
A Cloud Monitoring Framework for Self-Configured

Monitoring Slices Based on Multiple Tools

Márcio Barbosa de Carvalho, Rafael Pereira Esteves, Guilherme da Cunha Rodrigues,

Lisandro Zambenedetti Granville, Liane Margarida Rockenbach Tarouco

Institute of Informatics – Federal University of Rio Grande do Sul

Av. Bento Gonçalves, 9500 – Porto Alegre, Brazil

Email: {mbcarvalho, rpesteves, gcrodrigues, granville}@inf.ufrgs.br, liane@penta.ufrgs.br

Abstract—The monitoring of cloud computing environments
is a key point to assure the availability of the cloud slices
offered to cloud users. However, there are not any monitoring
systems that satisfy all the cloud administrator requirements
which imposes that cloud slices need to be monitored by a set of
monitoring systems. The set of monitoring system configuration
necessary to monitor a cloud slice and the corresponding set of
monitored metrics we define as a monitoring slice. Unfortunately,
the monitoring slices need to be built using solutions that are not
integrated with cloud platforms. This lack of integration imposes
that cloud administrators manually configure the monitoring
solutions or develop scripts to automate this task. In this paper
we propose a framework to address the problem of creating
monitoring slices automatically independent of the monitoring
solutions employed. To evaluate our proposed framework in an
IaaS scenario, we develop FlexACMS, flexible automate cloud
monitoring slices, which relies on a modules that flexibly handles
cloud platforms and monitoring solutions.

I. INTRODUCTION

In Infrastructure as a Service (IaaS) clouds [1], cloud

users request computing resources (e.g., compute, storage, and

network resources) from cloud providers. The set of resources

granted to a cloud user is usually referred to as a cloud slice.

In order to increase revenue, cloud providers need to optimize

the utilization of physical computing resources in each granted

slice. At the same time, cloud providers need to guarantee

that the offered slices present performance consistent with the

cloud user’s expectations; otherwise, customers may stop their

cloud service subscription, which leads to revenue losses at the

provider side. Cloud slices must therefore be closely monitored

by the cloud provider, to avoid wasting expensive physical

resources while still satisfying the cloud user’s expectations.

Once a new cloud slice is created, a set of monitoring solu-

tions need to be configured [2] in order to start monitoring the

computing resources that form the new slice. We call the set

of monitoring solution configurations and the corresponding

monitored metrics a monitoring slice. Every cloud slice is

coupled with a monitoring slice, whose goal is to detect cloud

slice malfunctioning. However, the lack of integration between

some monitoring solutions and cloud platforms imposes for

cloud administrator to manually set up the solutions or develop

scripts to automate the monitoring slice creation. For cloud

environments with few cloud slices, triggering scripts or

manually setting up monitoring slices may still be possible.

However, in larger or more dynamic environments where cloud

slices are created and destroyed frequently, manually handling

the monitoring slices is unfeasible.

In this paper, we address the problem of automatically set-

ting up cloud monitoring slices. In our solution, we introduce a

cloud monitoring framework that enables cloud administrators

to describe which monitoring solutions should be used and

how these solutions must be configured, in each monitoring

slice that needs to be created to monitor new granted cloud

slices. When a new cloud slice is in place, its monitoring slice

is then automatically set up by the framework. In addition

to reduce the administrator’s burden from the previously

required manual configurations, our solution also facilitates

the administrator’s exploitation of monitoring solutions.

The main contribution of this paper is a cloud monitoring

framework for cloud slices that: (i) enables self-configurable

cloud monitoring strategies independent of the monitoring so-

lutions employed; (ii) automatically creates monitoring slices

with solutions that satisfy the cloud administrator’s needs; and

(iii) facilitates the reuse of scripts developed to automate the

creation of monitoring slices.

The framework can be used in different cloud platforms and

integrates a varying number of monitoring solutions. By col-

lecting information from cloud environments, the framework

is able to detect new cloud slices created in the cloud platform.

For each new detected cloud slice, the framework triggers

components that configure the monitoring solutions, building

the corresponding monitoring slice for that cloud slice. Our

second contribution is FlexACMS, a flexible automated cloud

monitoring system that implements our framework architec-

ture, we developed to evaluate the framework in an Infras-

tructure as a Service (IaaS) scenario.

The remainder of this paper is organized as follows. In Sec-

tion 2, the state-of-the-art on cloud computing monitoring is

reviewed. In Section 3, we define the monitoring slices, present

the framework architecture, the FlexACMS implementation

details, and a typical FlexACMS use case. In Section 4, we

present brief comments about the evaluation results. Finally,

in Section 5, we present conclusions and future work.

II. RELATED WORK

A variety of monitoring solutions are available for cloud

operators to gather updated status of cloud slices. Cloud

monitoring solutions differ in terms of the resources that are

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper180

monitored (e.g., servers, storage, network, services), the ability

to monitor heterogeneous environments built using different

technologies, and the ease of configuration and use. In this

section we review relevant cloud monitoring solutions.

Private Cloud Monitoring Systems (PCMONS) [3] is an

open-source system for cloud monitoring that abstracts the

heterogeneity of a cloud through a layer called Integration,

which allows uniform monitoring of different cloud platforms

and different virtualization technologies.

Amazon CloudWatch [4] enables scalable and flexible mon-

itoring of Amazon cloud resources and services [5]. Amazon

CloudWatch offers several monitoring functionalities, includ-

ing a set of basic metrics, user-defined metrics, statistics,

graphics presentation, and self-configuration.

Runtime Model for Cloud Monitoring (RMCM) [6] is a

solution for monitoring all layers of a cloud environment,

from the physical substrate to the hosted applications. RMCM

provides customizable views of the monitored resources for

different interested users (e.g., cloud operators, end-users).

Global Monitoring systEm (GMonE) [2] is a cloud moni-

toring solution engaged in providing measures of appropriate

metrics to clients and providers. On the client-side, GMonE

provides metrics related to the established Service Level

Agreements (SLAs). On the provider-side, GMonE provides

metrics from all levels of a IaaS cloud environment.

In addition to monitoring solutions with native support for

cloud computing, traditional monitoring solutions that usually

do not have native support for cloud computing, such as Na-

gios [7], Zabbix [8], and MRTG [9], also can be employed in

cloud computing monitoring. Traditional monitoring solutions

have positive aspects that are not present in cloud monitoring

solutions, e.g., ability to deal with heterogeneous environments

and the intrinsic know-how that the administrators have about

traditional monitoring solutions.

Available cloud monitoring systems present one or more

features that help creating cloud monitoring slices, such as

self-configuration to reduce the need for human intervention

(e.g., Amazon CloudWatch), ability to monitor heterogeneous

infrastructures (e.g., Nagios), and flexibility to adapt generic

monitoring solutions to the context of cloud computing (e.g.,

PCMONS). However, there is no solution integrating all these

features in a common monitoring framework. To overcome the

limitations of native cloud monitoring solutions and integrating

monitoring solutions without support for cloud as well, we

propose a self-configurable cloud monitoring framework that

allows the automatic creation of monitoring slices using multi-

ple monitoring solutions regardless of the monitored platform.

III. PROPOSAL

Cloud monitoring applications should be self-configurable

to both adapt to changes in the cloud platform and minimize

the number of error-prone human interventions. In this section,

we define the concept of monitoring slices and propose a

flexible cloud monitoring framework that creates monitoring

slices integrating cloud-specific and non-cloud monitoring so-

lutions that are automatically configured to reflect the creation

of new cloud slices. We also provide implementation details

of FlexACMS, a flexible automated cloud monitoring system,

that was developed using the framework architecture to build

monitoring slices as depicted on Figure 1.

A. Monitoring slices and Framework architecture

Monitoring Slices reflect all the monitoring information

about a cloud slice which is composed by the collected

values of the metrics monitored and the configuration of the

monitoring solutions that are needed to collect these met-

rics. Monitoring slices are composed of monitoring solutions

tackling diverse needs of cloud administrators because the

monitoring solutions do not fulfill all cloud administrator

needs [2]. Figure 1 depicts cloud slices coupled with their

corresponding monitoring slices using native cloud monitoring

solutions (i.e., OpenStack Ceilometer [10]) and non-cloud

monitoring solutions (i.e., Nagios [7], and MRTG [9]).

CPU

Memory

Network

CPU Utilization

Memory Utilization

Network Utilization

Monitoring SlicesCloud Slices

OpenStack

Ceilometer

Fig. 1. Typical cloud monitoring scenario composed by cloud-specific and
non-cloud monitoring solutions

The framework enables the creation of monitoring slices

when a new cloud slice is created. In addition, the framework

allows cloud administrators to build monitoring slices with

any available monitoring solution that better fits their needs.

Thus, cloud administrators do not need to manually detect

the creation of new cloud slices and configure the respective

monitoring slice manually or triggering scripts. The framework

is based on a modular architecture as illustrated in Figure 2.

The architecture of our framework is composed of three main

components: gatherers, framework core, and configurators.

Gatherers are responsible for collecting information about

cloud platforms and for sending that information to the

framework core through a REST Web service. Gatherers are

developed to collect information from diverse cloud platforms

using different interfaces. For example, a gatherer is developed

to collect platform information using a specific interface, such

as the Amazon EC2 API [11], the OGF Open Cloud Comput-

ing Interface (OCCI) [12], or the DMTF Cloud Infrastructure

Management Interface (CIMI) [13]. The Amazon EC2 API

is a de facto standard interface to cloud management and is

adopted by cloud platforms such as OpenStack [14]. However,

OCCI and CIMI also are proposals of standard interfaces

for cloud computing management. Standard interfaces have

the advantage of eliminating the need for a high number of

platform-specific gatherers, i.e., a small number of gatherers,

one for each standard interface, can communicate with cloud

platforms compliant with such standard interfaces.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper181

Framework Core

Gatherers

Configurators

REST

WebService

Change

Detection

Configuration

Executor

REST

Framework

API

...

Cloud Monitoring

...
Monitoring

Slices

Cloud Platform

...
Cloud

Slices

Platform

API

Monitoring tool

API

Fig. 2. Framework architecture

The framework core is responsible for processing the infor-

mation about cloud platforms received from the gatherers, to

store cloud platform information used to enable the detection

of changes (e.g., cloud slice creation), and to trigger config-

urators to actually build the corresponding monitoring slices

of new detected cloud slices. The framework core receives

information from gatherers through a REST Web service,

which facilitates the development and deployment of gatherers.

After receiving information about cloud platforms from

gatherers, the framework core tries to detect changes in the

current configuration of the cloud platform, e.g., if new cloud

slices have been created. The Change Detection module looks

at the identifier of each slice informed by the gatherer to

compare the informed identifier to the ones currently stored

in the database. If the Change Detection module finds a new

slice, the module stores the new slice and inserts the detected

change (new slice creation) into a change database. Of course,

if the cloud platform has some facility to discover the creation

of cloud slices, we do not need a change detection module.

However, this facility is not available in all cloud platforms

which imposes the utilization of this module.

Configurators are responsible for receiving information

from framework core and for configuring monitoring solutions

that form monitoring slices. Configurators are scripts that are

registered in FlexACMS to be triggered to actually configure

the monitoring solutions. Thus, the monitoring solutions must

be able to be configured by scripts to be supported by

FlexACMS. The Configuration Executor module triggers the

configurators and passes, as arguments, the information that

configurators need to setup the monitoring solution. Each con-

figurator handles the peculiarities of the monitoring solutions

deployed in the monitoring slice, e.g., generating configuration

files (Nagios) or running configuration scripts (MRTG). In

fact, the scripts developed by the administrators to automate

configuration tasks can be registered on the framework as

Configurators. These scripts can benefit from the framework

which retrieves the information that the scripts need and

automates the execution when a new cloud slice is created.

In the framework, each configurator has an interest and

a set of conditions that are verified. The interest indicates

the type of change supported by the configurator (e.g., new

slice, new resource). The conditions are states that the object

(e.g., slice or resource) must satisfy to be configured by the

configurator. For example, the configure_mrtg configu-

rator, presented in Figure 3, is interested on new resource

changes because it configures the MRTG solution to monitor

network interfaces which are represented as resources on the

framework. However, all kind of resources of a slice (e.g.,

CPU, memory, storage) falls in this interest. Therefore, to

restrict the configurator execution to the appropriate resources,

configure_mrtg configurator must satisfy the condition

that the resource identifier corresponds to network. Thus,

interest and conditions assure that the configure_mrtg

configurator is executed only when a new network resource

is created on a cloud slice.

Name: configure_mrtg

Interest: New resource

Condition: @resource.identifier =˜ /network/

Command: /usr/sbin/configure_mrtg.pl

Args: --slice_name @slice.identifier

--ip @slice.ip

--interface_name @resource.interface

Fig. 3. Configurator attributes

The Configuration Executor module looks to the list of

registered configurators, and, for each configurator, the module

performs a search on the change database looking for the

corresponding changes of interest. For each change matching

the configurator’s interests, the Configuration Executor checks

if the change was not previously configured. If the change

was not configured in the past, the Configuration Executor

evaluates if the change satisfies all conditions defined by

the configurator. If the change satisfies all conditions, the

Configuration Executor can trigger the configurator to perform

the configuration of the monitoring solution. However, before

triggering the configurator, Configuration Executor must eval-

uate the arguments needed by the configurator in order to run

properly. The arguments are the way which the framework

core communicates with the configurators and are signaled

by the ”@” in the configurator definition. For example, in

the configure_mrtg presented in Figure 3, the Config-

uration Executor needs to retrieve @slice.identifier,

@slice.ip, and @resource.interface from the

framework database. After retrieving the arguments, the mod-

ule triggers the configurator using the arguments and stores

the configurator output for future analysis or debugging.

B. FlexACMS implementation and Use Case

In this subsection, the scenario illustrated on Figure 1 is

reviewed to present the FlexACMS implementation and its

typical use case. In the illustrated scenario, cloud slices hosted

by the OpenStack platform are monitored through the native

cloud monitoring solution Ceilometer [10], and through non-

cloud monitoring solutions Nagios and MRTG. However, in

the typical scenario, the administrator must manually configure

Nagios and MRTG, since these traditional solutions do not sat-

isfy the self-configuration property. Cloud slices are composed

of CPU, memory, and network; and monitoring slices reflect

CPU utilization, memory utilization, and network utilization.

To collect information about cloud slices and their re-

sources, we develop an OpenStack gatherer that supports the

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper182

OpenStack API [15] which is based on Web Services. The

OpenStack gatherer was developed using Python and use sev-

eral web services from the OpenStack API to collect different

information. The gatherer sends the collected information to

the REST Web service in the FlexACMS core.

The FlexACMS core was developed using the Ruby on Rails

framework and uses a MySQL 5.5 database to store the cloud

platform information. Each time that the OpenStack gatherer

sends information to the FlexACMS core, the Change Detec-

tion module evaluates the received information and updates

the change database storing all changes (e.g., slice creations)

that were performed in the OpenStack platform.

Finally, we develop configurators for both Nagios and

MRTG using Perl and Bash scripts, respectivelly. Nagios uses

distinct configurations for host and for service/resource status.

We then need a configurator to reflect the creation of new

slices (host) in Nagios, and a configurator for each monitored

resource (CPU and memory). Thus, we develop three configu-

rators to Nagios: one for slice creation, one for CPU utilization

monitoring, and one for memory utilization monitoring. On

the other hand, we develop a configurator for MRTG to

execute scripts that actually configure MRTG: cfgmaker and

indexmaker, used to create the configuration and the index

page required by MRTG graphs, respectively.

Furthermore, we need to register these configurators in

FlexACMS core using attributes as shown in Table I. After reg-

istering configurators, Configuration Executor module looks at

the change database and finds all changes that are of interest

of the configurators, evaluates if the changed objects satisfy

the configurator conditions, and triggers the corresponding

configurators to actually configure the monitoring solutions.

TABLE I
CONFIGURATORS ATTRIBUTES TO THE USE CASE SCENARIO

Configurator

Name Interest Condition

nagios New Slice

nagios cpu New Resource @resource.identifier =˜ /CPU/

nagios memory New Resource @resource.identifier =˜ /memory/

mrtg New Resource @resource.identifier =˜ /network/

Along this section, we proposed a framework with its de-

scribed functionally. We develop FlexACMS using the frame-

work architecture that is able to automatically create monitor-

ing slices when cloud slices are created in the OpenStack plat-

form. Moreover, because the framework withdraws from cloud

administrators the burden of manually configuring monitoring

slices and facilitates the automation scripts development, cloud

administrators can explore a variety of monitoring solutions

in the context of cloud computing to fulfill their needs. In

addition to the description of the functional properties, we

provide a brief evaluation about aspects which can influence

the deployability of FlexACMS in real IaaS cloud scenarios.

IV. EVALUATION

We observed the execution of a whole cycle since the cre-

ation of cloud slices on OpenStack platform to the creation of

monitoring slices using Nagios configurators. We create from 1

to 10 servers on OpenStack and observe the time to create their

corresponding monitoring slices using Nagios configurators

to monitor the host and a resource (CPU). This observation

showed that the time to create cloud slices on OpenStack

was around to 65% from the whole time of the experiment.

FlexACMS uses 35% of the time which is 70% used by the

Nagios configurators. The time spent by OpenStack platform

and Nagios configurators are related to the scheduling strategy

in the creation of cloud slices and the reload process to make

new configurations available, respectively. However, both are

peculiarities of the platforms and monitoring solutions which

affect the correct evaluation of the whole system. Thus, we

need to evaluate the FlexACMS core using strategies to do

not take into account gatherers and configurators peculiarities.

Despite this initial observation, further evaluation in real

scenarios using diverse cloud platforms and monitoring solu-

tions still is desirable. We need to evaluate scalability issues in

regards to the framework deploying. This scalability evaluation

must include a varying number of metrics that can be con-

figured by the framework which obviously can influence the

framework response time. Beyond, the scalability evaluation

must consider large scenarios and whether the framework

performance is affected in these scenarios.

V. CONCLUSION

In this paper, we presented a cloud monitoring framework

that supports the creation of monitoring slices, which are

composed of a set of monitoring metrics and associated

configurations used to monitor cloud slices on cloud plat-

forms. Monitoring slices are built using diverse monitoring

solutions including solutions that are not integrated to cloud

platforms (e.g., Nagios, MRTG). The framework presents a

modular architecture that allows communication with diverse

cloud platforms and monitoring solutions. In our modular

architecture, gatherers are modules responsible to interact with

cloud platforms to retrieve information about hosted cloud

slices and send this information, through a REST Web service,

to the framework core. Configurators are modules responsible

to retrieve information from the framework core and configure

monitoring solutions to build monitoring slices. Furthermore,

gatherers and configurators communicate with the framework

core through well defined interfaces.

As future work we want to extend the FlexACMS evaluation

in IaaS scenarios and beyond evaluate scalability issues on

the use of the framework, such as an increasing number of

metrics per slice. After solve the problem of create monitoring

slices automatically, we are able to address other related cloud

monitoring issues, as the reconfiguration and destruction of

monitoring slices and adaptive allocation strategies in creating

new monitoring slices. We also plan to further observe how the

cloud platform affects the time required to create new mon-

itoring slices, and whether the CPU and memory utilization

also would be impacted. Furthermore, we want to evaluate the

framework in Platform as a Service (PaaS) and Software as a

Service (SaaS) cloud models.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper183

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
Break in the Clouds: Towards a Cloud Definition,” SIGCOMM Comput.

Commun. Rev., vol. 39, no. 1, pp. 50–55, Dec. 2008.
[2] J. Montes, A. Sánchez, B. Memishi, M. S. Pérez, and G. Antoniu,

“GMonE: A complete approach to cloud monitoring ,” Future Genera-

tion Computer Systems, pp. –, 2013.
[3] S. De Chaves, R. Uriarte, and C. Westphall, “Toward an Architecture for

Monitoring Private Clouds,” Communications Magazine, IEEE, vol. 49,
no. 12, pp. 130 –137, Dec. 2011.

[4] Amazon, “Amazon CloudWatch,” 2013, available at:
http://aws.amazon.com/en/cloudwatch/. access in: May 2013.

[5] ——, “Amazon Web Services,” 2013, available at:
http://aws.amazon.com/. accessed in: May 2013.

[6] J. Shao, H. Wei, Q. Wang, and H. Mei, “A Runtime Model Based
Monitoring Approach for Cloud,” in IEEE 3rd International Conference

on Cloud Computing, Jul. 2010, pp. 313 –320.
[7] Nagios Enterprises, “Nagios,” 2013, available at: http://www.nagios.org/.

access in: May 2013.
[8] Zabbix, “Zabbix,” 2013, available at: http://www.zabbix.com/. accessed

in: May 2013.
[9] Tobias Oetiker, “MRTG,” 2013, available at: http://oss.oetiker.ch/mrtg/.

accessed in: May 2013.
[10] OpenStack Community, “Ceilometer,” 2013, available at:

https://wiki.openstack.org/wiki/Ceilometer/. accessed in: May 2013.
[11] Amazon, “Amazon EC2 (API Version 2012-07-20),” 2012, available at:

http://aws.amazon.com/archives/Amazon-EC2/. accessed in: May 2013.
[12] Open Grid Forum, “GFD.183 OCCI Core (v1.1),” 2013, available at:

http://ogf.org/documents/GFD.183.pdf. accessed in: May 2013.
[13] DMTF Cloud Management Working Group (CMWG), “DSP0263 -

CIMI Model and REST Interface over HTTP,” 2013, available at:
http://dmtf.org/standards/cloud/. accessed in: May 2013.

[14] OpenStack Community, “OpenStack,” 2013, available at:
http://www.openstack.org/. accessed in: May 2013.

[15] ——, “OpenStack API,” 2013, available at: http://api.openstack.org/.
accessed in: May 2013.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper184

