
Dynamic Resource Allocation with
Management Objectives—

Implementation for an OpenStack Cloud

Fetahi Wuhib, Rolf Stadler and Hans Lindgren
ACCESS Linnaeus Center, KTH Royal Institute of Technology

{fetahi,stadler,hanlind}@kth.se

Abstract—We report on design, implementation and evaluation
of a resource management system that builds upon OpenStack,
an open-source cloud platform for private and public clouds. Our
implementation supports an Infrastructure-as-a-Service (IaaS)
cloud and currently provides allocation for computational re-
sources in support of both interactive and computationally
intensive applications. The design supports an extensible set of
management objectives between which the system can switch at
runtime. We demonstrate through examples how management
objectives related to load-balancing and energy efficiency can be
mapped onto the controllers of the resource allocation subsystem,
which attempts to achieve an activated management objective
at all times. The design is extensible in the sense that addi-
tional objectives can be introduced by providing instantiations
for generic functions in the controllers. Our implementation
monitors the fulfillment of the relevant management metrics in
real time. Testbed evaluation demonstrates the effectiveness of
our approach in a dynamic environment. It further illustrates
the trade-off between closely meeting a specific management
objective and the associated cost of VM live-migration.

Index Terms—Cloud management, performance management,
management objective, dynamic resource management, Open-
Stack

I. INTRODUCTION

The paper reports on design, implementation and evalua-
tion of a resource management system that builds upon the
OpenStack cloud platform. The focus is on managing an
Infrastructure-as-a-Service (IaaS) cloud, which makes ICT
(information communication technology) infrastructure avail-
able to customers in a virtualized way, including computation
in form of virtual machines (VMs), storage in form of vir-
tual disks, and networking in form of, for example, virtual
switches. Public IaaS cloud services are offered by an increas-
ing number of providers, whereby Amazon and RackSpace are
probably the most well-known. IaaS cloud environments have
proved suitable for running interactive applications, such as
websites and social networks, analytics frameworks such as
MapReduce and media streaming services, such as audio or
video on-demand services.

The IaaS service model has two principal stakeholders: the
IaaS provider who owns and operates the cloud infrastructure
and the customers who run their applications on the cloud.
(If an IaaS customer, runs a web site, for instance, it has its
own user base that consumes cloud resources through the site.)
Customers typically have service level agreements (SLAs)
with the provider, which specify how their applications are
executed and which cloud resources are available to them.

The term private cloud is used for a cloud where the provider
and its customers belong to the same organization; otherwise
the term public cloud is used.

The IaaS provider defines strategies according to which
resources for computation, storage and networking of the cloud
infrastructure are allocated to the customers’ applications.
Such strategies are expressed as management objectives, and
the goal of this paper is to devise capabilities that enforce
system-level management objectives on an IaaS cloud. There
exists a large variety of possible management objectives,
depending on the type of customers that are served, the kind of
applications that are run, the characteristics of the underlying
physical infrastructure, and the business strategy the provider
pursues. Our goal is to contribute towards a generic solution
to the cloud management problem. We believe that a cloud
management system must be flexible to support a wide range
of provider-defined objectives.

On a functional level, management objectives are achieved
through controlling the resource allocation process, which is
the task of performance management. As the external load
on a cloud changes over time, resource allocation must adapt
to continuously meet the activated management objective.
This means that the management system must continuously
monitor resource utilization and dynamically adjust resource
allocations.

In this paper, we present an architecture for IaaS perfor-
mance management and discuss an initial implementation,
which is built on OpenStack. The key building blocks are a
set of controllers that allocate resources to applications and
cooperate to achieve an activated management objective. The
controller designs contain generic components that must be
instantiated for a specific management objective. We evaluate
a prototype implementation regarding efficiency and cost for
two specific objectives. The work reported here focuses on
computational resources only, and the inclusion of storage and
networking resources is currently under investigation.

Compared to commercial cloud management software, our
implementation is flexible and open, as it is designed to
facilitate adding new management objectives. Our work is
complementary to many recent and current research activities
in cloud resource allocation, which center around formalizing
and solving a specific resource allocation problem and pro-
ducing a specific resource allocation solution for a specific
controller (like the VM placement controller). This paper, in
contrast, is system-oriented and focuses on how to design
and implement a system of collaborating controllers, in order978-3-901882-48-7 c© 2012 IFIP

309978-3-901882-48-7 c©2012 IFIP

to achieve system-level management objectives in a dynamic
environment.

The paper is organized as follows. Section II introduces
our architecture for performance management of an IaaS
cloud. Section III gives background information on OpenStack
and how it is used in our work. Section IV describes the
realization of our management architecture for an OpenStack
cloud, and we present its evaluation in Section V. Section VI
discusses related work, and Section VII concludes the paper
by summarizing our contributions and outlining future plans.

II. PERFORMANCE MANAGEMENT OF AN IAAS CLOUD

Performance management can be understood as the man-
agement of the resource allocation process [1]. The task
of performance management is to satisfy the customers by
conforming to SLAs and, at the same time, to satisfy the
provider by achieving management objectives when allocating
resources. Building a performance management capability
requires defining metrics that express to which extent specific
management objectives are achieved and instrumenting the
managed system such that SLA compliance and performance
metrics can be continuously monitored.

The managed system, i.e., the cloud environment (some-
times simply referred to as cloud), includes a potentially large
number of physical servers for computational tasks, com-
plemented with storage devices, and communication devices,
which enable communication within the cloud as well as with
the outside world.

Management objectives define the strategies according to
which resources are allocated to applications. Many cloud
management implementations support some form of balanced
load objective, whereby the computational resources of the
cloud are allocated in such a way that CPU and, sometimes,
memory utilization is balanced across servers. Operating the
cloud under such an objective often increases the chance to
cope with unforeseen spikes in application demand. Another
objective relates to minimizing power consumption of the cloud
while still conforming to the customer’ SLAs. This is typically
achieved through server consolidation, whereby a minimal
number of servers handles the load, while the remaining
servers are put on standby (consuming little or no power).
A well-studied class of management objectives relates to fair
resource allocation, an example of which is allocating re-
sources to applications proportional to an application’s demand
(e.g., [2]). A further, important class of management objectives
involves support for differentiation among different classes of
cloud service. In [3], we discuss a specific example of service
differentiation, whereby a guaranteed service class and a best-
effort class are supported on the same cloud infrastructure.
Clearly, a provider may want to satisfy several management
objectives at the same time, or switch between objectives
depending on the load pattern. For example, a provider may
operate the cloud infrastructure under the combined objective
of enabling service differentiation and minimal energy con-
sumption, or a provider may switch from balanced load to
minimizing power consumption after office-hours.

Formalizing the problem of performance management for
an IaaS cloud and finding a resource allocation that meets
one or more management objectives is an active and im-
portant research topic, but goes beyond the scope of this

Fig. 1. IaaS Performance Management: Components and Information Flow.
(Light colored- monitoring, dark, control)

paper. Generally, finding an allocation that meets a specific
management objective can be formulated as an optimization
problem. Some management objectives can appear as objective
functions in an optimization problem, while others can appear
as constraints. Examples of constraints include the condition
that communicating VMs must run on the same physical server
(colocation constraint)—with the goal to increase application
performance—or the condition that specific VMs must run on
different physical servers (anti-colocation constraint)—-with
the goal to increase the robustness of the application, for
instance.

Fig. 1 shows our architecture for performance management
of an IaaS cloud environment. The lower part of the figure con-
tains the components of the resource allocation system which
is part of the IaaS cloud infrastructure. The upper part shows
a management station which sets the management objectives
controlling the resource allocation process and monitors the
performance metrics. The light-colored components in Fig. 1
contain functions related to state estimation and prediction,
while the dark-colored components contain controllers. The
light-colored components produce state estimations and de-
mand predictions, which are consumed by the controllers.

When a customer submits a request to a provider for running
an application in one or several VMs, the request is received
by the Admission Controller, which either accepts or rejects
it. In case the request is accepted, the Placement Scheduler
selects, for each involved VM, the server that executes it.
The Local Scheduler on that particular server then schedules
the VM for execution. During operation of the cloud, the
demand for a specific application may vary or the resource
capacity of the entire cloud may change due to failures or
maintenance procedures. For this reason, resource allocation
must be adaptive, which implies that the Placement Scheduler
and the Local Scheduler dynamically reallocate resources
to the VMs, in order to continue following a management
objective. (Reallocation may include moving VMs between
servers.) The three controllers make their decisions based on
the currently active management objective and state of the
system (see Section).

In addition to the controllers, three components monitor
and predict the system state. The Request Flow Profiler
characterizes VM request statistics. The PM/VM Utilization
Estimator monitors the resource utilization of physical as well
as virtual machines. The Demand Profiler characterizes the
VM resource demand, allowing to forecast the demand at
different time-scales.

III. OPENSTACK—AN OPEN-SOURCE CLOUD PLATFORM

OpenStack [4] is an open-source cloud computing platform
for both private and public clouds. The OpenStack project was

310 2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference

announced in July of 2010 by Rackspace and NASA, who
made the initial code contributions. Since then, more than 150
companies have announced their support for the project, and
an active developer community is making OpenStack a de-
facto standard in cloud computing.

The OpenStack software consists of several independently-
developed components with well-defined APIs. The core com-
ponent that provides IaaS functionality (similar to Amazon
EC2) is OpenStack Compute (also called Nova). It handles
provisioning and life-cycle management of VMs and supports
most available hypervisors. Further components are Object
Storage, a scalable storage service similar to Amazon S3, Im-
age Service for image management, Identity for authentication,
Dashboard, a web-based GUI, primarily for starting/stopping
VMs and managing user/group configurations, and Network
for building virtual network topologies that live on top of
hardware from different vendors.

The implementation described in this paper is based on the
Diablo release of the OpenStack distribution. Our implemen-
tation currently uses the components Compute, which we have
extended for our purposes, and Image Service for managing
VM images.

IV. DESIGN AND IMPLEMENTATION OF THE

PERFORMANCE MANAGEMENT ARCHITECTURE IN

OPENSTACK

Fig. 2 shows the realization of our performance management
architecture (Fig. 1) in an OpenStack cloud. The dark-colored
boxes are OpenStack components, light-colored boxes include
controller components that we implemented and white boxes
show monitoring/profiling components. The figure includes
an OpenStack cloud controller, which is a physical server
that runs the OpenStack Scheduler and API components, and
a potentially large number of OpenStack compute servers,
each of which runs an OpenStack Compute component. The
components in Fig. 1 are realized as follows. The functionality
of the Admission Controller is realized in the OpenStack
API and the OpenStack Scheduler components (Fig. 2). The
Placement Scheduler is split into two controllers: the Initial
Placement Controller running in the OpenStack scheduler,
which performs the initial placement of a VM, and the
Dynamic Placement Controller in the compute servers, which
adapts the placement over time through live-migration of
VMs. The functionality of the Local Scheduler is performed
by the OpenStack Compute component in each compute
server. Regarding the components that perform estimation
and prediction, the Request Flow Profiler is placed in the
cloud controller while the Demand Profiler and the PM/VM
Utilization Estimator run on each compute server.

We now provide some details about specific components in
our implementation. The Request Flow Profiler is currently
not implemented.

The PM/VM Utilization Estimator monitors the utilization
of computational resources of the server and each VM. The
server utilization is obtained through an operating system in-
terface (/proc) and the VM utilization through the libvirt
library. The output of this component is consumed by Demand
Profiler as well as the Initial and Dynamic Placement Con-
trollers. The Demand Profiler component predicts the resource
utilization of the VMs. The current implementation uses a

Fig. 2. Realization of the performance management architecture in Open-
Stack. Names in italic refer to OpenStack terms while gray enclosures
represent servers.

(a) Initial Placement Controller (b) Dynamic Placement Controller

Fig. 3. Design of the two controllers that implement the Placement Scheduler.

moving-average forecaster that returns the utilization of the
VM over the last two minutes.

When a VM is launched on a compute server, as directed
by a placement controller, the Local Scheduler creates a disk
image for the VM and calls the hypervisor to boot the VM.
Parameters to this call (which are determined by the placement
controller) may include the type of the (virtual) CPU, the
number of cores, the amount of memory, the hard disk image
to boot from, and the local CPU allocation policy. The degree
of control of allocating computational resources to specific
VMs depends on the hypervisor an implementation uses. In
the case of Xen and VMware ESX Server, for example,
a guaranteed resource level, together with a priority level
for shared resources, can be specified for each VM. In the
case of KVM, which our implementation currently uses, CPU
resources are multiplexed, and differentiation among VMs can
be achieved through setting different priorities to processes
that run VMs.

The Initial Placement Controller selects the compute server
on which a VM is to be launched. In our implementation, we
are using the OpenStack least-cost scheduler for this purpose.
This scheduler contains two generic functions (Fig. 3a), a filter
function that selects the set of compute servers capable of
running a given VM and a cost function that ranks the filtered
set of servers according to their suitability. These functions
need to be instantiated to support a specific management
objective.

The Dynamic Placement Controller (Fig. 3b) continuously
adapts the placement of VMs through live-migration. Such a
function is needed in a dynamic cloud environment, where the
load on a server can significantly change over time (e.g., due

2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference 311

to changes in demand of individual VMs, VMs starting and
terminating, etc.), and the system thus becomes less effective
in achieving the management objective. An adapted placement
then results in the system state moving back to a desired
region. The controller is realized in a distributed way using a
gossip protocol called GRMP, which we developed in earlier
work [5]. GRMP implements a generic scheme for resource
allocation which can be instantiated for various management
objectives. The protocol runs on each compute server. During
its execution, a server asynchronously and periodically initiates
an interaction with a peer server chosen (at random) through
the peer sampling service. During such an interaction, the
servers exchange their states (including the list of running
VMs and their predicted demands) and select the VMs to
be migrated from one server to the other. The peer sampling
service is realized using a gossip protocol called CYCLON
[6].

We use the Zabbix monitoring software [7] with custom
scripts to collect performance metrics from the compute
servers. The metrics are then displayed via a web browser on
the management station. Management objectives are specified
through a command line interface.

The generic Dynamic Placement Controller, the Demand
Profiler and the Utilization Estimator are implemented in a
multi-threaded python application of about 1000 lines of code.
Instantiation for specific management objectives are imple-
mented in about 50 lines of code. The Dynamic Placement
Controller uses KVM block migration to move VMs between
servers. (Block migration is a form of live-migration where the
disk image of the VM is migrated along with its operational
state. It does not require shared storage.)

We now give two specific examples of global manage-
ment objectives and how they can be mapped to the four
controllers of the management system. Note that there exist
many variations of these management objectives which will
require slightly different mappings. A further example for the
objective of service differentiation is given in [3].

Balanced load: The objective is to allocate the compu-
tational resources of the cloud to VMs in such a way that
the CPU utilization is balanced across all servers. In case of
overload, i.e., when the total CPU demand exceeds the cloud
capacity, CPU resources are allocated to VMs proportional to
their predicted demand (as provided by the Demand Profiler).
The controllers of the management system implement this
objective as follows. The Admission Controller accepts a
VM request, as long as the current CPU demand does not
exceed the cloud capacity (alternatively, as long as the current
utilization is below a given threshold). Otherwise, the request
is rejected. The Initial Placement Controller places a VM
on the server that minimizes the maximum utilization of all
cloud servers. The Dynamic Placement Controller has the
same placement objective, but realizes it through the gossip
protocol. During a gossip interaction between two servers, a
VM with low memory demand whose migration reduces the
maximum utilization of the two servers is migrated (we show
in [2] that this indeed results in a balanced load across the
servers). A VM with low memory demand is preferred for
migration, since it can be migrated faster. In case of underload,
the Local Scheduler allocates resources to VMs according to
their predicted demand. In overload, the resources of a server

Image Type VM Configuration

Joomla
(Interactive web app)

1 core, 1GB RAM
2 cores, 2GB RAM
4 cores, 4GB RAM
8 cores, 8GB RAM

Pi
(CPU-intensive app)

1 core, 256MB RAM
2 cores, 256MB RAM
4 cores, 256MB RAM
8 cores, 512MB RAM

Fig. 4. VM images and VM configurations used in the evaluation.

are allocated to VMs proportional to their predicted demand.
(In our implementation, this policy is approximated by the
default scheduler of the Linux kernel.)

Energy efficiency: The objective is to minimize the power
consumption of the cloud, while satisfying the demand of all
VMs, which is achieved through server consolidation, whereby
servers that do not run VMs are put on standby. In case of
overload, resources are allocated to VMs proportional to their
respective demand. The controllers of the management system
implement this objective as follows. The Admission Controller
accepts a VM request only if the aggregated CPU demand
does not exceed the cloud capacity. The Initial Placement
Controller places a VM on a server with the smallest available,
but sufficient capacity. The gossip protocol that implements the
Dynamic Placement Controller performs server interactions as
follows (cf. [5]): (a) if both servers are in underload, a VM
with low memory demand that will not overload the higher
loaded server is migrated to the higher-loaded server; (b) if
one server is in overload and one in underload, a VM with low
memory demand that will not overload the lower loaded server
is migrated to the lower-loaded server; (c) if both servers are
in overload, they interact in the same way as for the balanced-
load objective. The Local Scheduler allocates resources to each
VM according to predicted demand in case of underload, and
proportional to predicted demand in case of overload.

V. EVALUATION OF THE EFFECTIVENESS AND EFFICIENCY

OF THE IMPLEMENTATION

The cloud platform in our laboratory that we use for the
evaluation comprises nine high-performance Dell PowerEdge
servers, interconnected by a Gigabit Ethernet switch. Each
server has two 12-core AMD Opteron processors and 64GB
RAM, which creates a system with 216 cores. All servers
run Ubuntu 10.04 with Linux kernel 3.0 and KVM hypervisor
kvm-kmod-3.2. We use the Diablo version of OpenStack,
whereby eight servers are configured as OpenStack compute
servers and one as an OpenStack cloud controller (Fig. 2).

For the evaluation, we run two types of applications on
the cloud platform: (1) an interactive web application called
Joomla, which is configured using an Apache web-server, a
MySQL database and the Joomla content management system
[8], and (2) a CPU-intensive application called Pi, which
runs on Debian Linux that executes a multi-process python
application. The application computes the sequence of digits
of π. We run Joomla and Pi on VMs whose configurations are
given in Fig. 4.

We present the evaluation results for the objectives of
balanced-load and energy efficiency. The performance of the
system under a service-differentiation objective is presented in
[3].

312 2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference

Load generation: Due to the lack of suitable traces that
are publicly available, we use a synthetic model for generating
load. The model generates VM request arrivals at a specific
rate using a Poisson process, and the lifetime of a VM on the
platform is drawn from a truncated exponential distribution.
For each request, the type of application (Joomla or Pi)
is chosen with equal probability. The VM configuration is
selected with a probability that is inversely proportional to
the number of cores (see Fig. 4). The load generated by the
customers of a web application is changing over time and
consumes, on average, some 70% of the (virtual) CPU capacity
of the VM it runs on. The CPU load generated by Pi does not
exceed 70% of the (virtual) CPU capacity of the VM it runs
on. We evaluate the system under three load patterns: (1) low
(VM) churn, whereby the VM arrival rate is 6 per hour with
an average VM lifetime of 13.3 hours, (2) high (VM) churn,
whereby the rate is 2 per minute with an average VM lifetime
of 40 minutes and (3) no (VM) churn whereby the rate is 0
and the average lifetime is infinite. We set up the experiments
in such a way that, at any time, an average of some 80 VMs
are executing on the platform.

Evaluation metrics: In each evaluation scenario, we
measure the effectiveness of the resource allocation system in
achieving the management objectives. Second, we measure the
cost of the resource allocation system as the average number of
VM migrations in progress at any given time. Live-migration
of VMs requires significant resources in terms of memory,
CPU and storage. (Note that live-migration results in only
a brief interruption in the execution of an application, and
that the process of migrating a VM takes on our platform
between half a minute and 8 minutes, depending on the VM
configuration.)

A. Balanced-load Scenario

We conduct four experiments in order to evaluate the per-
formance of the management system under the balanced load
objective. During the first three experiments, we expose the
system to the three load patterns described above. The fourth
experiment is conducted with the high churn load pattern, and
the Dynamic Placement Controller is disabled. While the goal
of the first three experiments is to study the system under
different load, the objective of the fourth is to understand the
costs and benefits of dynamic adaptation. The controllers of
the resource management system are instantiated according
to the balanced load objective. We quantify the effectiveness
of the system by measuring the maximum utilization of all
servers and comparing that value to the average utilization.
For each measurement run, we wait until the system is in
steady state and then measure the relevant metrics every 30
seconds for a duration of three hours.

The measurement results are presented in Fig. 5. All values
are averaged over a run. Each of the four experiments produces
two bars on the left, showing the average and the maximum
server utilization, and one bar on the right, showing the cost
of adaptation. A measure of effectiveness is the difference
between the two bars in the graph on left. The values on the left
graph are normalized with respect to the average utilization.

We draw three conclusions from the experiments. First,
the system effectively balances the load under low or no
churn, with the difference between the maximum and average

Fig. 5. Measurements for the balanced load objective: efficiency metric (left)
and cost metric (right).

utilization below some 5%. The effectiveness of the system is
reduced under high churn (the difference grows to 13%). We
expect this behavior, since the Dynamic Placement Controller
runs at a specific rate, which is limited by the fact that live-
migration is a resource-intensive task. Second, the migration
costs are low (i.e., less than 0.3) under low churn and high
(about 1.8) under high churn. This is also expected, since,
after each new placement or termination of a VM, there may
be a need to adapt the placement. Third, under low churn,
an increase in effectiveness through dynamic adaptation can
be achieved at a low cost. However, under high churn, the
cost for achieving effectiveness can become very high. This
suggests that there is a churn-rate limit above which dynamic
adaptation becomes too expensive. This issue warrants further
investigation.

B. Energy-efficiency Scenario

We conduct four experiments in the same way as in the
balanced-load scenario–three scenarios with different load
patterns and one with high churn and having the Dynamic
Placement Controller disabled. The controllers of the resource
management system are instantiated according to the energy
efficiency objective. During the experiments, we measure the
effectiveness of the system by counting the number of servers
that run VMs and comparing that number to a (theoretical)
minimum computed as the ceiling of the aggregate of CPU
demand divided by the capacity of a single server. For each
measurement run, we wait until the system reaches steady state
and then measure the relevant metrics every 30 seconds for a
duration of three hours.

The measurement results are presented in Fig. 6. All values
are averaged over a run. Each of the four experiments produces
two bars on the left, showing the minimum needed and the
actual number of servers running VMs, and one bar on the
right, showing the cost of adaptation. The effectiveness metric
is the difference between the bars in the graph on left.

The conclusions drawn from this experiment are similar
to those obtained from the balanced-load scenario, as the
measurement graphs display qualitatively similar properties.
First, the system is effective under low churn, using less
than 5% more servers than optimal, and the effectiveness
decreases under high churn, consuming about 15% more
than optimal. Second, for increased churn rate, the cost of
achieving consolidation increases, while the effectiveness of
the system in achieving the objective decreases. Also here,
the measurements suggest that dynamic adaptation seems cost
effective only up to a certain churn rate.

2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference 313

Fig. 6. Measurements for the objective of energy efficiency through server
consolidation: efficiency metric (left) cost metric (right).

VI. RELATED WORK

There is little information available about the management
systems of major public clouds such as those underlying Ama-
zon EC2 or Microsoft Azure. However, there exist commercial
cloud management systems, for which technical descriptions
are available. The most advanced is probably VMWare’s
VSphere [9], which is used by many IaaS providers, includ-
ing CSC, Savvis, Bluelock and hosting.com [10]. The core
component of VSphere’s resource management system is the
Distributed Resource Scheduler (DRS) [11], which is actually
centralized despite its name. DRS supports initial and dynamic
placement of VMs to achieve management objectives related to
load balancing and energy efficiency. Compared to our work,
DRS does not support user-defined management objectives.
Furthermore, it is limited to a cluster of 32 servers due to its
centralized design.

Similar in functionality to VSphere is Microsoft Sys-
tems Center (MSC) [12]. The core functionality of its re-
source allocation system is implemented by two components:
an‘intelligent placement’ component (equivalent to the Initial
Placement Controller in our work) and a ‘dynamic optimiza-
tion’ component (equivalent to the Dynamic Placement Con-
troller). MSC supports load balancing and energy efficiency
objectives. Similar to DRS, MSC does not allow users to define
management objectives. Furthermore, an installation supports
a cluster of up to 16 servers.

Like OpenStack, other open-source cloud management sys-
tems, such as OpenNebula [13] and Nimbus [14], support
user-defined policies for the initial placement of VMs. For
instance, the OpenNebula Match-making Scheduler allows
defining requirements and rank expressions that have a similar
purpose as the cost and filter functions in OpenStack (Fig. 3a).
However, all open-source cloud management systems we have
studied do not have dynamic VM placement function.

An independent work by Feller et al. presents Snooze[15],
a distributed framework for VM management in private
clouds. Snooze introduces a two-layered hierarchy of man-
agers whereby group-managers manage a disjoint subset of the
servers and report to a dynamically elected group leader. Re-
quest for VMs is received by the group leader and forwarded
to a selected group manager. Group managers do initial and
dynamic placement of VMs on the local subset of servers.
The management framework is generic in the sense that it
allows specifying policies that control the placement process.
This work focuses on the scalability and robustness of the
framework while our work focuses on achieving operator-

defined management objectives.

Many recent works on resource allocation in clouds focus
on computing allocations for specific management objectives,
such as balanced-load (e.g., [16]), energy efficiency (e.g.,
[17], [18], [19], [20], [21], [22], [23], [24]), fairness (e.g.,
[25], [2]), maximized resource utilization (e.g., [26]), service
differentiation (e.g., [27], [28]) and others (e.g., [29], [30]).
Generic resource allocation approaches that can instantiated
for specific management objectives have also been proposed in
the literature ([5], [31], [32]). These works are complementary
to ours since their concepts and algorithms can be used to in-
stantiate a subset of the controllers and monitoring components
in our design. In contrast, our work identifies that achieving
management objectives generally requires the cooperation of
several controllers of different type with coordinated policies.

VII. DISCUSSION

With this paper we make the following contributions. First,
we present a management architecture for an IaaS cloud,
which supports dynamic resource allocation with management
objectives. Three critical components of this architecture are
the VM Admission Controller, the VM Placement Scheduler
(implemented as two separate controllers) and the VM Lo-
cal Scheduler. Second, the implementation design includes
modular and extensible components that can be refined to
realize specific management objectives, which we illustrate
with two examples. Third, the implementation is realized as
an extension of the OpenStack cloud platform, so that all
OpenStack installations can take advantage of the management
capabilities our implementation provides. Finally, a prototype
evaluation shows the effectiveness of our implementation in
achieving objectives related to load balancing and energy
efficiency. Dynamic placement of VMs can significantly in-
crease the effectiveness of achieving a management objective.
However, the cost of effectiveness increases with the level of
VM churn and may become prohibitive in a highly dynamic
system.

While our current implementation only covers computa-
tional resources, there is a clear need to extend the work
towards including storage and networking resources, which we
plan to address in future work. While the currently available
commercial implementations are limited to a small number of
servers (32 in the case of VSphere), and available designs of
centralized controllers scale up to 103–104 servers, we believe
that future cloud management implementations should support
much larger configurations, perhaps in the order of 105–106

servers. In fact, the Dynamic Placement Controller in our
implementation scales to such a size due to its distributed
design [2]. We plan to decentralize other components of our
architecture in a similar way. For an OpenStack implementa-
tion to scale, however, several issues inherent to OpenStack
must be addressed, for instance, the bottlenecks introduced by
a centralized database (shared among all OpenStack compo-
nents) and a centralized messaging queue.

Acknowledgments: This work has been supported in part by
the EC 7th Framework SAIL project, the EIT RMAC project
and Ericsson Research.

314 2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference

REFERENCES

[1] H.-G. Hegering, S. Abeck, and B. Neumair, Integrated management
of networked systems: concepts, architectures, and their operational
application. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1998.

[2] F. Wuhib, R. Stadler, and M. Spreitzer, “A gossip protocol for dynamic
resource management in large cloud environments,” Network and Service
Management, IEEE Transactions on, 2012.

[3] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic resource alloca-
tion with management objectives : Implementation for an openstack
cloud,” KTH, Communication Networks, Tech. Rep. 2012:021, 2012,
qC 20120528.

[4] OpenStack, “http://www.openstack.org,” April 2012.
[5] R. Yanggratoke, F. Wuhib, and R. Stadler, “Gossip-based resource allo-

cation for green computing in large clouds,” in International Conference
on Network and Service Management, October 2011.

[6] S. Voulgaris, D. Gavidia, and M. van Steen, “CYCLON: Inexpensive
membership management for unstructured p2p overlays,” Journal of
Network and Systems Management, vol. 13, no. 2, pp. 197–217, 2005.

[7] Zabbix Monitoring Solution, “http://www.zabbix.com/,” April 2012.
[8] Joomla! Content Management System, “http://www.joomla.org/,” April

2012.
[9] VMware VSphere, “http://www.vmware.com/products/vsphere/

overview.html,” April 2012.
[10] L. Leong and T. Chamberlin, “Magic quadrant for public cloud in-

frastructure as a service,” December 2011, http://www.gartner.com/
technology/reprints.do?id=1-18BON1E&ct=111214.

[11] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, and
X. Zhu, “Vmware distributed resource management: Design, implemen-
tation, and lessons learned,” VMWare Publication, April 2012.

[12] Microsoft Systems Center, “http://www.microsoft.com/systemcenter/,”
April 2012.

[13] OpenNebula, “http://www.opennebula.org/,” April 2012.
[14] Nimbus, “http://www.nimbusproject.org/,” April 2012.
[15] E. Feller, L. Rilling, and C. Morin, “Snooze: A scalable and auto-

nomic virtual machine management framework for private clouds,” in
Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012), ser. CCGRID ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 482–489.

[16] X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom, “Virtual machine
migration in an over-committed cloud,” in Network Operations and
Management Symposium (NOMS), 2012 IEEE, april 2012, pp. 196 –
203.

[17] A. J. Younge, G. von Laszewski, L. Wang, S. Lopez-Alarcon, and
W. Carithers, “Efficient resource management for cloud computing
environments,” in Proceedings of the International Conference on Green
Computing. Chicago, IL: IEEE, Aug 2010.

[18] C.-T. Yang, K.-C. Wang, H.-Y. Cheng, C.-T. Kuo, and W. Chu, “Green
power management with dynamic resource allocation for cloud vir-
tual machines,” in High Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference on, sept. 2011, pp.
726 –733.

[19] A. Beloglazov and R. Buyya, “Energy efficient resource management in
virtualized cloud data centers,” in Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference on, may
2010, pp. 826 –831.

[20] Z. Gong and X. Gu, “PAC: Pattern-driven Application Consolidation
for efficient cloud computing,” in Modeling, Analysis Simulation of
Computer and Telecommunication Systems (MASCOTS), 2010 IEEE
International Symposium on, aug. 2010, pp. 24 –33.

[21] R. Urgaonkar, U. Kozat, K. Igarashi, and M. Neely, “Dynamic resource
allocation and power management in virtualized data centers,” in Net-
work Operations and Management Symposium (NOMS), 2010 IEEE,
april 2010, pp. 479 –486.

[22] V. Raj and R. Shriram, “Power aware provisioning in cloud computing
environment,” in Computer, Communication and Electrical Technology
(ICCCET), 2011 International Conference on, march 2011, pp. 6 –11.

[23] S. Dutta and A. Verma, “Service deactivation aware placement and
defragmentation in enterprise clouds,” in Network and Service Man-
agement (CNSM), 2011 7th International Conference on, oct. 2011, pp.
1 –9.

[24] D. Borgetto, M. Maurer, G. Da-Costa, J.-M. Pierson, and I. Brandic,
“Energy-efficient and sla-aware management of iaas clouds,” in Pro-
ceedings of the 3rd International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet, ser. e-Energy ’12.
New York, NY, USA: ACM, 2012, pp. 25:1–25:10.

[25] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,” J.
Supercomput., vol. 54, no. 2, pp. 252–269, Nov. 2010.

[26] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
“Efficient resource provisioning in compute clouds via vm multiplex-
ing,” in Proceedings of the 7th international conference on Autonomic
computing, ser. ICAC ’10. New York, NY, USA: ACM, 2010, pp.
11–20.

[27] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “Dynaqos: model-free self-
tuning fuzzy control of virtualized resources for qos provisioning,” in
Proceedings of the Nineteenth International Workshop on Quality of
Service, ser. IWQoS ’11. Piscataway, NJ, USA: IEEE Press, 2011, pp.
31:1–31:9.

[28] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: elastic resource
scaling for multi-tenant cloud systems,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing, ser. SOCC ’11, New York, NY, USA,
2011, pp. 5:1–5:14.

[29] J. Xu and J. Fortes, “A multi-objective approach to virtual machine man-
agement in datacenters,” in Proceedings of the 8th ACM international
conference on Autonomic computing, ser. ICAC ’11. New York, NY,
USA: ACM, 2011, pp. 225–234.

[30] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
gray-box strategies for virtual machine migration,” in Proceedings of
the 4th USENIX conference on Networked systems design & imple-
mentation, ser. NSDI’07. Berkeley, CA, USA: USENIX Association,
2007, pp. 17–17.

[31] J. Z. Li, M. Woodside, J. Chinneck, and M. Litoiu, “Cloudopt: multi-
goal optimization of application deployments across a cloud,” in Pro-
ceedings of the 7th International Conference on Network and Services
Management, ser. CNSM ’11, 2011, pp. 162–170.

[32] Y. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti,
and Y. Coady, “Dynamic resource allocation in computing clouds using
distributed multiple criteria decision analysis,” in IEEE International
Conference on Cloud Computing, July 2010, pp. 91 –98.

2012 8th International Conference on Network and Service Management (CNSM 2012): Mini-Conference 315

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

