Integrating an Online Configuration Checker with

Existing Management Systems: Application to
CIM/WBEM Environments

Ludi Akue, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla
IRIT, Université de Toulouse
118 route de Narbonne
31062 Toulouse, France
Email: {akue, lavinal, desprats, sibilla}@irit.fr

Abstract—Runtime configuration validation is a critical re-
quirement if we are to build reliable self-adaptive manage-
ment systems. This paper presents a generic framework that
includes a runtime configuration checker built upon a high-
level language dedicated to the specification of configurations
and validity constraints. In addition, we describe a methodology
for using this framework and integrating the configuration
checker with existing management systems. In particular, we
show how we use the framework to enrich a CIM/WBEM
management environment with automatic runtime configuration
validation against a defined set of constraints guarding structural
correctness and service behavior conformance. QOur experiments
with management models conforming to the CIM Virtual System
profile show viable results demonstrating the feasibility of our
approach.

Keywords—Self-management, configuration validation, online
configuration validation, CIM/WBEM environments.

I. INTRODUCTION

The self-management vision — in which systems are able
to self-adjust in response to their environment — has gained a
lot of momentum in networked systems management where
it is viewed as a promising solution for the management
of today’s large scale and complex systems. Therefore, it
becomes fundamental to have automatic online verification and
validation techniques to provide grounds for confidence that
the autonomous systems are operating correctly. This issue
is particularly significant as today’s systems are increasingly
supporting critical missions (health care, avionics, clouds)
where service failures can be extremely expensive and affect
people’s lives.

Notably, runtime configuration changes being one of the
principal means to achieve self-management, we believe that
enhancing existing management systems with runtime va-
lidation capabilities is a major step towards ensuring the
correctness and safety of reconfiguration activities. Further-
more it would ease the adoption of ongoing self-management
solutions. We are therefore working on a generic framework
to enrich management systems — especially those that have
not built-in validation capabilities — with online configuration
checking.

In this paper, we present a validation framework that
includes an online configuration checker for enabling runtime
configuration validation within existing management systems,

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013

339

along with its usage methodology. The framework proposes an
integrated approach based on MeCSV, a high-level language
that allows operators to specify at design time, a platform-
neutral configuration schema of their managed system with the
constraints guarding desired service architecture and behavior.
At runtime, an online configuration checker relying on this
specification, can verify dynamically candidate configuration
instances.

In addition, we describe how we use the framework to
enrich a CIM/WBEM management environment with online
configuration checking capabilities. Following the same pro-
cess, the validation framework could be integrated with other
existing management systems.

The rest of the paper is organized as follows: Section II
presents related work and Section III describes the framework
and its usage methodology. We describe the integration of the
framework with the CIM/WBEM standards in Section IV. A
prototype experiment, Section V, of this integration on CIM
Virtual System Profile models shows viable results proving the
feasibility of the approach. Finally, Section VI concludes the
paper and identifies future work.

II. RELATED WORK

The need for configuration representation standards and
configuration automation are growing concerns regarding the
complexity of the configuration management of today’s large-
scale and heterogeneous systems [1], [2], [3], [4]. Our work
is at the junction of these topics as the validation system we
provide enables a platform-independent runtime configuration
validation which is a prerequisite for configuration automation
and self-configuration.

In the context of self-adaptation, configurations are highly
dependent on the operational conditions where ongoing opera-
tional states may invalidate their suitability. For example, when
a reconfiguration operation erroneously sets the maximum
number of requests parameter smaller than the current number
of requests sent to a server process, it can introduce some
inconsistencies thus can compromise the system’s operation.
Yet, most current works [5], [6] still provide structural checks
that rely purely on configuration parameters, typically checking
syntactical and type correctness, checking that configuration
values remain within authorized bounds and respect some
cross-elements dependencies.

Standards like the DMTF Common Information Model
(CIM) [7] and the YANG data modeling language [4] include
constraints constructs for configuration validation, neverthe-
less, their enforcement is left to implementors and solutions
developers. Moreover, YANG’s constraints concern configura-
tion data only and do not admit a checking against current
runtime states.

Regarding the verification approaches related to
CIM/WBEM environments, our framework is very close
to the work on CIM Apache Verifier [8] and SANChk [9].
They both stress the critical requirements of the verification
of system’s configurations with the use of formal constraint-
checking techniques.

The approaches in [10], [11] also use CIM as a base
information model for correct configuration synthesis at design
time. In our case we do not directly rely on CIM for our
validation framework, we use it as a case study to provide an
integrated online checking solution for every WBEM manage-
ment system.

The common limitations of these works consist of provid-
ing structural checks that rely purely on configuration para-
meters or confining configuration validation to design time.
Our work targets online configuration checking and addresses
particularly the issue of the influence of ongoing execution
conditions on the validity of configuration instances. This
is useful for complementing existing configuration validation
approaches.

III. VALIDATION FRAMEWORK

This section presents the framework we propose along with
a usage methodology.

A. Vision and Design Principles

The validation framework aims to offer an online confi-
guration checking service that can be used by management
systems without changing existing tools. It specifically targets
current autonomous and self-management approaches. The
principal characteristics of these autonomous approaches that
we address, are the runtime management of the systems’
dynamics and the rapidly changing service and architecture
requirements. The framework supports these new requirements
through three main design principles:

e Enabling an operational validation of configurations that
takes into account their dependency on running exe-
cution states. Indeed, in the context of self-adaptation,
configurations are highly dependent on the operational
conditions, and ongoing operational states can invalidate
the suitability of a candidate configuration.

e Allowing modification of validity properties at runtime:
management systems are likely to have their requirements
evolve at runtime, and these evolutions are to be translated
at runtime into the creation or modification of properties
on configurations.

e Supporting existing management systems in order to
enhance their reliability with a validation functionality.
This can notably be achieved by integrating existing
management standards such as CIM.

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013

340

Runtime

/7 Validation
1
:
/
—
Knowledge
Base

Analyze

Managed Resources

Fig. 1. The Vision of Online Configuration Checking

Fig. 1 illustrates our vision of online configuration check-
ing. A runtime validation framework with platform-neutral
interfaces, interacts with a management system (represented
through the common management control MAPE loop)
through the Plan block (1), center of runtime configuration
decisions, while relying on the Monitor block (2) for the
retrieval of the required ongoing execution states, and thus
processes an online validation of configurations (3).

B. Overview of the Framework’s Salient Features

The framework provides an integrated approach relying
on a high-level specification language MeCSV that includes
an online configuration checker. At design time, a human
operator can use the MeCSV metamodel to formally specify
a reference model, that is, a configuration schema of a given
application domain with the desired architecture and service
behavior constraints (Fig. 2 (a)). The reference model will be
used at runtime for the evaluation of proposed configuration
instances (“Ref. Model” on Fig. 2 (b)).

MeCSV Metamodel
(Eclipse Plugin)

D

E

S L

1 Offline model edition

G

N Reference Model

T =] 8 =N

1 Config classes State classes Constraint; (defines)
M (Ecore) (Ecore) (ocL) < '
E

Human
Operator

(a) Specification Process

0
4= Adapter

e
Ref. Model
(Ecore, OCL)

Online

zcwm

system

o

T : MeCSV Validation System OHp L:::Zr
M 4%
E -ﬂ
. .
Managed resourcs
(b) Enforcement Process
Fig. 2. Framework’s Approach and Runtime Architecture

1) MeCSV Language: MeCSV is a high-level language
dedicated to a formal representation of configuration infor-
mation for runtime validation. It supports platform-neutral
configuration specification including innovative features that
enable validation against the runtime execution conditions.

a) Configuration Description: MeCSV includes the
conventional constructs for configuration description such as
configuration parameter (name and type) grouped
into configuration classes, their composition and cross-
references.

b) Operational Data Representation: Essential for the
validation of the runtime suitability of configuration instances,
MeCSV offers the constructs of managed element and
state parameter for the representation of the monitoring
view of a managed element. This allows connection to an
existing monitoring framework.

c) Dedicated Constraint Model: MeCSV enables cons-
traint definition over configuration data through two types
of constraints, offline constraint, equivalent of usual
structural rules and online constraint for the ex-
pression of operational validity rules whose evaluation de-
pends on the availability of current runtime data (state
parameters).

Constraints in MeCSV feature additional attributes for
flexibility and lifecycle management, such as ‘“constraint
level” that allows modulation of their strictness and priority
(e.g.; warning, error), in the case of soft constraints for
example, and “active” that permits to activate or deactivate
constraints depending on usage scenarios (e.g.; critical,
non-critical).

We do not detail the MeCSV metamodel as well as
instance examples in this paper. An extensive description of the
language can be found in [12]. MeCSV is currently available
as a UML profile and Ecore model [13]. Each has been tested
with two popular modelers Eclipse MDT and TopCased
but, any UML or Ecore modelers can be potentially used.

2) Target Domain Reference Model: The central objective

of MeCSV is to allow the definition of a Reference Model
that every possible configuration of the target system should
conform to (Fig. 2(a)). The reference model can be viewed as
a desired high-level system’s architecture and service behavior
in terms of configuration structure and constraints that should
be respected.
The reference model is organized in a structural part made
of configuration and state information that can be represented
as UML or Ecore classes, and an assertion part containing
offline and online constraints expressed in OCL [14], a formal
specification language extension to UML. Operators or vendors
can thus use the MeCSV metamodel at design time to define
the reference model of a given managed application domain
(e.g.; an application server, a messaging middleware or storage
area networks) according to their management requirements.

This reference model is to be defined only once, however it
can be modified at any time during the management system’s
life cycle to cope with the evolution of management and system
requirements (cf. <i> on Fig. 2(b)). Once defined, it will
be processed at each reconfiguration decision, to dynamically
evaluate configuration instances.

3) Online Configuration Checker: The framework includes
a runtime architecture, Fig. 2(b), with an online configuration
checker and a model repository.

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013

341

The model repository stores designed reference model
classes and constraints. This model repository also supports
the online edition of the reference model data and constraints
to adapt the model to evolving management requirements.

The configuration checker verifies any configuration in-
stance against the reference model. The checker is based on
the open source Dresden OCL interpreter library [15] that we
have enriched with MeCSV specific features such as offline
and online constraints differentiation, constraint checking with
filtering conditions depending on constraint metadata, and the
extra functionality of online reference model modification.

The configuration checker is designed to process auto-
matically MeCSV-compliant information (information mod-
eled with the MeCSV language). Thus, to operate effectively
with existing management platforms, the online checker must
receive candidate configuration instances in a format it can
understand, notably the checker requires serialized model
instances conforming to the defined MeCSV reference model
(XML files). Therefore, a runtime adapter that operates as a
sort of wrapper for the existing management system needs
to be defined. The validation framework provides an adapter
interface that can be implemented to tailor the online checker
to a specific management system.

Once an adapter is provided, the system is ready to
process validation. The legacy platform will send configuration
checking requests containing platform-specific configuration
instances to the appropriate adapter (1 on Fig. 2(b)). These
validation requests will trigger retrieval of state parameters
of interest (2 on Fig. 2(b)). Once retrieved, state parameters
values and configuration values are packaged into a convenient
MeCSV-compliant instance format and sent to the configura-
tion checker (1-2 bis on Fig. 2(b)). The validator can then
process the evaluation of those instances against the stored
reference model and reports validation results (3 on Fig. 2(b)).

C. Usage Methodology

1) Specification Process: The specification process is a
two-step process that starts at design time. First the repre-
sentation of the reference model structural classes, then the
expression of offline and online constraints.

The first step allows the representation, in a MeCSV-
compliant way, of the structural part of the system reference
model that will serve for online validation. Operators use
the MeCSV metamodel to model configuration parameters
and state parameters that can influence the suitability of a
given configuration, organized into classes with convenient
composition and dependency relationships.

The second step is the definition of constraints that con-
figuration data should respect. Operators thus define the of-
fline constraints that restrict the structure of configuration
information and the online constraints that help evaluate the
compliance of a given configuration information with the
execution context at hand.

The completion of these two steps provides the reference
model of the system that is to be uploaded into the validation
system repository and serves as an input for the checking
process.

This general process slightly differs when a management
information model already exists. Indeed, the first step could
be automated, mapping rules can be directly defined between
the specific management model and MeCSV translating the
legacy constructs into the related MeCSV ones. For example,
one could use model-driven techniques such as model to
model transformation or reflection for the implementation of
such mapping rules. The second step of constraints expression
remains identical.

2) Enforcement Process: The essential requirement for the
runtime validation enforcement consists of the design of the
runtime adapter that will allow existing management platforms
and the online validation system to work together. This adapter
will enable online translation of platform-specific configuration
data and monitored data into a compatible format that can be
processed by the configuration checker.

The validation framework offers a default adapter interface
that can be extended to tailor the adapter to a given platform.
The adapter interface provides a list of methods including a
method for the acquisition of operational state data, required
for the evaluation of online constraints, and a method for
translating existing management information into a MeCSV-
compliant format.

Note that this adapter is only needed when a legacy
platform exists. A platform that uses natively the MeCSV
format does not require an adapter.

IV. APPLICATION TO THE CIM/WBEM STANDARDS

CIM (Common Information Model) and WBEM (Web-
based Enterprise Management) are management standards de-
fined by the Distributed Management Task Force (DMTF).
CIM is a platform-neutral conceptual information model com-
monly used for describing and interchanging management data
in systems, networks, applications and services and WBEM
is a set of management and Internet standard technologies
developed to unify the management of distributed computing
environments built-upon CIM.

A. Design Time: Model Transformation from CIM to MeCSV

We started with the UML version of all the
various CIM schemas classes, available on the DMTF
website (“all_classes.xmi”). Relevant classes for a
usage with our framework are those inheriting from
CIM_ManagedElement and CIM_SettingData classes
and their associations. CIM_ManagedElement provides
information about the current state of an element and
CIM_SettingData represents the configuration view of an
element.

We used model-driven transformation techniques and
defined mapping rules between the UML version of the
CIM Core Model and the ECORE version of the MeCSV
metamodel. More precisely, we used the Query/View/Trans-
formation (QVT) transformation language with its implemen-
tation engine Eclipse QVT Operational (QVTo) [16].

QVT Operational is an implementation of the standard
set of model transformation languages defined by the Ob-
ject Management Group (OMG) that allows to define map-
ping rules between a source and a destination model. The

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013

342

mapping rules are automatically executed by a rule en-
gine transforming any given instance of the source model
to a new instance conforming to the destination model.
For example, CIM_ManagedElement classes and their
attributes are respectively mapped to MeCSV Managed
Element classes and MeCSV State Parameter ele-
ments. CIM_SettingData classes and their contained at-
tributes are transformed into MeCSV Configuration and
subsequent Configuration Parameter elements. These
rules are compiled by the QVTo transformation engine and
can be executed each time a model conforming to the relevant
CIM Core Model pattern is defined, automatically transforming
it into a MeCSV reference model (structural part) to be
completed by constraints.

B. Runtime: CIM to MeCSV Adapter

For the enforcement of the validation process, we also
provided an adapter (CIM2MeCSV Adapter on Fig. 3) capable
of mapping at runtime, CIM instances to MeCSV-compliant
instances. In the context of the WBEM environment, this
adapter was designed as a WBEM client (based on the SBLIM
CIM client API), indeed the adapter needs to gather state
parameters from the WBEM server (in the experiment, we
used the Openpegasus WBEM server).
<> svnchronizeRefModelStare
It 1

el triggers update]

Decision
(Wbem Client)

i

- -

/ CIM2MeCSV
Adapter
(Wbem client)

|
|
|
|
|
|
|
|
T

1
|
A Y | Human
Protocol Adapter (CIMXML) | Operat
— ;
N y
CIMOM L“Y‘
Repository Online Validator .| Ref. Model
- (Ecore, OCL)
vi Provider | |Provider
CIM Server ! 1 MeCSV Validation System

e

Managed resourcs

Fig. 3. Integration with CIM/WBEM: runtime architecture

Fig. 3 depicts the subsequent online checking process: the
CIM2MeCSV runtime adapter is capable of communicating
with a “configuration decision” that requests configuration
validation of some CIM_SettingData instances (1), and
querying the WBEM server at runtime for state parameters of
interest (2). The adapter is then capable of dynamically trans-
lating the CIM instances into to MeCSV-compliant instances
(1-2 bis) and sends them for validation.The online validator
is then capable of checking the instances against the available
reference model stored in the model repository (3).

The reference model can be edited at runtime if needed
(<ii> on Fig. 3). In this particular case, modifications of the
structural part of the reference model are notified to the adapter
for the update of its wrapper capabilities, especially when new
state parameters to query are added.

C. CIM Virtual System Profile Case Study

This prototype integration with the CIM/WBEM standards
has been applied to several CIM Virtual System Profile models
taken from the CIM Virtual System Profile document [17] (Fig.
4).

ﬁ IM_HostedD: denc
CIM_ComputerSystem CIM_HostedDependency

0.1 1
CIM_HostedResourcePool
-

CIM_ResourcePool

E3

CIM_ResourceAllocationFromPool

#

[CIM_ResourceAllocationSettingData |

CIM_SettingDefineState

Fa

CIM_ConcreteComponent
1 1 *
[CIM_VirtualSystemSettingData_| CIM_ElementSettingData

0..1

Fig. 4. Subset of CIM Virtual System Profile

At design time, the related MeCSV reference model has
been successfully generated and exported into the validation
system.

The system’s architecture features a machine host-
ing some virtual machines (CIM_ComputerSystem) and
providing a pool of memory, processor and disk re-
sources (CIM_ResourcePool) . By multiple reconfigura-
tions (of CIM_VirtualSystemSettingData), the ar-
chitecture grows to several virtual machines sharing differ-
ent resource pools according to resource allocation schemes
(CIM_ResourceAllocationSettingData).

Possible operational data of interest are the current resource
usage that can influence the suitability of resource allocation
(its reservation) during a reconfiguration. A reconfiguration
that fails to allocate appropriately available resource can cause
a degradation of a virtual machine’s operation. Examples of
offline and online constraints that have been tested:

1) A virtual machine setting data should include a memory
and a CPU resources allocation.

2) A resource allocation setting data reservation should be
provided.

3) The current resource allocation (reservation setting)
should not be greater than the available resource capacity.

4) The sum of the total resource reservations for all the
virtual machines on the host should not attain 90% of
the host’s resource capacity.

At runtime, validation of candidate
CIM_VirtualSystemSettingData instances with
related CIM_ResourceAllocationSettingData
instances are requested. The validation request triggers the
CIM2MeCSV adapter connection to the WBEM Server for
the retrieval of additional operational parameter information
then translates the configuration data and the operational data
into a MeCSV-compliant format and sends the result to the
validation system.

V. EVALUATION

This section presents the evaluation of the prototype in-
tegration of the CIM and WBEM standards and discusses
observations and results. We respectively test the ability of the
MeCSV metamodel to serve as a formal specification notation
and evaluate the time taken by the CIM2MeCSV adapter
to translate CIM instances into MeCSV-compliant ones. We

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013

343

also measure the validation time of the online configuration
checker.

A. Evaluation Scenarios

We performed our experiments on three different virtual
system settings varying in size and complexity.

The first case (Case 1) features a host with a unique
virtual machine for a total of 180 configuration parameters
(from CIM_SettingData instances) to manage. The
second case (Case 2) consists of a host with two virtual
machines and three different types of resource pools to be
allocated on each virtual machine (about 360 configuration
parameters). The third (Case 3) consists of three virtual
machines with three different types of resources to allocate
on each machine (800 configuration parameters). Besides,
140 state parameters (from 17 CIM_ComputerSystem and
CIM_ResourcePool instances) values are to be re-
trieved at each request for the evaluation of online constraints.
For each proposed configuration, the validator gradually ran
validations with 10, 50 and 100 OCL constraints.

We took 100 measurements of the execution time in
milliseconds for each validation request, and computed the
arithmetic mean. The tests were run on a Intel® Core™ 2
Duo with 2.66 GHz and 4 Gigabytes of main memory. The va-
lidation framework hosting machine and the Openpegasus
WBEM server are in the same network domain and wired by
a 100 Megabits/second connection.

B. Results and Discussions

Table I presents the execution time for each configuration
scenario.

1) Framework’s Application to CIM/WBEM: The overall
experiment shows that we successfully applied the frame-
work’s methodology in a CIM/WBEM environment. At design
time, defined mapping rules allowed to translate a CIM mana-
gement model to a MeCSV reference structural model that we
enriched with constraints. At runtime, a CIM2MeCSV adapter
translated CIM instances into a MeCSV compatible format and
allowed the configuration checker to handle validation requests
and report validation results.

TABLE 1. PERFORMANCE RESULTS

Case 1 Case 2 Case 3
Adapter: total time (ms) 644.46 | 1,039.99 | 1,651.57
Adapter: instance translation 170.82 175.37 188.52
only (ms)
Va}idation time with 10 cons- 18333 23750 30375
traints (ms)
Va?idation time with 50 cons- 331.00 403.75 565.00
traints (ms)
Validati.on time with 100 482.05 663.00 868.50
constraints (ms)

2) Adapter’s Overhead: The overall adapter time includes
both the querying of the WBEM server for the retrieval of
140 state parameters and the transformation of CIM instances
to MeCSV-compliant ones. The high values observed are due

to the WBEM server querying. Indeed, it does not suffice to
retrieve just the CIM classes instances that contains the 140
state parameters; in order to translate them, the CIM2MeCSV

adapter further acquires all the CIM Association instances in

which they are involved.

While the transformation time itself is globally under 200
ms, the rest of the value is due to the navigation through CIM
associations and the connection with the WBEM server. These
measurements offer very encouraging results for a small-scale
system’s configuration. The adapter total time can be reduced
with some optimizations techniques (for e.g.; connection band-
with to the WBEM server, caching).

3) Validation time: The total checking time for the three
deployed scenarios is under 1 second which is also very

encouraging. A very interesting result lies in the effect of
the number of configuration parameters and constraints on

the validation time. The validation time is not proportional
either to the size of configuration instances or to the

size of constraints. For example, while the number of

CIM_SettingData instances quadruples from Case 1 (180
configurations parameters) to Case 3 (800 configurations
parameters), the ratio of their average validation time

hardly doubles (ratio is 1.8). Similarly, although the number

of constraints increased by ten, from Case 1 to Case 3
the average validation cost barely tripled (2.8). These

results confirm previous experiments on a message oriented

middleware [18].

Altogether, the complete process time is very encouraging
yet several points remain to clarify. We need to experience the
methodology further in clarifying the costs of integration and
usage. Indeed, while the framework does not require changing
existing tools, it however needs to be adapted to the existing
management system thus requires implementation of model
mapping rules and a runtime adapter interface. Furthermore,
even if the design time mapping is automated, expressing
constraints on the resulting MeCSV reference model can
required to learn MeCSV and how the new model works.

Another challenge is the dual evolution of both models

(existing management and MeCSV reference models) over

the management lifecycle. We stress the importance of the
full operation of this evolution to avoid errors and ease the
adoption. These points are to be explored in future work.

VI. CONCLUSION AND FUTURE WORK

Designing integrated and lightweight online validation ap-
proaches is a critical requirement if we are to build reliable
self-adaptive management systems. This is fundamental as
misconfigurations can be prejudicial to the proper operation
of the system. This paper presented a validation framework
including an online configuration checker relying on a high-
level language named MeCSV. The main objective of this
framework is to provide a configuration validation service
for existing management systems, that includes verification
capabilities based not only on structural checks but also on
running operational conditions.

We then proposed a methodology for the usage of the
validation framework from design time to runtime, especially

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 344

when dealing with legacy management information models.
We applied this methodology to integrate CIM/WBEM en-
vironments thanks to both the definition of mapping rules
from CIM modeling patterns to MeCSV constructs and the
implementation of a runtime adapter capable of retrieving state
parameters from a WBEM server. Experiments with a subset of
the CIM Virtual System Profile model allowed us to discuss
results and observations demonstrating the feasibility of the
approach.

In future work, we intend to further experience the method-
ology by integrating more legacy systems and case studies so
that we can ease the integration process and lower subsequent
costs of integration and implementation.

REFERENCES

[1] P. Anderson and E. Smith, “Configuration tools: working together,”
in Proceedings of the 19th conference on Large Installation System
Administration Conference, 2005.

[2] M. Burgess and A. L. Couch, “Modeling Next Generation Configuration
Management Tools,” in LISA, 2006, pp. 13-147.

[3] R. Enns, “NETCONF Configuration Protocol,” Internet Engineering
Task Force (IETF), RFC 6241, june 2011.

[4] M. Bjorklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” Internet Engineering Task Force
(IETF), RFC 6020, October 2010.

[5] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe, “An Auto-
mated Formal Approach to Managing Dynamic Reconfiguration,” in
ASE’06: Inter. Conference on Automated Software Engineering, 2006,
pp. 37-46.

[6] T. Delaet and W. Joosen, “PoDIM: A Language for High-Level Confi-
guration Management,” in LISA, 2007, pp. 261-273.

[7]1 “CIM Schema version 2.29.1 - CIM Core,” Distributed Management
Task Force (DMTF), June 2011.

[8] C. Sinz, A. Khosravizadeh, W. Kuchlin, and V. Mihajlovski, “Verifying
CIM models of Apache Web-server configurations,” Proceedings of the
3rd International Conference on Quality Software, 2003, pp. 290-297,
2003.

[9] E. Gengay, C. Sinz, W. Kiichlin, and T. Schifer, “SANchk: SQL-
based SAN configuration checking,” IEEE Transactions on Network
and Service Management, vol. 5, no. 2, pp. 91-104, 2008.
[10] T. Hinrichs, N. Love, C. J. Petrie, L. Ramshaw, A. Sahai, and S. Singhal,
“Using object-oriented constraint satisfaction for automated configura-
tion generation,” in DSOM, 2004, pp. 159-170.

[11] L. Ramshaw, A. Sahai, J. Saxe, and S. Singhal, “Cauldron: a policy-
based design tool,” in 7th IEEE International Workshop on Policies for
Distributed Systems and Networks, 2006, pp. 113-122.

[12] L. Akue, E. Lavinal, and M. Sibilla, “A Model-Based Approach to
Validate Configurations at Runtime,” in 4th International Conference
on Advances in System Testing and Validation Lifecycle (VALID),
November 2012, pp. 133-138.

[13] “Eclipse Modeling Framework Project (EMF),” The
Eclipse Foundation, january 2013. [Online]. Available:
http://www.eclipse.org/modeling/emf/

[14] “Object Constraint Language (OCL), Version 2.0,” Object Management
Group (OMG), May 2006.

[15] “Dresden OCL,” TU Dresden, Software Technology Group, january
2013. [Online]. Available: http://www.dresden-ocl.org/

[16] “Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification Version 1.0,” Object Management Group (OMG, april
2008. [Online]. Available: http://www.omg.org/spec/QVT/1.0/PDF/

[17] “Virtual System Profile,” Distributed Management Task Force (DMTF),
april 2010.

[18] L. Akue, E. Lavinal, T. Desprats, and M. Sibilla, “Runtime Con-
figuration Validation for Self-configurable Systems,” in IFIP/IEEE

International Symposium onlntegrated Network Management (IM), may
2013, pp. 712-715.

