traces as well as the random order in which

initial VM placement is performed, though each policy was

evaluated with the same 5 random configurations. The first

day of each experiment was discarded to eliminate the

influence of the initial VM placement and allow the system

to stabilize before collecting metrics.

Table III lists a select set of metrics from the results of

the experiments. Values are averaged over the 5 repetitions,

with the standard deviation of the repetitions listed in square

brackets. The Static Peak method statically allocated enough

resources to handle the maximum load of each VM, and

as such we can see that it had no SLA violation, but at

the expense of the highest power consumption and lowest

host utilization. The Static Average method experienced the

highest SLA violation (21.4%), as an insufficient amount

of resource was provisioned to meet demand when it ex-

ceeded the average. It did, however, have the lowest power

consumption and highest host utilization. These represent

two extreme cases of VM allocation, and clearly show the

tradeoff between performance on one hand, and infrastruc-

ture requirements and power consumption on the other. The

final experiment, Dynamic Allocation, employed dynamic

VM reallocation in order to attempt to achieve the benefits

of both Static Peak and Static Average allocation. It had a

0.8% SLA violation, which is more than with Static Peak,

but far less than with Static Average. Host utilization and

power consumption are also higher than Static Average

but represent significant improvements over Static Peak.

Overall, we can see that Dynamic Allocation offers many

of the benefits of the smaller allocation of Static Average

(though to a slightly lesser degree) while still maintaining

an acceptable level of SLA violation, thus finding a good

balance between the two fixed allocation methods.

D. VM Replication

The third and final experiment is also designed to demon-

strate the usefulness and capabilities of DCSim, in this

case in simulating the management of VM replication in

a replicated and load balanced service tier. As resource de-

mands increase due to increasing incoming workload, more

resources may be required than a single VM can provide,

even if it is being given all of its requested resources. In this

case, a replica of the VM can be created and the incoming

workload can be split between them, so that all incoming

work can be completed. This is, of course, dependent on

whether the application running in the VM can be replicated.

We simulate a set of single-tier web services, running on

100 HP ProLiant DL360G5 host servers (as defined earlier).

The hosts were not oversubscribed, thus guaranteeing that

each VM can use all of the resources it requires. All VMs

are of size 3 as defined in Table I. The workload for each

service is chosen randomly from the three HTTP traces only

(no Google Cluster Data traces were used). The scale of each

workload was chosen randomly so that the peak number of

requests can be processed by either 2, 3, 4 or 5 replica VMs.

Incoming work is load balanced such that each replica VM

in a tier receives an equal amount of work.

A VM management policy was created to handle dynamic

service tier replication by automatically scaling the number

of VMs in the tier to match incoming workload. If the

average utilization of each VM in the tier exceeds an upper
threshold, the policy adds a new replica to the tier. If, on the

other hand, removing a replica would result in the average

utilization of the remaining replicas being still below a lower
threshold, a replica is removed. To select which replica to

remove, we select the replica residing on the host with the

fewest number of VMs, with the aim to consolidate VMs on

as few hosts as possible so that idle hosts may be suspended.

No dynamic VM reallocation was performed. We compare

the simulation under two policies.

Policy 1 - Static Peak: Each tier is statically allocated

enough VM replicas to meet its peak level of resource

demand. As defined by the scale of the workload discussed

above, this can be either 2, 3, 4 or 5 VMs. No dynamic

replication is performed.

Policy 2 - Dynamic Replication: Each tier is initially al-

located a single VM. A VM management policy performing

dynamic service tier replication is enabled, executing every

10 minutes to add or remove replicas in response to changes

in workload. The upper threshold (triggering replications)

was set to 85%, and the lower (triggering replica removal)

was set to 70%.

Results

The experiment was repeated 5 times for each policy. We

simulated 10 days, and discarded the first day to eliminate

the influence of the initial VM placement and allow the

system to stabilize before collecting metrics. Table IV shows

the average results across all repetitions, with standard devi-

ations in square brackets. As we can see, statically creating

enough replica VMs to handle peak workload resulted in

6th International DMTF workshop on Systems and Virtualization Management (SVM 2012) / CNSM 2012 391

Static Peak Dynamic Replication
Replicas Added 0 [0] 18919 [878.6]

Replicas Removed 0 [0] 18918 [877.2]
Avg. Active Hosts 75.6 [2.6] 46.5 [1.0]

Kilowatt-hours 3412.9 [119.4] 2253.4 [54.3]
SLA Violation 0% [0] 1.14% [0.04]

Table IV: Replication Results

relatively high power consumption and number of active

hosts, but suffered no SLA violation. By dynamically ad-

justing the number of replicas in each service, we were able

to significantly reduce power consumption and the number

of active hosts, but experienced a 1.14% SLA violation. It

did so by dynamically adding and removing replicas about

18918 times over the course of 9 days. Further improvement

on these results could be obtained by combining this policy

with a dynamic reallocation policy, and through careful

tuning of the threshold values.

VI. CONCLUSIONS AND FUTURE WORK

We have presented DCSim (Data Centre Simulator), an

extensible simulation framework for simulating a data centre

operating an Infrastructure as a Service cloud. DCSim

allows researchers to quickly and easily develop and evaluate

dynamic resource management techniques. It introduces key

new features not found in other simulators, including a

multi-tier application model which allows the simulation of

interactions and dependencies between VMs, VM replication

as a tool for handling increasing workload, and the ability to

combine these features with a work conserving CPU sched-

uler. A number of abstract classes defining host resource

management, the application model, and VM management

policies, allow the simulator to be easily extended and

customized for specific work in a range of key research

topics in data centre management.

Through experimental results, we have shown that DCSim

is scalable to large simulations (featuring 10000 hosts and

40000 VMs), allowing evaluation of techniques at a speed

and scale not possible with a real implementation. We

conducted a basic experiment comparing three different VM

resource allocation and management methods, in which DC-

Sim was able to provide useful metrics to draw conclusions

on the characteristics and tradeoffs between the methods.

We conducted a third experiment demonstrating dynamic

service tier scaling using VM replication, where DCSim

again was able to facilitate a quick and efficient evaluation of

the technique. This demonstrates how DCSim can facilitate

rapid development, evaluation and feedback on data centre

management policies and algorithms.

There are a number of opportunities for future develop-

ment on DCSim, which include fine-tuning of the simulator

as well as the development of extensions to evaluate different

aspects of data centre management. We plan to modify

the simulator to organize hosts into clusters and racks in

order to take such information into account when mak-

ing management decisions. We plan to implement memory
overcommitting and model the consequences of exceeding

the size of physical memory. Host failure events could be

made possible to test fault tolerant management algorithms.

Finally, there are countless opportunities for extending the

simulator, such as adding the ability to run distributed

management algorithms, strategy trees [18], or thermal-

aware algorithms [19].

REFERENCES

[1] B. Stone and A. Vance, “Companies slowly join cloud-computing,”
New York Times, p. B1, Apr 19, 2010.

[2] L. Barroso and U. Holzle, “The case for energy-proportional comput-
ing,” Computer, vol. 40, no. 12, pp. 33–37, Dec 2007.

[3] “Amazon Elastic Compute Cloud,” http://aws.amazon.com/ec2/, Aug
2012.

[4] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. Khan, “Greencloud: A
packet-level simulator of energy-aware cloud computing data centers,”
in IEEE Global Telecommunications Conference (GLOBECOM), Dec
2010, pp. 1–5.

[5] “Ns-2,” http://isi.edu/nsnam/ns/, Aug 2012.
[6] S. H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. Das, “Mdcsim:

A multi-tier data center simulation, platform,” in IEEE International
Conference on Cluster Computing and Workshops (CLUSTER), Sep
2009, pp. 1–9.

[7] S. Gupta, R. Gilbert, A. Banerjee, Z. Abbasi, T. Mukherjee, and
G. Varsamopoulos, “Gdcsim: A tool for analyzing green data center
design and resource management techniques,” in International Green
Computing Conference and Workshops (IGCC), Jul 2011, pp. 1–8.

[8] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp.
23–50, 2011.

[9] A. Beloglazov and R. Buyya, “Energy efficient resource management
in virtualized cloud data centers,” in Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, ser. CCGRID ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 826–831.

[10] “Kernel Basic Virtual Machine,” http://www.linux-kvm.org/, Aug
2012.

[11] “Xen Hypervisor,” http://xen.org/, Aug 2012.
[12] “VMWare,” http://www.vmware.com/, Aug 2012.
[13] “Standard Performance Evaluation Corporation,”

http://www.spec.org/, Aug 2012.
[14] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, “Virtual machine

hosting for networked clusters: Building the foundations for “auto-
nomic” orchestration,” in International Workshop on Virtualization
Technology in Distributed Computing. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 7–.

[15] A. Beloglazov and R. Buyya, “Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers,”
Concurrency and Computation: Practice and Experience, 2011.

[16] “The Internet Traffic Archive,” http://ita.ee.lbl.gov/, Aug 2012.
[17] “Google Cluster Data,” http://code.google.com/p/googleclusterdata/,

Aug 2012.
[18] B. Simmons and H. Lutfiyya, “Strategy-trees: A feedback based

approach to policy management,” in Modelling Autonomic Commu-
nications Environments, ser. Lecture Notes in Computer Science,
S. van der Meer, M. Burgess, and S. Denazis, Eds. Springer Berlin
/ Heidelberg, 2008, vol. 5276, pp. 26–37.

[19] F. Norouzi and M. Bauer, “Compromise between energy consumption
and qos,” in 19th International Conference on Software, Telecommu-
nications and Computer Networks (SoftCOM), Sept 2011.

392 6th International DMTF workshop on Systems and Virtualization Management (SVM 2012) / CNSM 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

