
Network-Aware Impact Determination Algorithms
for Service Workflow Deployment in Hybrid Clouds

Hendrik Moens∗, Eddy Truyen†, Stefan Walraven†, Wouter Joosen†, Bart Dhoedt∗ and Filip De Turck∗
∗ Ghent University, IBBT Department of Information Technology

Gaston Crommenlaan 8/201, B-9050 Gent, Belgium
† Katholieke Universiteit Leuven, DistriNet Research Group, Dept. Computer Science

Celestijnenlaan 200A, B-3001 Heverlee, Belgium

e-mail: hendrik.moens@intec.ugent.be

Abstract—In recent years, many service providers have started
migrating their service offerings to cloud infrastructure. Some-
times, parts of the service workflow can however not be moved
to cloud environments. This can occur due to client policies, or
because some services are linked to physical client-site devices.
The result of the migration is then a hybrid cloud environment,
where part of the services are executed within the client network,
while most of the processing is moved to the cloud.

Migration to the cloud enables a more flexible deployment of
services, but also increases the strain on underlying networks
as most tasks are partially handled in a remote cloud, and no
longer just in the local network. An important question that
providers must answer before new service workflows are deployed
is whether they can provide the workflow with sufficient quality of
service, and whether the deployment will impact existing service
workflows. In this paper we discuss strategies based on multi-
commodity flow problems, a subset of graph flow problems that
can be used to determine whether new service workflows can
be sufficiently provisioned, and whether the addition of new
workflows can negatively impact the performance of existing
flows. We evaluate the proposed solution by comparing the
performance of three approaches with respect to the number of
successful workflows and with respect to their execution speed.

Index Terms—Hybrid clouds, Distributed Computing, Work-
flow Deployment

I. INTRODUCTION

Traditionally, many service providers install and maintain
servers and devices on a client’s site. Upgrading a service, or
adding new features to an existing service, often increases the
load on management servers. If these servers are located client-

site, it may be required to add new servers, or upgrade existing
ones. The requirement of upgrading servers significantly in-
creases costs, and delays the roll-out of services. For some
customers, this additional cost may be prohibitive, preventing
them from using some of the offered services.

Migrating these management servers to the cloud resolves
these issues, as resources can be added on-demand, and nearly
instantaneously. Sometimes, specific tasks can however not be
executed in the cloud, as they must be executed at the client
site, for policy reasons, or because they make use of physical

devices present on-site. An example of this can be found in
medical communication systems, where physical, on-premise

Fig. 1: An example configuration. An on-premise network con-
taining physical terminals that interact with users is connected
to a cloud that handles relocatable tasks.

devices are needed in every room in a hospital. This leads to
a hybrid cloud where a part of the services are executed in
a remote cloud environment, with near infinite capacity, and
part of the services are executed in a client-site network, with
network and server capacity constraints.

While migrating servers to the cloud enables a more dy-
namic selection of offered services, moving the services fur-
ther away from the on-premise devices impacts the underlying
network, as the services must still communicate with each
other. The available services are still limited depending on
the capabilities of both the required devices, and the capacity
of the client-site underlying network. While service selection
can become more dynamic in the cloud, it is important that
the service provider, who offers the services, can determine
whether he is capable of providing services that require on-
premise resources with sufficient quality guarantees before
they are deployed, and that the provider can ensure the service
will not interfere with other, already deployed services.

The setup is illustrated in Figure 1, where an on-premise,
client-site network, and a cloud are connected. Several termi-
nals, illustrated as boxes, exist within the on-premise network,
and their functionality cannot be moved to the cloud. This
paper describes a strategy for determining whether service
workflows can be provisioned on the network created by
the client-site network of which the topology is known, in
combination with a public cloud with (near) infinite capacity,
and what the impact of these workflows on existing flows is.
In our analysis we focus on a medical communication system978-3-901882-48-7 c© 2012 IFIP

28978-3-901882-48-7 c©2012 IFIP

use case. The bottleneck in the system is assumed to be in

the private environment and the uplink to the public cloud

environment, so the topology of the public cloud does not

have to be known. We will refer to this as the Network-

Aware Impact Determination (NAID) problem. The developed

algorithms determine whether services can be provisioned, and

the quality with which they can be provisioned.

To achieve this, we make use of multi-commodity flows [1],

a specific category of network flow problems. Specifically, we

describe an extension of the maximum concurrent flow prob-

lem [2], that is workflow-aware and maximizes the realized

demand of individual workflows.

In the context of this paper, a service workflow is a

sequence of services that either communicate continuously,

or for which a certain bandwidth must be reserved during a

specific timeframe. Possible timeframes can, for example, be

the day or night shift in a hospital. It is impossible to know

beforehand when in the timeframe a workflow will need to be

executed, and considering the medical use case, it is of critical

importance that the flow can always be executed. To prevent

unnecessary restrictions on the algorithm results, small enough

timeframes should be chosen, and if a workflow executes

during multiple timeframes, the NAID algorithm must be

executed for each of the used timeframes. The process of

choosing such timeframes is however out of scope for this

paper. We also assume services are CPU constrained, as this

applies in our use case, but we also explain how additional

constraints such as disk I/O could be handled.

The remainder of this paper is structured as follows. The

next section describes related work. In Section III, we will

detail the NAID problem parameters. Subsequently, we will

discuss the multi-commodity flow problem in Section IV. In

Section V we will formally describe three NAID algorithms,

based on a conversion of the problem to a multi-commodity

flow graph. This is followed by Section VI, where we evaluate

the approach, after which we will state our conclusions in

Section VII.

II. RELATED WORK

Multi-commodity flow problems [1] are a specific class of

network problems, and can be used to model various network-

problems such as several network routing problems [3], [4],

[5], virtual network allocation [6], and design of fault-tolerant

networks [7]. These approaches however work on the network

level, and focus on routing flows from one network node to

another. We on the other hand add service information to the

input network, and focus on service-to-service routing: only

the service that is executed matters, not where this service is

executed, as long as server constraints are respected.

The approach described in this paper has similarities with

the application placement problem [8]. Application placement

is used to determine the location of applications within net-

works [8], [9], [10] or clouds [11], [12], [13], taking into

account the demand for each application. Application place-

ment is used to coordinate applications. This work however

focuses on the coordination of service workflows, rather than

Fig. 2: The Network-Aware Impact Determination (NAID)

problem takes as input a collection of service workflows and

a network containing servers on which services run. As an

output, the problem determines the share of the requested

capacity that can be placed for each workflow.

the management of individual services. In [14] network-aware

placement of services is discussed, but the focus is the man-

agement of datacenters with specific layouts, so the techniques

discussed cannot be directly applied to client-site networks.

Furthermore, the system assumes bandwidth is the only limi-

tation, ignoring CPU limitations. Our approach however incor-

porates CPU limitations and can be applied to varying network

layouts. In [9] and [15], an application placement algorithm

based on a conversion to a network problem is discussed, but

the physical network is not taken into account. Our work by

contrast specifically focuses on the underlying network.

Our approach further differs from application placement

approaches as we assume that the services are already placed.

We rather focus on determining which service workflows can

successfully execute, given a specific configuration. Thus the

approach discussed in this work can be used in conjunction

with existing application placement techniques, the application

placement techniques being used to determine the service lo-

cations, and the NAID algorithms to determine the achievable

workflows taking into account these service locations.

The NAID problem is similar to the service matching

problem [16]. As in [17], we assume the service specification

is known, but while the authors relax the capacity limit to

achieve a polynomial time algorithm, we on the other hand

focus specifically on these capacity constraints. By focusing

on whether the required capacity for offering the services is

present in the network, rather than on which specific service

instances are used within the compositions, we similarly

achieve polynomial time algorithms.

III. NETWORK-AWARE IMPACT DETERMINATION (NAID)

An overview of the NAID problem is shown in Figure 2. As

an input, the problem takes a collection of service workflows,

and a physical configuration. A service workflow is a sequence

of services that communicate with each other. We focus on

workflows that are repeated frequently. If many workflows

exist that are only executed once, generic workflows can be

determined based on this information, and used as input for the

NAID algorithms. Different workflows can require different

2012 8th International Conference on Network and Service Management (CNSM 2012) 29

Fig. 3: An example multi-commodity flow with three flows.

Sources are marked with s, sinks with t.

amounts of network capacity, and the capacity that must be

provisioned can differ between subsequent services, as one

service could e.g. implement a filter, drastically reducing band-

width needed for subsequent steps. The physical configuration

is determined by the servers, the network topology, and by the

services that are active on these servers.

The NAID algorithm determines a possible flow on the

network, respecting network and server capacities. The result

of the algorithm is, for every workflow, the amount of its

requested capacity that can be provisioned. The approach

focuses on the feasibility of realizing the flows, and not of

other quality metrics of the flows such as end-to-end delay,

latency or cost. To incorporate such metrics, cost and latency

models, such as those used in [18], could be used to add

additional constraints, preventing some links from being used

by some of the workflows.

In Figure 2, an example is shown with two workflows

making use of three services. The physical network consists of

five servers, and instances of the different services are running

on specific servers. The algorithm then determines a possible

network flow for both workflows, resulting in the example

in 100% demand satisfaction for the first workflow, and 80%

satisfaction for the second workflow.

In our approach, a single service can be used in multiple

service workflows, services can be instantiated on multiple

servers, and multiple services can exist on one server.

IV. MULTI-COMMODITY FLOW

Flow network problems are a class of problems where a flow

is moved from a source to a sink within a directed network

where edges have a limited capacity. Well-known examples

are the maximum flow problem, where the maximum possible

flow between source and sink is determined, and the minimum-

cost flow problem, where a given amount of flow must be

moved between a source and sink node at the minimum cost.

A multi-commodity flow problem [1] is an extension of

these flow network problems, where more than one source

and sink can exist, and not one, but multiple flows must be

routed through the network. An example of a multi-commodity

flow problem is shown in Figure 3. In this example, three

commodities exist, resulting in three separate flows. The

difference between multi-commodity flows and regular flows

with multiple source and sink nodes, is that, in the latter case,

the flow entering the sink can come from any of the source

nodes, while in the multi-commodity flow system, only flow

from a specific source may enter the sink.

A specific multi-commodity flow problem is the maximum

concurrent flow problem [2]. The maximum concurrent flow

problem is an optimization problem that strives to maximize

the share of demand of each commodity that is satisfied. This

problem treats all commodities equally, and ensures that an

equal share z of the demand of each commodity is met.

Multi-commodity flows are a natural representation of many

networking problems, as in these scenarios multiple servers

communicate with each other, and the communication flows

must move from a specific server to a specific target server.

The maximum concurrent flow problem is an interesting

starting point when considering the NAID, as unlike most

multi-commodity flow problems, which are NP hard, it can

be represented using linear programming (as opposed to

integer linear programming), making it solvable in polynomial

time [19]. We will, in Section V, extend the basic maximum

concurrent flow problem to handle workflows, where apart

from a source and a sink, multiple intermittent nodes exist

without losing this polynomial character.

We will now formally define the maximum concurrent flow

problem for a capacitated directed graph G(N,E), with a

collection of nodes N , and a collection of edges E. A capacity

value cap(e) is associated with every edge e ∈ E.

Within this network, multiple commodities C exist. Each

commodity has a source and a sink, and a demand d(c)
between both. The flow passing over network edges e ∈ E
for commodity c ∈ C is represented by the variable f(e, c).

The objective of the optimization is to find a network flow

that moves a maximum percentage of demand from the source

to the sink of the commodities. This percentage is represented

by the variable z, thus making the optimization objective

max(z).

The optimization is subject to two constraints. First, there

is a flow conservation constraint, shown in Equation (1). For

this, we first define f(n, c), the net flow for a commodity c ∈ C
on a node n ∈ N , in Equation (2). This value is determined

by subtracting the sum of outgoing flows from the sum of

incoming flows. For nodes n that are neither source nor sink

of a commodity c, this sum must be zero, as no flow may be

lost. For source nodes, only outgoing flows exist, ensuring the

total flow in the node is negative. For sink nodes, that only

have incoming flows, the total flow is positive.

f(n, c) =

⎧
⎨

⎩

−z × d(n1) If n source of c
z × d(n1) If n sink of c
0 Otherwise

(1)

f(n, c) =
∑

(m,n)∈E

f((m,n), c)

−
∑

(n,m)∈E

f((n,m), c) (2)

30 2012 8th International Conference on Network and Service Management (CNSM 2012)

Fig. 4: The NAID problem as a multi-commodity flow net-

work. Each arc in the Figure consists of two directed edges.

The second constraint is the capacity constraint, shown in

Equation (3), which is added for every edge e ∈ E, and

ensures that the sum of all flows passing over an edge does

not exceed the edge’s capacity.
∑

c∈C

f(e, c) ≤ cap(e) (3)

V. ALGORITHMS

We will first describe how NAID can be converted to a

graph problem. Subsequently, we will define extensions to

the maximum concurrent flow problem, ensuring the resulting

linear problem formulation can be applied to the graph to solve

the NAID problem.

A. Graph model

The general concept of multi-commodity flows can be used

to model the capacity used by service workflows in networks.

To achieve this, the problem described in Section III must

first be adapted to a graph. An example of such a network

is shown in Figure 4. The graph contains nodes for all

servers and services. The servers are connected with edges

according to the physical network, and capacity constraints

are added for these edges based on the capacity of the links.

Services are connected to the servers on which they execute

by adding links in two directions. The capacity of these edges

is unlimited, as limitations to server bandwidth are handled

by the edges between server nodes. These edges will still be

subject to other constraints, that will be described in the next

section, as using this edge implies a service on a server is

used, which in turn consumes CPU server resources. Within

this approach, routers can be included and modeled as a

server on which no services are running.
Workflows can be constructed by creating a commodity for

every pair of services, and chaining these workflow commodi-

ties together. For a workflow

wi : a
da,b−→ b

db,c−→ c

this implies creating two separate commodities: (a, b) with

demand da,b and (b, c) with demand db,c. When the multi-

commodity flow algorithm is executed, two flows will be

created for the commodities. Together, these flows form the

entire workflow. This is illustrated in Figure 5, where a

relevant fragment of a larger network is shown. In the figure,

the workflow is executed as follows:

Fig. 5: The workflow between services a, b and c consists of

two separate commodities, (a, b) with demand da,b and (b, c)
with demand db,c.

1) First the service a is executed on server s1.

2) The result of the execution is moved over the network

to s2.

3) The service b is executed on server s2.

4) The result of the second execution is moved over the

network to s3.

5) The service c is executed on server s3.

This approach can easily be extended to non-linear work-

flows, used in e.g. broadcasting scenarios, by linking multiple

commodities together in different ways. In this paper, we will

however focus specifically on linear workflows applicable to

medical communications systems.

It is possible that a single service runs on multiple servers,

as illustrated in Figure 4. In this case the optimization process

will route flow over the service instance that results in the

best global z value. Special care must be taken to ensure that,

when an incoming arc to a service is used, its corresponding

outgoing arc, going back to the same server is used. This is

achieved by adding specific constraints that are discussed in

the next subsection.

B. Formal model

In the previous section we have described how the NAID

problem can be converted to a graph problem that can be

solved using a variant of the maximum concurrent flow prob-

lem. With regard to the formal problem as described in Sec-

tion IV, a few constraints must be added to take into account

server CPU limitations and to ensure the different commodities

can be correctly chained together to create service workflows.

The problem makes use of a collection of servers s ∈ S,

that are connected using edges (u, v) ∈ S2 with capacity

cap(u, v) ∈ R. Each server s has available CPUs, and does

not have bandwidth limitations as these are handled by the

network capacities.

Additionally, a set of services a ∈ A exits. We assume

that the input flow cina of a service a is proportional to its

output flow couta . Using a proportionality constant for the

service this is expressed as cina = routin (a) × couta . We use

this rate as separate steps in a workflow can have different

bandwidth requirements as discussed in Section III. Similarly,

we assume that the amount of CPU resources utilized by

2012 8th International Conference on Network and Service Management (CNSM 2012) 31

the service are related to the throughput of the service, so

CPUa = rCPU
in (a)× cina .

The system also contains a collection of workflows, w ∈W ,

represented as a chain of services and demands:

wi : ai1
d1,2−→ ai2

d2,3−→ · · · dn−1,n−→ ain (4)

An entire workflow can be characterized using a sequence of

services and an input demand dwi
. The demand for subsequent

links can be determined using the routin (ai) variables, as it

relates input and output flows, and as the output flow of a

service in the sequence is the input flow of the next service.

The resulting recursive formula for determining dj,j+1 is

shown in Equations (5) and (6).

d0,1 = dwi (5)

dj,j+1 = dj−1,j × routin (aij) (6)

As discussed previously, each pair of workflow components

(aij , aij+1
) corresponds to a commodity, with demand dj,j+1.

The different workflow commodities must however be con-

nected to each other: flow going into a service for a commodity

must also leave the same service, on the same server, for

the next workflow commodity. This workflow chain relation
constraint, expressed in Equation (7), ensures that, if a flow

enters a service from a server, it must go back to the same

server for the next workflow commodity.

routin (ain)× f((s, ain), ci) = f((ain , s), ci+1) (7)

This constraint is added for every sequence (ain−1
, ain),

(ain , ain+1
), with associated commodities ci, ci+1, that is part

of a workflow, and for every server s on which service ain
can be executed.

A second flow-based constraint is added to ensure that a

flow between two services does not pass over other services,

but only moves over the server network. This server flow
constraint is shown in Equation (8) for outgoing flows and in

Equation (9) for incoming flows. These constraints are added

for every service a ∈ A, server s ∈ S, and commodity c ∈ C
going from service a1 to a2.

f((a, s), c) = 0 (unless a = a1) (8)

f((s, a), c) = 0 (unless a = a2) (9)

In the model as discussed up until now, the only limitation

is bandwidth. While for some cases this may be sufficient,

in practice, the available CPU usage can be a bottleneck as

well. This adds an additional constraint, the CPU capacity
constraint, which is shown in Equation (3), and which is added

for every server s ∈ S.
∑

(s,a)∈E

rCPU
in (a)×

∑

c∈C

f((s, a), c) ≤ CPUs (10)

In this equation we make use of the proportionality of CPU

usage to input flow, which we discussed earlier, to determine

the CPU usage of individual services. While we focus on CPU

constraints in this paper, similar constraints can analogously

be added to model other resources, such as e.g. disk I/O.

This formulation in itself is not sufficient: the initial service

of a workflow does not have any input flow, and is thus ignored

by this constraint. We resolve this by defining an additional

service a0, which does not consume any CPU, which is active

on all servers, and which is prepended to all workflows. The

only purpose of this service is to ensure the first workflow

service aw1 of a workflow w has an input flow, which can

then be used to correctly enforce the capacity constraint. This

service is artificial, so the flow for any workflow commodity

(a0, aw1
) which starts in this service may not pass over server-

server links. To enforce this, the constraint in Equation (11)

is added for all e ∈ E of the type (s1, s2) ∈ S2, and all

commodities c ∈ C for which the flow starts in a0.

f((s1, s2), c) = 0 (11)

It is of note that within the presented model, flows are

assumed to be splittable. This assumption is acceptable for the

network nodes, as network packets can be split, but may not

always hold for some services. Within the model, no direct

support is offered for such services, as adding constraints to

achieve this would make it impossible to achieve polynomial

execution speeds. We suggest two approaches to handle such a

situation: (1) requiring more resources than strictly necessary,

to ensure a feasible flow can be mediated after execution, or

(2), ensuring only a single instance of this service is present

so the flow is forced to make use of this unique service.

C. Linear Programming Algorithms

The formal model as defined previously can be used as input

for a Linear Programming (LP) solver. We have implemented

three variants of the NAID algorithm using the CPLEX[20]

LP solver:

• NAIDz solves the NAID problem as described previously,

that is: every workflow realizes an equal share z of its

demand. A disadvantage of this approach is that a single

bottleneck can limit the maximum z value, lowering the

quality of other workflows that do not suffer from the

bottleneck.
• A variation on the model, NAIDzw can be achieved by

assigning an individual value zw for every workflow w,

rather than assigning a global z value for all workflows,

and maximizing
∑

w∈W zw. This ensures individual bot-

tlenecks cannot limit the performance of other workflows.

If contention for capacity occurs, this approach could

however cause starvation for some flows, causing some

flows to achieve exceptionally high zw values at the cost

of the zw values of other flows.
• A final variation, NAIDzzw, combines properties of both

algorithms: it first uses NAIDz to determine a maximal

global z value. Subsequently, it assigns individual shares

zw to every workflow, maximizing their sum, as in

NAIDzw. In this approach, the value of z is however

used as a minimal value of the zw values, ensuring no

starvation of workflows occurs. The obvious disadvantage

of this approach is that, as opposed to other variants, two

optimizations must be executed.

32 2012 8th International Conference on Network and Service Management (CNSM 2012)

(a) Deep Cluster (DC) (b) Deep Redundant
Cluster (DRC)

(c) Shallow Cluster
(SC)

(d) Shallow Redundant
Cluster (SRC)

Fig. 6: The networks used in the evaluations.

These algorithms can be used to determine demand sat-

isfaction of a specific workflow configuration. Using the

algorithms, the satisfaction of a current service workflows

configuration can be determined. When new workflows are to

be added, the impact on the fulfillment of existing workflows

can be determined by re-evaluating the configuration when the

workflow is added. The difference between the original and

new z (or zw) values then characterizes the impact of adding

the workflows.

VI. EVALUATION RESULTS

In this section, we will first describe the evaluation setup.

Then, the performance of the three algorithms is compared in

terms of two quality metrics and four different network setups,

after which we evaluate the algorithms’ execution speed.

A. Evaluation Setup

The two metrics to determine solution quality are: (1) the

amount of successfully provisioned service workflows, and

(2) minimum, maximum and average achieved demand of

workflows. Both metrics are evaluated for different simulated

network topologies. The used networks are shown in Figure 6,

and are all variations on a star network. The leave nodes are

servers with a 2GHz CPU, while inner nodes are routers,

on which no services can be executed. The networks shown

in Figures 6a and 6c have varying depths, and use an edge

capacity of 1Gbps. The networks in Figures 6b and 6d are

similar, but add redundancy by connecting each server and

router to two nodes on a higher level. In this case we assign

an edge capacity of 500Mbps to ensure the global capacity

is equal to the capacity in the other two cases. In all four

cases, the root of the network is connected directly to a central

node without intermediate branches. The root of each of these

networks is connected to a cloud, which is represented as a

server with infinite capacity, using a link with infinite capacity,

as we assume the constraints in the network are caused by the

local network and servers.

In the evaluations, we use 40 services, where for every

service a the value rCPU
in (a) is randomly chosen in the interval

[12 , 2], as we assume services with a high flow will in general

require a large amount of CPU resources, and routin (a) is chosen

in the interval [15 , 5], as relatively large differences between

input and output flows can occur. In both cases, the random-

ization is executed in such a way that i and 1
i have equal proba-

bilities of occurring. The services on which the services can be

executed are chosen as follows: (1) there is a 10% chance that

the service will only run on all servers, and a 10% chance it

will only run on a specific server, and (2) otherwise, the

amount of servers on which the service can be executed will

be chosen uniformly from the range [1, |Sx|], with Sx the set

of non-router server nodes on which services can be executed.

We then generate 30 workflows, by, for each workflow,

randomly choosing 5 services from the previously described

set. As mentioned in Section V-A, these workflows are linear.

It is possible for a service to occur more than once in a

workflow, but not directly adjacent to one another. For each

flow, we randomly determine a total load l ∈ [800, 1200]. We

choose this range as the cumulative client-site capacity in the

test networks is ±27Gbps, which is used up if every workflow

uses 900Mbps. As not every workflow commodity needs to

pass over the local network, we use a higher average to ensure

a high system load exists. The choice of using workflows of

5 services is inspired by the medical scenario, where a flow

of the type terminal, server, cloud, server, terminal is com-

mon, and where the terminal and server are connected using

proprietary technologies, ensuring this server cannot itself be

migrated to the cloud. In the evaluation, we will also discuss

the algorithm’s performance with varying workflow lengths.

In these problem models, most of the workflows can be

partially executed in the cloud, but on average, a significant

load on local network will exist as well. The varying rates

ensure that strongly different bandwidth requirements between

pairs of services, caused by nodes such as filters, occur.

First we will discuss the results for the two qualitative

metrics; afterwards we will evaluate the execution speed of

the algorithms.

B. Ratio of successfully provisioned service workflows

The data in this section has been generated by using the

randomly generated problems discussed previously, repeating

the evaluation for the different networks and NAID algorithms.

The presented results have been averaged over 500 executions.

We will first evaluate the quality of the different algorithms

by comparing the amount of service workflows that can be

provisioned on the network. In Figure 7 we show the amount

of workflows that succeed for the different algorithms and

network configurations. In the chart, we show how many

workflows, on average, achieve 100%, > 80% and > 50% of

their demand. The latter two are interesting to consider when

the requirement of achieving 100% demand satisfaction is not

strictly required.

We observe that the NAIDzw and NAIDzzw approaches

consistently outperform the NAIDz approach. Using the

2012 8th International Conference on Network and Service Management (CNSM 2012) 33

Fig. 7: The average amount of workflows that achieve 100%,

80% and 50% of their requested demand.

Fig. 8: The average amount of workflows that achieve 100%,

80% and 50% of their requested demand, using only problem

models for which non-successful flows occur.

NAIDzw approach, more workflows achieve 100% success,

but the NAIDzzw approach has more applications achieving

at least 50% of their demand. These differences become

even more pronounced when we filter out execution results

that fully achieve the demand, focusing entirely on the more

difficult problems in the evaluation sets. This is shown in

Figure 8, where, due to the premise, no workflows achieve

100% demand satisfaction using the NAIDz algorithm.

C. Achieved workflow demand

The average, minimum and maximum zw values are shown

in Figure 9. For the NAIDz algorithm, these three values are

always the same, as only a single z value is determined, while

for the other algorithms differing values are achieved. The

minimal zw value in the NAIDzzw algorithm is the same as

the z value of NAIDz, while a higher average and maximum

are achieved. Forcing the NAIDzzw algorithm to achieve at a

minimum the z value of the NAIDz algorithm constrains the

problem, a limit that does not exist in the NAIDz algorithm.

This enables the latter to achieve a higher average zw, but at

the cost of a significantly lower minimal workflow satisfaction.

It is interesting to note that, while the evaluations are used

on four different networks with varying internal complexity,

the quality metrics are nearly identical for the different cases.

Fig. 9: The average, minimum and maximum achieved z
values of the different algorithms.

Fig. 10: The execution speed of the different evaluations.

This is interesting, as increased problem complexity can, as

we will show in the next section, increase the execution time.

The results show that part of the network complexity can be

removed, while similar quality results can still be achieved.

These experiments were repeated for workflow lengths

ranging from 2 to 9, leading to similar results, indicating

that the problem complexity is mainly influenced by the total

workflow load rather than by the length of the workflow. These

results are however not shown due to space constraints.

D. Execution speed

Execution speeds were evaluated using an Ubuntu server

with Intel Core i3 2.93GHz processor and 4GiB memory.

In Figure 10, the execution speed of the evaluation discussed

in the previous section are shown. The NAIDz and NAIDzw
both require a similar amount of execution time, with NAIDzw
executing marginally faster, while the NAIDzzw approach

executes slower. The differences between NAIDz and NAIDzw
are, for this input, negligible. It is of note that, while NAIDzzw
executes two LP optimizations, its duration is less than the

sum of the durations of the other algorithms. This could be

caused by the additional constraints added in the NAIDzzw
algorithm that limit the search space, ensuring the CPLEX

solver can find a solution faster during its second execution.

Subsequently, we evaluated the execution speed of the algo-

rithms using varying system parameters. Increasing the amount

34 2012 8th International Conference on Network and Service Management (CNSM 2012)

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
T

im
e

(s
)

Service Count

NAIDz
NAIDzw

NAIDzzw

Fig. 11: Execution speeds with varying service counts, |W | =
30, |Sx| = 30.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
T

im
e

(s
)

Workflow Count

NAIDz
NAIDzw

NAIDzzw

Fig. 12: Execution speeds with varying workflow counts,

|A| = 30, |Sx| = 30.

of services, as shown in Figure 13 increases the execution

time of each of the algorithms linearly. This increase is to be

expected as the amount of nodes in the input graph discussed

in Section V-A increases, which increases its complexity.

The execution time curve of NAIDzzw is steeper than those

of NAIDz and NAIDzw, as it combines both algorithms.

Increasing the amount of workflows, as shown in Figure 12

causes a steeper execution time increase, again linear, as in this

case, more commodities are included in the model. For higher

workflow counts, the execution speed of NAIDzw increases

compared to that of NAIDz, as increasing the amount of

workflows increases the amount of zw decision variables in

the LP formulation of the NAIDzw algorithm.

In Figure 13, we evaluate the execution speeds of the

different algorithms for two types of star configuration, once

using a shallow network where all servers are connected to a

central router as in Figure 6c, and once using a deep network

using two levels of depth, similar to the network in Figure 6a.

As the amount of servers increases, so does the execution time

of the algorithm. The times for the shallow and deep models

diverge as the amount of servers increases, due to an increasing

impact of the network complexity.

E. Algorithm comparison

Both NAIDzw and NAIDzzw perform significantly better

than NAIDz if less than 100% demand satisfaction is permis-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140

E
xe

cu
tio

n
T

im
e

(s
)

Server Count

NAIDz (Shallow)
NAIDzw (Shallow)

NAIDzzw (Shallow)
NAIDz (Deep)

NAIDzw (Deep)
NAIDzzw (Deep)

Fig. 13: Execution speeds with varying server counts, |W | =
30, |A| = 30.

sible. The choice for algorithms then depends on the context:

if the average demand satisfaction must be maximized, the

NAIDzw algorithm performs best, while if the goal is to

maximize the amount of workflows that achieve acceptable

performance, the NAIDzzw algorithm performs best. If less

than 100% demand satisfaction is not tolerated, the three

algorithms have an equal qualitative performance, in which

case NAIDz is preferable as it executes faster. The choice of

whether to use NAIDz, NAIDzw or NAIDzzw thus depends

upon the context. We also note that the results show that, to

improve the execution speed of the algorithms, part of the

internal network structure can be abstracted.

VII. CONCLUSIONS

In this paper, we have described and evaluated three ap-

proaches, based on extensions to the linear programming

formulation of the maximum concurrent flow problem, to

determine the impact of adding service workflows in a hybrid

cloud scenarios. The three NAID algorithms have differing

quality properties, and can thus be used in different contexts.

Specifically, one algorithm executes the fastest, another leads

to higher average workflow satisfaction, whereas the last max-

imizes the workflow achievement first, ensuring a minimum

quality level for all workflows is achieved first preventing

workflow starvation. We found that, for the considered cases,

at most 100s execution time is needed, and that abstracting

the underlying network decreased execution times up to 30%,

without significantly reducing placement quality.

In future work, we will incorporate the presented algorithms

in a management framework, where we will determine how

the information generated by these algorithms can be used in

conjunction with intelligent application placement techniques.

ACKNOWLEDGEMENT

Hendrik Moens is funded by the Institute for the Promotion

of Innovation by Science and Technology in Flanders (IWT).

This research is partly funded by the IBBT CUSTOMSS[21]

project.

2012 8th International Conference on Network and Service Management (CNSM 2012) 35

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows. Prentice
Hall, New Jersey, 1993.

[2] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow
problem,” J. ACM, vol. 37, no. 2, pp. 318–334, 1990.

[3] B. Awerbuch and T. Leighton, “Improved approximation algorithms for
the multi-commodity flow problem and local competitive routing in
dynamic networks,” in Proceedings of the 26th Symposium on Theory
of Computing STOC. ACM, 1994, pp. 487–496.

[4] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in
Communication and Computer Networks. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2004.

[5] V. Kolar and N. B. Abu-Ghazaleh, “A multi-commodity flow approach
for globally aware routing in multi-hop wireless networks,” Proceedings
of the 4th Annual IEEE International Conference on Pervasive Comput-
ing and Communications PERCOM06, pp. 308–317, 2006.

[6] W. Szeto, Y. Iraqi, and R. Boutaba, “A multi-commodity flow based
approach tovirtual network resource allocation,” Proceedings of the
IEEE Global Telecommunications Conference GLOBECOM 03, vol. 6,
pp. 3004–3008, 2003.

[7] Y. L. Y. Liu, D. Tipper, and P. Siripongwutikorn, “Approximating
optimal spare capacity allocation by successive survivable routing,” pp.
198–211, 2005.

[8] J. Rolia, A. Andrzejak, and M. Arlitt, “Automating enterprise application
placement in resource utilities,” in Self-Managing Distributed Systems:
14th IFIP/IEEE International Workshop on Distributed Systems: Oper-
ations and Management, DSOM 2003. Springer, 2004, pp. 118–129.

[9] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable applica-
tion placement controller for enterprise data centers,” in Proceedings of
the 6th international conference on World Wide Web, 2007, pp. 331–340.

[10] C. Adam and R. Stadler, “Service middleware for self-managing large-
scale systems,” IEEE Transactions on Network and Service Manage-
ment, vol. 4, no. 3, pp. 50–64, Dec. 2007.

[11] F. Wuhib, R. Stadler, and M. Spreitzer, “Gossip-based resource manage-
ment for cloud environments,” in Proceedings of the 6th International
Conference on Network and Service Management (CNSM 2010), 2010,
pp. 1–8.

[12] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. D.
Turck, “Feature placement algorithms for high-variability applications
in cloud environments,” in Proceedings of the 13th Network Operations
and Management Symposium (NOMS 2012), 2012, pp. 17–24.

[13] H. Moens, J. Famaey, S. Latré, B. Dhoedt, and F. De Turck, “Design
and evaluation of a hierarchical application placement algorithm in
large scale clouds,” in Proceedings of the 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011), 2011, pp.
137–144.

[14] C. Low, “Decentralised application placement,” Future Generation Com-
puter Systems, vol. 21, no. 2, pp. 281–290, 2005.

[15] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé, “Utility-
based placement of dynamic web applications with fairness goals,” in
Proceedings of the 11th Network Operations and Management Sympo-
sium (NOMS 2008). IEEE, 2008, pp. 9–16.

[16] J. Brønsted, K. M. Hansen, and M. Ingstrup, “Service composition issues
in pervasive computing,” IEEE Pervasive Computing, vol. 9, no. 1, pp.
62–70, Jan. 2010.

[17] K.-T. Tran, N. Agoulmine, and Y. Iraqi, “Cost-effective complex service
mapping in cloud infrastructures,” in Proceedings of the 13th Network
Operations and Management Symposium (NOMS 2012), 2012, pp. 1–8.

[18] M. Hajjat, X. Sun, Y.-w. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai,
and M. Tawarmalani, “Cloudward bound: Planning for beneficial migra-
tion of enterprise applications tothe cloud,” in Proceedings of the ACM
SIGCOMM 2010 conference, 2010, pp. 243–254.

[19] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” Combinatorica, vol. 4, no. 4, pp. 373–395, 1984.

[20] (2011) IBM ILOG CPLEX 12.3. [Online]. Available: http://www-01.
ibm.com/software/integration/optimization/cplex-optimizer

[21] (2011) CUSTOMSS: CUSTOMization of Software Services in the cloud.
[Online]. Available: http://www.ibbt.be/en/projects/overview-projects/p/
detail/customss

36 2012 8th International Conference on Network and Service Management (CNSM 2012)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

