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Abstract—Software Defined Networking (SDN) has emerged
as a new paradigm that offers the programmability required
to dynamically configure and control a network. A traditional
SDN implementation relies on a logically centralized controller
that runs the control plane. However, in a large-scale WAN
deployment, this rudimentary centralized approach has several
limitations related to performance and scalability. To address
these issues, recent proposals have advocated deploying multi-
ple controllers that work cooperatively to control a network.
Nonetheless, this approach drags in an interesting problem, which
we call the Dynamic Controller Provisioning Problem (DCPP).
DCPP dynamically adapts the number of controllers and their
locations with changing network conditions, in order to minimize
flow setup time and communication overhead. In this paper, we
propose a framework for deploying multiple controllers within
an WAN. Our framework dynamically adjusts the number of
active controllers and delegates each controller with a subset of
Openflow switches according to network dynamics while ensuring
minimal flow setup time and communication overhead. To this
end, we formulate the optimal controller provisioning problem as
an Integer Linear Program (ILP) and propose two heuristics to
solve it. Simulation results show that our solution minimizes flow
setup time while incurring very low communication overhead.

I. INTRODUCTION

Software defined networking (SDN) has emerged as a new

paradigm that offers the programmability required to dynam-

ically configure and manage the network. By separating the

control plane from the data plane and shifting the control plane

to a conceptually centralized controller, SDN provides network

operators with a strong capability to implement a wide-range

of network policies (e.g., routing, security, fault-tolerance) and

the ability to rapidly deploy new network technologies.

The most common SDN implementation today relies on a

logically centralized controller that possesses a global view

of the network. Whenever a switch receives a new flow, it

requests the controller to install appropriate forwarding rules

along the desired flow path. The time required to complete

this operation is known as the flow setup time. However, in

a large-scale WAN deployment, this rudimentary centralized

approach has several limitations related to performance and

scalability. First, it is not always possible to find an opti-

mal placement of the controller that can ensure acceptable

latencies between the controller and the switches situated

at geographically distributed locations. Secondly, a single

controller usually has a limited resource capacity and hence

cannot handle large amount of flows originating from all the

infrastructure switches. In this case, the average flow setup

time can rise significantly and degrade application and service

performance [15].

To address these limitations, recent proposals have advo-

cated deploying multiple controllers that work cooperatively

to better manage network traffic flows [7], [14]. Nonetheless,

this approach introduces a new problem: minimizing flow

setup times by dynamically adapting the number of controllers

and their locations according to demand fluctuations in the

network. We call this problem the Dynamic Controller Pro-

visioning Problem (DCPP). Specifically, DCPP requires the

number of controllers to be sufficient to handle the current

network traffic, and their locations should ensure low switch-

to-controller latencies. However, the multi-controller deploy-

ment also requires regular state synchronization between the

controllers to maintain a consistent view of the network [12].

This communication overhead can be significant if the number

of controllers in the network is large. Finally, as network

traffic patterns and volumes at different locations can vary

significantly over-time, the controller placement scheme has

to react to network “hotspots” and dynamically re-adjust the

number and the location of controllers. Hence, the solution

to DCPP must always find the right trade-off between perfor-

mance (in terms of flow setup time) and overhead (controller

synchronization and management).

To the best of our knowledge, the only work that has inves-

tigated the controller placement problem is the one by Heller

et al. [8]. They studied a static version of the problem where

controller placement remain fixed over time, and analyzed the

impact of the controller locations on the average and worst-

case controller-to-switch propagation delay. However, a static

controller placement configuration may not be suitable forever

as network conditions can change over time.

To address this limitation, we propose a management frame-

work for dynamically deploying multiple controllers within

an WAN (Section III). Specifically, we consider the dynamic

version of the controller placement problem where both the

numbers and locations of controllers are adjusted according

to network dynamics. Our solution takes into account the

dynamics of traffic patterns in the network, while minimiz-

ing costs for (i) switch state collection, (ii) inter-controller

synchronization, and (iii) switch-to-controller reassignment.

We formulate DCPP as an Integer Linear Program (ILP)

that considers all aforementioned costs (Section IV). We then

propose two heuristics that dynamically estimates the number
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of controllers and decide their placement in order to achieve

the desired objectives (Section V). The effectiveness of our

solution is then demonstrated using real-world traces and

WAN topologies (Section VI). Our results show that the

proposed algorithms minimize the average flow setup time

while incurring very low communication overhead. Finally,

we provide concluding remarks (Section VII).

II. RELATED WORK

SDN aims at decoupling the control plane from the data

plane. However, the original SDN architecture was designed

to use a centralized control plane, which is known to have

poor scalability for managing large networks. Recent research

works have proposed a number of techniques to overcome this

scalability limitation. These techniques can be classified into

two broad categories: (1) pushing intelligence into the switch

to offload the controller, and (2) distributing the control plane

across multiple controllers.

DevoFlow [5] and DIFANE [16] falls in the first category of

techniques. DevoFlow proposes to pre-install wildcard rules in

the switches that can replicate themselves for the mice flows to

create flow specific rules. The switches also have intelligence

to detect elephant flows. The controller is only responsible for

making forwarding decision for elephant flows. Similarly, in

DIFANE, the controller generates the forwarding rules, but it is

not involved in the setup of each new flow. Rather, the rules are

partitioned and distributed among a subset of switches called

“authoritative switches”. The regular switches, which forward

packets in data plane, redirect new flows to the authoritative

switches to learn about the forwarding rules. However, both

of these proposals require some changes to be made to the

commodity switches to increase their intelligence.

On the other hand, Kandoo [7], HyperFlow [14], and

Onix [10] propose to distribute the control plane across multi-

ple controllers to improve SDN’s scalability. Each of them

distributes controller states differently. Kandoo distributes

controller states by placing the controllers in a two level

hierarchy comprising a root controller and multiple local

controllers. Local controllers respond to the events that do not

depend on global network state (e.g., elephant flow detection),

while the root controller takes actions that require global

network view (e.g., re-routing elephant flows). HyperFlow

handles state distribution of the distributed controllers through

a publish/subscribe system based on the WheelFS distributed

file system. Finally, controller state distribution in Onix is

managed through a distributed hash table.

However, none of the aforementioned works consider the

issue of choosing suitable network locations for placing con-

trollers and adapting the placement according to the dynamic

behavior of the network. The problem regarding how many

controllers to place and where to place them in the network

was first studied by Heller et al. [8]. They analyzed the

impact of placing multiple controllers according to different

heuristics in a static setting and did not consider adapting

the number and placement of controllers with changing traffic

load. On the contrary, we propose a management framework

that takes both network performance (in terms of flow setup

time) and management overhead (for state synchronization)

into consideration to determine the number and placement of

controllers in the network. Furthermore, we aim at dynam-

ically provisioning SDN controllers over time to react with

traffic fluctuations.

III. SYSTEM DESCRIPTION

In this work, we consider a large WAN consisting of

OpenFlow enabled switches to deploy our system. However,

our proposed system also works with WANs with a mix of

OpenFlow and non-OpenFlow switches, where non-OpenFlow

switch simply work as forwarding elements. We also assume

that the network operator has provision to deploy or has

already deployed compute resources (e.g., servers) at particular

locations throughout the network. These servers are used to

deploy SDN controllers to control the OpenFlow enabled

switches in the network.

As explained in Section I, a single controller is not sufficient

for large WAN deployments. Hence, our system dynamically

partitions the set of OpenFlow switches into multiple domains

(henceforth we use “domain” to specify the set of OpenFlow

switches that are controller by a OpenFlow controller) based

on network dynamics and assigns one controller per domain.

At any time instance, a switch is controlled by a single

controller and each controller is responsible for setting up

paths in switches under its own domain.

A controller periodically collects port, flow, and table level

statistics from switches in its domain using OFPST_PORT,

OFPST_FLOW, and OFPST_TABLE OpenFlow messages, re-

spectively. Controllers exchange switch and link level informa-

tion with one another so that each controller can take forward-

ing decisions. The protocol for inter-controller communication

is out-of-scope for this paper and we plan to explore it in the

future. Each controller builds its own view of the network from

the exchanged information.

In our system controllers are always running on servers lo-

cated at designated network locations. A controller is regarded

as active if it has at least one switch assigned to it, otherwise

it is considered inactive. Inactive controllers keep listening on

a particular port for incoming HELLO messages from newly

assigned switches and consume very small amount of CPU

cycles and power. Our management framework periodically

evaluates the current switch-to-controller assignment and de-

cides whether to perform a reassignment based on the specified

constraints. If a reassignment is performed, the management

framework also changes the switch-to-controller assignment

in the network. Our management framework contains three

modules as depicted in Fig. 1 and explained below:

• Monitoring Module monitors controllers through periodic

heartbeat messages to ensure aliveness and pulls relevant

statistics from them.

• Reassignment Module periodically checks the collected

statistics by the monitoring module and decides whether

to perform a reassignment. This decision depends on

many criteria that will be explained in-detail in the
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Fig. 1. System architecture

following section. This module is also triggered by the

monitoring module to perform an instant reassignment in

case of a controller failure.

• Provisioning Module provisions controllers as required

and changes switch to controller associations.

During a reassignment an active controller may become

inactive, if all of its switches are assigned to other controllers

and an inactive controller may become active, if any switch

is assigned to it. The objective of our system is to keep a

set of controllers in the active state that results in close to

optimal flow setup times, while incurring low communication

overhead.

In our system, when a new flow arrives at a switch, the

switch first checks its forwarding table for a matching entry.

If a matching forwarding rule exists, packets in the flow are

forwarded according to the matching rule. If no such rule

exists, the switch sends a PACKET_IN OpenFlow message

to its controller. The controller computes a path contained

within its domain using its local knowledge about the network

and installs forwarding rules in the switches under its domain.

Two possible cases can arise next: (i) the flow may pass only

through switches under the current controller’s domain, or

(ii) it may pass though one or more other domains. In the

first case, we are already done as all switches in the flow’s

path have the necessary forwarding rules installed in their

forwarding tables. In the second case, additional flow setup

requests will be generated as shown in Fig. 2. In this figure,

a new flow arrives at switch i on port a. As the switch does

not have a matching forwarding entry, it sends a flow setup

request to its controller m. This request is called Initial path

setup request. Now, controller m computes a path (contained

within its own domain) for the flow. Lets say the path is

i.a → i.b → j.b → j.c (where i.a means port a of switch

i) and sets up the forwarding rules in switches i and j.

The packets in the flow are forwarded from port a to port

b of switch i and then from port b to port c of switch j,

eventually reaching port c of switch k. Switch k now searches

its forwarding table for a matching rule. If no such rule exists,

it sends a flow setup request to its controller n. This request

Initial path setup request

Rule Setup

Controller

Switch

m

Intermediate path setup request

n

Forwarding Path

i
j k l

When, xim=1, xjm=1, xkn=1, xln=1

τii=1, τij=1, τjk=1, and τkl=1

Initial path setup request cost, Cp
R=τiidim

Additional path setup request cost, Cp
Q=τjkdkn

Rule setup cost, Cp
L=τiidim+τijdim+τjkdkn+τkldln

Flow setup cost = Cp
R+Cp

Q+Cp
L

a

b
b c

Fig. 2. Path setup method with Flow setup cost

is termed as Intermediate path setup request. Now, controller

n computes a path contained in its own domain and installs

forwarding rules in switch k and l in a similar manner.

IV. PROBLEM FORMULATION

In this section, we formulate DCPP as an ILP. Specifically,

we model the network as an undirected graph, G = (S,E),
where S is the set of switches and E is the set of edges. Let

dij denote the cost of the shortest path between switches i

and j expressed in terms of propagation delay or number of

hops. F (F ⊆ S) is the set of locations where a controller

can be deployed. Let vector U = 〈u1, u2, . . . u|F |〉 represents

the capacities of the controllers. Hence, um is the maximum

number of requests controller m can handle per second. The

maximum allowable cost between a switch and its controller

is denoted by δ (expressed in the same unit as dij).

The traffic matrix is denoted by T = [τij ]|S|×|S|, where

τij represents the average number of flows over the current

time slot originating from switch i to its neighbor switch j as

reported by the monitoring module. Moreover, each diagonal

entry τii of T captures the average number of flows originated

at switch i, i.e., the average number of flows coming from the

networks served by switch i.

The reassignment algorithm is invoked at every Ta time

interval. The output of our ILP is an assignment matrix X =
[xim]|S|×|F |, where xim is equal to 1 if switch i is assigned to

controller m, and 0 otherwise. It also provides a binary vector

Y = 〈y1, y2, . . . y|F |〉 indicating which controllers are active

(i.e., ym = 1) and which are not (i.e., ym = 0).

We consider the following four costs that will be incurred

when deploying multiple controllers across the network:

1) Statistics collection cost (Cl) is the number of messages

per second required for the controllers to collect statistics from

their associated switches. Assuming that statistics are gathered

at each time interval Ts (note that Ts < Ta), this cost can be

expressed as follows:

Cl =
⌊Ta

Ts

⌋

∑

i∈S

∑

m∈F

dimxim (1)
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2) Flow setup cost (Cp) is the total cost incurred for setting

up the flow rules across end-to-end paths. As explained in

Fig. 2, this cost can be divided into three components. First,

the initial path setup request for the flows originated at the

switches:

Cp
R =

∑

i∈S

∑

m∈F

τiiximdim (2)

Secondly, the intermediate path setup requests at each switch

for the flows coming from a neighbor switch controlled by a

different controller:

Cp
Q =

∑

i∈S

∑

j∈S

∑

m∈F

∑

n∈F

τjixjn(1− xin)ximdim (3)

Finally, the rule installation cost incurred for the rule installa-

tion messages from the controllers:

Cp
L =

∑

i∈S

∑

j∈S

∑

m∈F

τjiximdim (4)

Combining Equations (2), (3), and (4), we can derive the flow

setup cost as follows:

Cp = Cp
R + Cp

Q + Cp
L (5)

3) Synchronization cost (Cs) represents the number of mes-

sages exchanged between controllers in order to maintain

a consistent network-wide view in all of them. We assume

messages are exchanged every Tx seconds (note that Tx < Ta).

We also consider critical events that force a controller to

instantaneously synchronize state with other controllers. As-

suming e is a random variable that represents the occurrence

frequency of critical events in the system. We can define

the number of inter-controller state synchronization messages

generated within time Ta considering both periodic and critical

events as follows:

NE =
⌊Ta

Tx

⌋

+

∫ Ta

0

e · p(e)de (6)

Here, p(e) is the probability distribution function of e. The

synchronization cost can be defined as follows:

Cs =
NE

Ta

∑

m∈F

∑

n∈F

ymyndmn (7)

4) Switch reassignment cost (Cr) is the cost of assigning

a switch to a new controller. Ideally, it is better to avoid

frequent reassignment of switches. Assume that the previous

assignment is given by the matrix X̃ = [x̃im]|S|×|F |. We define

the matrix Z = [zim]|S|×|F | as the XOR between the new

assignment X and the previous assignment X̃ . In particular,

zim = 1 if the assignment of switch i has been changed to

(or from) controller m, otherwise zim = 0.

Cr =
∑

i∈S

∑

m∈F

dimzim (8)

The objective of our optimization problem is to minimize

the weighted sum of the aforementioned mentioned four costs

and can be expressed as follows:

αCl + βCp + γCs + λCr (9)

Here, α, β, γ, and λ are constants, the network operator

can use to adjust the relative significance of the four cost

components. Furthermore, the following constraints must be

satisfied in order to guarantee a feasible solution:

∀i∈S :
∑

m∈F

xim = 1 (10)

∀m∈F :
∑

i∈S

ximτii +
∑

i∈S

∑

j∈S

∑

n∈F

τjixjn(1− xin)xim ≤ ymum

(11)

∀i∈S,m∈F : ximdim ≤ δ (12)

∀i∈S,m∈F : xim ≤ ym (13)

∀i∈S,m∈F : zim ≤ xim + x̃im

zim ≥ xim − x̃im

zim ≥ −xim + x̃im

zim ≤ 2− xim − x̃im

(14)

∀i∈S,m∈F : xim, zim ∈ {0, 1} (15)

∀m∈F : ym ∈ {0, 1} (16)

Constraint (10) guarantees that every switch is controlled by

exactly one controller at a given time. Inequality (11) ensures

that a controller can satisfy the path setup requests from the

switches assigned to it. Note that the total number of path

setup requests to a controller is composed of all initial and

intermediate path setup requests from all switches that it is

currently controlling. Inequality (12) gives an upper bound δ

on the maximum delay between a switch and its designated

controller. The condition on assigning a switch to an active

controller is represented by Inequality (13). The inequalities

of (14) ensure that zim is the XOR of the variables xim and

x̃im. Equations (15) and (16) indicate that xim, ym, and zim
are binary variables. This formulation generalizes the Single

Source Unsplittable Flow Problem [9], which is known to be

NP-Hard. Therefore, we propose two heuristics to solve this

problem that are described in the subsequent sections.

V. PROPOSED HEURISTIC

In this section, we describe two heuristics for solving

DCPP: (i) DCP-GK: a greedy approach based on the knap-

sack problem, and (ii) DCP-SA: a simulated annealing based

meta-heuristic approach. The input to both heuristics include

network topology G, traffic matrix T , previous switch–to–

controller assignment X̃ , set of switches S, possible controller

locations F , controller capacity vector U , and delay constraint

δ. The goal of these heuristics is to find a feasible switch–

to–controller assignment that minimizes the cost function

expressed in Equation (9) based on current network conditions.
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A. Dynamic Controller Provisioning with Greedy Knapsack

(DCP-GK)

Here, we model each controller as a knapsack. The capacity

of each knapsack is equal to the processing capacity (measured

in number of flow setup requests it can handle per time

interval, 60 minutes in our simulations) of its corresponding

controller. We consider the switch as the objects to be added

in the knapsack. We model the weight of a switch as the

number of new flows it generates within the previous time

interval and the profit of taking a switch is the inverse path

cost between the switch and that controller. Each iteration of

our algorithm activates a single controller. This controller is

chosen such that the sum of path costs from that controller

to the unassigned switches is minimum and within the given

delay bound δ. Then we run the greedy knapsack algorithm

to assign switches to that controller. If no switch could be

assigned to a controller it is deactivated. The iterations stop

when all the switches are assigned to a controller or no more

controllers can be activated. If there are unassigned switches

after all the iterations are completed, the switches are assigned

randomly between the activated controllers. This may break

the capacity and delay constraints. However, this exceptional

case occurred very rarely during our simulations.

B. Dynamic Controller Provisioning with Simulated Anneal-

ing (DCP-SA)

The DCP-SA heuristic provides a feasible switch-to-

controller assignment X considering the previous assignment

matrix X̃ as an initial state for simulated annealing. However,

due to a change in traffic pattern, X̃ may violate the capacity

constraint depicted in Equation (11). Therefore, the objective

of Algorithm 1 is to generate a feasible switch to controller

assignment from the current unfeasible assignment. The output

of this algorithm is provided as an input to Algorithm 2 which

runs the simulated annealing algorithm to improve the switch-

to-controller assignment.

More specifically, Algorithm 1 first identifies the set of

controllers Fv for which capacity constraints are violated.

Then it tries to lower the load on each f ∈ Fv by reassigning

one or more switches to other controllers without violating

the capacity constraint. To achieve this objective, Algorithm 1

first sorts all switches Sf assigned to controller f according

to their rank defined by the following equation:

ri =
∑

j∈S

τij (17)

Let s∗ denote the switch with the highest rank in Sf . A

set of feasible controllers Fs∗ is identified for s∗ such that

each controller in Fs∗ is within the bound δ from s∗ and

also has sufficient capacity to handle requests from s∗. The

algorithm then selects the controller with the smallest re-

maining capacity f̃ , and assigns s∗ to f̃ . The intuition is

to minimize the fragmentation of remaining capacity of the

controllers during the reallocation. The assignment matrix X̃
is then updated accordingly. This reallocation procedure for

controller f continues until the capacity constraint for f is

Algorithm 1 Algorithm for generating feasible initial state

Input: Topology, G
Traffic Matrix, T
Previous Assignment, X̃
Set of switches, S
Set of controllers, F
Controller capacity vector, U

Output: New Feasible Assignment, X̃
1: Fv ← Set of controllers for which X̃ violates capacity constraints
2: while Fv 6= ∅ do
3: Select a controller f from Fv

4: Sf ← Set of switches assigned to controller f
5: while Capacity of f is violated do
6: Sort Sf according ri defined by Equation (17)
7: s∗ ← first node in Sf

8: Fs∗ ← Feasible controllers of s∗ with remaining capacity
greater than the demand of s∗

9: if Fs∗ 6= ∅ then

10: f̃ ← Controller with smallest remaining capacity in Fs∗

11: Assign s∗ from f to f̃ and update X̃
12: end if
13: Sf ← Sf \ {s

∗}
14: end while
15: Fv ← Fv \ {f}
16: end while

Algorithm 2 Reassignment algorithm

Input: Topology, G
Traffic Matrix, T
Feasible Previous Assignment, X̃
Set of switches, S
Set of controllers, F
Controller capacity vector, U

Output: New Assignment, X
1: X ← X̃
2: FS ← Feasible controllers for S considering delay constraints
3: Select an initial temperature Temp > 0
4: current← X̃
5: for t← 1 to ∞ do
6: Temp←Schedule(t)
7: if Temp = 0 then
8: break
9: end if

10: i← 1
11: repeat
12: next← Successor(current, FS)
13: ∆← Cost(current)− Cost(next)
14: if ∆ > 0 then
15: current← next
16: else

17: current← next only with e
∆

Temp probability
18: end if
19: if Cost(current) < Cost(X ) then
20: X ← current
21: end if
22: i← i+ 1
23: until i 6= N
24: end for

satisfied. Algorithm 1 repeats this reallocation procedure for

each of the controllers in set Fv until the switch to controller

assignment X̃ becomes feasible.

Starting from a feasible assignment X̃ , Algorithm 2 uses

a variant of simulated annealing to further optimize the as-

signment. We define the following local search moves for this

algorithm (sorted in decreasing order of preference):

• Relocate Switch: selects a switch randomly and assigns

it to a different active controller. If no switch is assigned

to a controller after this move, it is deactivated.

• Swap switches: selects two switches randomly from two
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different controllers and swap their assignments.

• Activate controller: activates a randomly chosen inactive

controller.

• Merge assignments: randomly selects two controllers

and reassigns all switches of one controller to the other.

The idle controller is then deactivated.

The Successor procedure in Algorithm 2 returns a random next

state from the current state using one of the aforementioned

moves. This procedure always returns a feasible successor such

that no constraint is violated.

VI. EVALUATION

We evaluate the performance of our proposed framework

through extensive simulations. We tried different simulation

methodologies to find a suitable one for our purpose. First, we

tried to use Mininet [11] with POX [1] controllers deployed

on the same physical machine, but found that mininet is

inadequate for our purpose as it cannot handle the amount

of traffic we wanted to simulate. Mininet simulates hosts

and switches in separate network namespaces and connects

them with virtual Ethernet interfaces. Traffic from switch-to-

host, switch-to-switch, and switch-to-controller flows through

the loopback interface of the physical machine. As a result,

the switching capability of this loopback interface limits

the amount of traffic that Mininet can simulate. As we are

simulating large WAN networks, the amount of traffic is huge

and the loopback interface was not able to process it in

a timely manner. Second, we ran Mininet in one physical

machine and ran the controllers in multiple physical ma-

chines, hoping to decrease the load on the loopback interface.

However, in this case traffic from different switches were

serialized through the loopback interface, whereas they should

be forwarded to their respective controllers in parallel. Due

to this serialization, the impact of traffic is skewed and the

obtained results are characterized by the switching capability

of the loopback interface, instead of the generated traffic.

So, we opted for an in-house simulator where we simulate

the propagation delays between switch-to-switch, switch-to-

host, and switch-to-controller. Controller capacity is simulated

using the results provided by Tootoonchian et al. [15] for

the NOX [2] controller. All our simulations were conducted

on a single machine with dual quad-core 2.4GHz Intel Xeon

E5620 processors and 12-GB of RAM. In the following, we

first describe in detail the simulation setup and the dataset

we used. We then describe the metrics used to evaluate the

effectiveness of our proposed framework. Finally, we compare

our DCP algorithms (DCP-GK and DCP-SA) with two static

scenarios: in the first case, a single controller is used for the

entire network (1-CRTL), while in the second, one controller

is used for each switch (N-CTRL).

A. Simulation Setup

In our experiments, we simulate two different ISP topolo-

gies RF-I (79 nodes, 294 links) and RF-II (108 nodes, 306

links) with inter-node latencies obtained from the RocketFuel

repository [13]. We assume each node in the RocketFuel topol-

ogy to be an OpenFlow switch. We assume that controllers can

be dynamically provisioned at any of these switches’ locations.

Controllers communicate with each other to exchange and

synchronize switch status and port level status. Each controller

computes a path for a new incoming flow from the information

it has about the network in its local database and sets up paths

according to the method described in Section III.

We use iperf to generate TCP flows between the end

hosts [3]. The end hosts of each flow is chosen randomly.

To make the traces more realistic, we generated the flows

according to the distribution of flow sizes, flow inter arrival

times, and number of concurrent flows reported in a recent

study on network traffic characterization [6]. The generated

traffic spans 48 hours capturing the time-of-day effect.

Finally, the management framework is implemented in

Python. Specifically, the monitoring module periodically pulls

statistics from the controllers, the reassignment module runs a

heuristic (either DCP-GK or DCP-SA) using these statistics to

find the next switch-to-controller assignment, and the provi-

sioning module assigns switches to their controllers according

to the assignment generated by the reassignment module.

B. Results

We run each simulation for 48 hours with the reassignment

heuristic running every 60 minutes. The reassignment interval

can be further tuned through a more detailed analysis of the

traffic. At each interval, we compute the average flow setup

time, the set of active controllers, and the number of exchanged

messages between the active controllers.

Fig. 3 shows the number of active controllers and average

flow setup time during each interval for both topologies. For

the one controller (1-CTRL) case, flow setup time varies with

traffic load. If there is a peak in traffic then flow setup time also

increases. A single controller cannot keep the flow setup time

consistent or within acceptable limits, which is reported to be

200ms in [4] for mesh restoration. Hence, a single controller

cannot provide any service guarantees. On the other hand

in the N-CTRL case, the flow setup time is almost zero as

expected. However, in this case the messaging overhead is

much higher (as shown in Fig. 5 and explained later in this

section). Fig. 3(a) and Fig. 3(b) report the above mentioned

metrics for topology RF-I, using greedy knapsack (DCP-GK)

and simulated annealing (DCP-SA) heuristics, respectively.

DCP-GK keeps the flow setup time within 140ms and manages

to keep it consistent even during traffic spikes. Even though

we can see small spikes in flow setup time, none of them is

as high as for the 1-CTRL case. DCP-GK also uses much

fewer controllers than N-CTRL. The maximum number of

controllers used by DCP-GK is only 25, during time interval

22, which is around 30% of the N-CTRL (79 controllers)

case. From Fig. 3(b), we can see that DCP-SA performs much

better than DCP-GK and 1-CTRL. Flow setup time is within

60ms and number of controllers is less than that of both DCP-

GK and 1-CTRL. It uses a maximum of 18 controllers that

is around only 23% of the N-CTRL case. Effect of traffic
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(a) DCP-GK on RF-I
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(b) DCP-SA on RF-I
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(c) DCP-GK on RF-II
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(d) DCP-SA on RF-II

Fig. 3. Controller Count and Flow Setup Time vs. Time

spikes is further reduced in this case and the flow setup time

is almost constant throughout 48 hours of simulated time. This

shows the effectiveness of our dynamic controller provisioning

mechanism. Similar behavior is also observed for RF-II as

reported in Fig. 3(c) and 3(d).

Although DCP-SA outperforms DCP-GK in both number

of controllers and flow setup time, there is a penalty. DCP-

SA requires much longer time to run than DCP-GK. In our

simulation setup, DCP-SA took around 2 minutes to perform

one reassignment for topology RF-I, whereas DCP-GK took

only 0.41 seconds. For topology RF-II DCP-SA took around 4

minutes and DCP-GK took only 0.44 seconds. So, DCP-SA is

preferable for near-optimal solutions and DCP-GK is suitable

when we need solutions within a small amount of time.

Fig. 4(a) and Fig. 4(b) show the CDFs of flow setup time for

topologies RF-I and RF-II, respectively. We can see that DCP-

SA outperforms both DCP-GK and 1-CTRL in both cases by

a large margin. DCP-SA always provides shorter flow setup

time than 1-CTRL and all flows are setup within the acceptable

range of 200ms. For RF-I, DCP-SA takes at most 120ms

and for RF-II, it takes at most 150ms. While DCP-GK takes

longer, it completes 99% flow setups within the acceptable

range of 200ms for both topologies. On the other hand 1-

CTRL can complete only 60% flow setups within 200ms and

the maximum time it takes is close to 450ms (more than twice

of the acceptable range) for both topologies. DCP-GK cannot

outperform 1-CTRL for low flow setup time, which is evident
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Fig. 4. CDF of Flow Setup Time

in Fig. 3(a) and Fig. 3(c). This happens during low traffic load

conditions. This is a direct consequence of the greediness of
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this heuristic, as it chooses the best controller at each stage

without looking ahead and thereby missing a better solution.

The N-CTRL case shows the lowest flow setup time, but this

is a hypothetical, un-realistic lower bound. Clearly, connecting

one controller per switch – is not an acceptable solution for

this problem. We included it for comparing with the absolute

lowest possible flow setup time.
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Fig. 5. Summary of Overhead and Average Flow Setup Time

Fig. 5(a) and Fig. 5(b) report the messaging overhead and

average flow setup time for both topologies. 1-CTRL has

the lowest messaging overhead as there is no synchronization

and controller-to-controller communication overhead. On the

other hand, N-CTRL has the highest messaging overhead as

every controller is communicating with every other controller.

Messaging overhead for DCP-GK and DCP-SA is in between

these two. Overhead for DCP-SA is smaller than DCP-GK as

it uses fewer number of controllers and is very close to the 1-

CTRL (lower bound) case for both topologies. As mentioned

earlier, average flow setup time for DCP-SA is lower than both

DCP-GK and 1-CTRL, but higher than N-CTRL. For topology

RF-I and RF-II, average flow setup time for DCP-SA is 29 and

34ms, respectively. For the N-CTRL case flow setup times are

much lower (3.5 and 9ms, respectively). So, DCP-SA provides

flow setup times very close to N-CTRL (hypothetical lower

bound for flow setup time) case and also incurs messaging

overhead very close to 1-CTRL (lower bound for messaging

overhead) case. On the other hand, DCP-GK does not provide

as good result as DCP-SA, but the solutions are quite good

and require fractions of seconds to run.

VII. CONCLUSION

In this paper, we identified the Dynamic Controller Provi-

sioning Problem (DCPP) in SDN. We proposed a management

framework for dynamically deploying multiple controllers.

We also provided a mathematical formulation of DCPP as

an ILP. Since DCPP is an NP-hard problem, we provided

two heuristic algorithms (DCP-GK and DCP-SA) to solve

it. The emulation results presented in this paper provide

important insights on various controller placement strategies.

Running a single controller causes high flow setup delay, as

propagation delay between controller and switches are higher

and flow setup requests can get queued at the controller

because of limited processing capacity. On the other hand,

running one controller per switch can provide close to zero

flow setup times, but incurs significant overhead for inter-

controller communication. Our framework achieves a balance

between flow setup time and messaging overhead. Emulation

results show that, DCP-SA and DCP-GK succeed to find a

right trade-off between these two extremes and provide near

optimal solutions. DCP-SA provides better results than DCP-

GK, but takes longer to converge.

We intend to extend this work in three directions. First,

we want to improve the convergence time of DCP-SA. An

interesting approach is to generate quick but less accurate

initial solutions using DCP-GK and then optimizing them

using DCP-SA. Second, we want to explore other heuristic

algorithms to achieve better performance and accuracy. Third,

we intend to further demonstrate the effectiveness of the

proposed management framework through experiments on a

real testbed.
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