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Abstract—We describe a system for estimating the reliability of 
nodes in a mobile ad hoc network. The goal of the system is to 
detect insider attacks on the control plane of wireless protocols at 
the link and network layers, and to generate and propagate 
corresponding reliability estimates for nodes across the network. 
Our contributions are two-fold: first, we implement a cross-layer 
invariant-based technique for attack detection, where rules about 
correct combined behavior of protocols are specified based on 
data collected from multiple layers of the protocol stack. Next, we 
use the results of our attack detection techniques to compute 
reliability estimates for network nodes, where a reliability 
estimate represents the estimate of a node N for another node M. 
The form of our reliability estimate for a node is expressed as 
(t,c), where t indicates the trust for that node, and c indicates the 
confidence in this trust value. Reliability estimates are 
propagated across the network in a manner that is resilient to 
malicious nodes that propagate false reliability estimates, and 
minimizes network overheads. Our simulation results show that 
the above techniques result in highly accurate reliability 
estimates even in the presence of multiple malicious nodes in the 
network.  
 
Keywords: Attack detection, control plane attacks, trust 
propagation, intrusion detection, mobile ad hoc networks. 

I.  INTRODUCTION 
Much of the work that has been performed in the area of 

Mobile Ad hoc Network (MANET) technologies in the recent 
past has focused on improving performance and maximizing 
network throughput under benign conditions. However, as 
various studies have shown, the control plane protocols used 
in these networks for coordinating activities at various layers 
of the stack are often vulnerable to attacks. The problem is 
even more pronounced when the attacker is an “insider” and 
has access to a network node, where he or she can modify 
control plane software at will and thereby disrupt network 
operations. Wireless control protocols share information about 
network resources such as spectrum, power, link state, routing, 
etc. Based on the exchanged information, nodes make 
decisions about frequency usage, data transmission schedules, 
how to route network traffic, and so on. A malicious node can 
wreak havoc on the network by manipulating the information 
transmitted via these protocols.  

In order to enable network nodes to protect themselves 
against network attacks, they must be able to detect these 
attacks and develop reliability estimates for other network 
nodes. Mitigation techniques can then be developed to route 
around or otherwise minimize the impact of malicious nodes. 
The scope of the work described in this paper is not to develop 
these mitigation techniques, but rather, to develop techniques 

for accurate estimation of the reliability of network nodes, to 
provide a basis for deciding about potential mitigation 
techniques. The challenges to be addressed are two-fold: first, 
how do we accurately detect attacks against wireless control 
protocols, and second, how do we propagate information 
about detected attacks to other nodes so that nodes can 
accurately estimate the reliability of nodes in their vicinity? 
These are the challenges that we address in this paper. 

In this paper, we describe a cross-layer invariant-based 
technique for attack detection, where rules about correct 
combined behavior of protocols are specified based on data 
collected from multiple layers of the protocol stack. The use of 
invariants within a single protocol has been shown [5] to 
detect a variety of possible malicious behavior with very few 
basic rules concerning the single protocol. In contrast, our 
approach works across multiple protocols and layers of the 
protocol stack and specifies events that must occur in all of 
these layers if the protocol stack operates correctly. Next, we 
describe a method for computation of unified reliability 
estimates that addresses the challenge of computing such 
estimates in a highly dynamic and bandwidth-constrained 
wireless network where many nodes may be unreliable or 
malicious. Our approach is partly based on [17], where unified 
reliability estimates are computed using a very efficient 
mathematical approach that is tailored for such environments 
and has been shown to be very robust against lying nodes.  

The outline of the paper is as follows. In Section II, we 
describe related work. In Section III, we provide an overview 
of our approach, and in Section IV, we present our system 
evaluation. We summarize our conclusions and discuss future 
work in Section V. 

II. RELATED WORK  
There are three major existing categories of network attack 

detection systems [2]: anomaly detection systems that are 
trained to recognize normal behavior using machine learning 
techniques; misuse detection techniques that store patterns, or 
signatures, of known attacks and compare them with observed 
data; and specification-based detection, where the correct 
operation of a protocol is specified and its execution is 
monitored to verify that it conforms to the specification. It is 
well known that anomaly detection techniques provide the 
ability to detect zero-day attacks and generally provide 
excellent attack detection capabilities (or low rates of false 
negatives), but typically have a high rate of false positives 
(false alarms), whereas misuse-based and specification-based 
techniques are effective at detecting attacks with a low rate of 
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false positives but a high rate of false negatives (undetected 
attacks) [3]. Our approach differs from past work because (i) it 
focuses on the detection of attacks against multiple control 
protocols, which is a relatively immature area, and (ii) our 
proposed cross-layer invariant-based detection has not been 
tried before; the closest work we are aware of specifies 
invariants for single protocols [5].  

Trust evaluation/analysis [8-13] and trust aggregation 
[4,6,8,11,13,14] have been studied in a general setting, as well 
as for MANETs specifically [14,16,17,18]. Relevant work can 
be partitioned into centralized approaches, that require every 
node to share trust information with every other node, and 
distributed aggregation approaches such as that described in 
[17]. Our approach is based on [17] and is superior to 
centralized approaches due to its bandwidth efficiency, which 
is critical for wireless networks. This is enabled by our trust 
computation operators that allow efficient local computation 
of trust based solely on the opinions of neighboring nodes, as 
well as the fact that we strictly limit the propagation of 
reliability estimates to a few hops and we do not propagate 
reliability estimates that have low confidence values. Our 
approach is also resilient to nodes lying about reliabilities.   

III. OVERVIEW OF TECHNICAL APPROACH 

A. Cross-Layer Invariant-Based Detector 
      We have developed a cross-layer invariant-based detector, 
where rules about correct combined behavior of protocols are 
specified based on statistics collected at multiple layers of the 
protocol stack. This enables automation of the application of 
substantial available expert knowledge of current/future 
control protocols, tactical radios, platform capabilities and 
mission information, and makes our system easily extensible, 
since new invariants can be added as humans gain more 
insights and expertise in the correct operation of different 
control protocols. A critical point to note is that these 
invariants are independent of network conditions, and are 
therefore robust to the dynamics of a wireless network. 

Our detector extracts data from packet and frame traces 
overheard from multiple layers of the protocol stack, including 
transport, network, and MAC, as well as associated link layer 
data (e.g., SNR). Each node maintains a near-term history of 
such traces, and invariants are evaluated on the conversations 
extracted from the traces. Finally, we leverage the fact that for 
certain network deployments, there is typically a lot of 
additional information available, such as asset information and 
capabilities, node movement capabilities, node locations, node 
mobility plans, etc. Our invariants use this additional 
information when relevant. Below, we present a few illustrative 
invariant examples for OLSR HELLO messages and IP 
forwarding. In addition to invariants about control protocols, 
we also specify invariants that catch attacks against the 
reliability propagation algorithm.  
Info used Description of some sample invariants and what a 

violation may indicate 
OLSR and 
physical 

For each neighbor node N claimed by node X in a HELLO 
message, an observer node Y verifies the possibility of node N 

constraints, 
location 
data 

being X’s neighbor against theoretical maximum ideal radio 
coverage and likely current coordinates, given most recently 
received actual coordinates/direction of motion and possible 
node movement speeds.  If the number of inconsistencies is 
above a specified ratio threshold, Y places X under suspicion. 

OLSR, 
MAC 

Nodes X and Y are one-hop neighbors and X is the next hop 
from Y to Z. Y has X's most recent advertised neighbor set and 
continuously observes MAC layer transmissions from X. When 
Y sends traffic destined to Z, verify that X forwards Y's 
messages. If not, Y places X under suspicion. 

After all necessary invariants have been evaluated, the 
results are used to create numerical trust values for the 
neighbors of the local node; e.g., a node that has been 
identified as a definite violator of invariants is assigned a trust 
value of 0, and a node that may be a violator is assigned a trust 
value proportionate to the certainty associated with the 
diagnosis. The associated confidence value is computed based 
various factors including the quality and quantity of the input 
data provided to the detector.  
B. Reliability Computation  

The form of our reliability estimate for a node is expressed 
as (t,c), where t indicates the trust for that node, and c indicates 
the confidence in this trust value. A node derives trust 
estimates for its neighbors based on input from the attack 
detector described above. The confidence level is a measure of 
how “good” the trust estimate is, based on a variety of 
indicators, including the noisiness of the RF environment 
(which influences the correctness of the observable features), 
the availability of external information (such as location 
information), etc. Note that these indicators use information 
that is external to the detectors, and therefore cannot be 
captured within the trust value t of the reliability estimate.   

The cross-layer detector described in the previous section is 
responsible for generating a node’s estimates of its neighbors’ 
reliabilities. However, each node in the network needs to know 
about the reliability of more than its one-hop neighborhood, 
including non-neighbor nodes that it cannot directly observe. In 
this section, we explain how a node computes reliability 
estimates for nodes that are not its neighbors by aggregating 
reliability estimates obtained indirectly via other nodes, using 
the algorithm shown in Figure 1. Our objective is to compute 
these estimates in a manner consistent with the following 
underlying intuitive principles: (1) trust information obtained 
second-hand is discounted based on the reliability of the 
supplier of the estimate; in particular, reliability estimates from 
nodes with very low trust are discarded; (2) when multiple 
trust opinions are obtained, estimates with lower confidence 
values are disregarded in favor of those with higher confidence 
values; and (3) when multiple opinions are obtained, they are 
compared for inconsistencies to detect lying nodes. 

       Reliability estimates can be combined in many ways that 
satisfy properties (1) and (2). We compute unknown trust and 
confidence values along a “trust path” (i.e., a virtual “path” 
from one node to another via zero or more nodes such that the 
trust of each node for the next along the path is known) as 
follows: two estimates (t1,c1) and (t2,c2) are combined using an 
operator ⊗ defined by: (t1,c1)⊗(t2,c2)=(t1*t2,c1*c2), and 
multiple opinions are combined by picking the one with higher 
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confidence using operator ⊕ defined by: (t1,c1) ⊕ (t2,c2) is (t1, 
c1) if c1 > c2 and (t2, c2) if c2 > c1. These operators along with the 
set S of reliability estimates form an algebraic structure called 
a semiring [15]. The computation of reliability estimates (t,c) 
can be performed extremely efficiently, in a distributed 
manner, thanks to the distributive and associative properties of 
semiring operators. This allows combining local estimates of 
neighbors with neighbors’ estimates of other nodes, rather 
than having to talk to every node to get its reliability estimate 
of every other node.  
// Notation: Tq[u] and Cq[u] denote trust/confidence that q has for u 
1. q ← this node; 
2. if this is the first run of this algorithm then 
3.     for each u ∈V do // initialize estimates at start 
4.         Tq[u] = 0.5 // medium trust for all other nodes 
5.         Cq[u] = 0.1 // low initial confidence 
6.     Tq[q] = Cq[q] = 1 // perfect reliability for self  
7. repeat at every decision period 
8.   // First, use detectors’ decisions for neighbors 
9.    for each v ∈ Neighbors[q] do 
10.             invariant_detector(v,Tq[v],Cq[v]); 
11.  // Next, compute reliability estimates for all nodes 
12.     for each u ∈V do 
13.         if u ≠ q and u ∉ Neighbors[q] then  
14.           // skip myself and neighbors 
15.           // first, decay my current estimate for u 
16.           // obtained from the previous round, if any 
17.           trust =  Tq[u] * decay // 0 < decay < 1 
18.           confidence = Cq[u] * decay // 0 < decay < 1 
19.          // the following loop combines estimates for u from 
20.          // all my neighbors with my own estimates of them 
21.          for each v ∈ Neighbors[q] do 
22.            if Tq[v]>min_trust  // Only consult nodes that q trusts 
23.            then (trust, confidence) = (trust, confidence)⊕  

                                    ((Tv[u],Cv[u])⊗(Tq[v],Cq[v]) ) 
24.        Tq[u] = trust;  Cq[u] = confidence 

Figure 1. Generalized shortest distance algorithm 

We use a very efficient mechanism for disseminating 
REs to neighbors that relies on every node periodically 
broadcasting its local view of network reliability estimates to 
its neighbors (an aperiodic broadcast could be performed if a 
new malicious node is detected). Note that this hop-by-hop 
propagation mechanism requires multiple decision periods for 
information to propagate across network hops; however, we 
argue that this is not an issue because the further away two 
nodes are from each other, the less they care about each 
others’ view of REs.  

IV. SYSTEM EVALUATION 
In this section, we describe our evaluation results, performed 
using a 50-node MANET simulation in ns-2. 

A. Experiment 1: Vary Traffic Volume 
We performed experiments to study accuracy of attack 

detection as traffic volume is varied, which impacts attack 
observability. We injected a black hole attack at random at 
different nodes in the network, with only one node attacking at 
any one time. The attack was implemented by having the 
malicious node advertise a number of fictitious neighbors 
through OLSR HELLO messages, and drop all packets that it 
should have forwarded.  

We used invariants to detect this attack based on the 

premise that neighbors of the malicious node can observe, 
through promiscuous reception, messages received and sent by 
their neighbors. If a node is found not to forward the messages 
it receives for forwarding, it is identified as an attacker. In 
practice, however, the observing node may be unable to 
observe all the transmissions of neighbors, due to interference 
from other nodes, which needs to be taken into account. This 
is usually the case when the network is congested. We 
specified the following invariant to represent this condition 
(violation of this invariant indicates an attack):  

h* # pkts forwarded/# pkts received for forwarding > threshold  (1) 

Figure 2. Traffic Volume Experiment

where h is a factor that represents a measure of channel 
contention, computed as the ratio of the total number of 
packets seen at the witnessing node and the sum of packets-to-
forward and packets forwarded. This adjusting factor allows 
us to favor decisions made in a clean environment and 
discount decisions made when the vantage point is noisy. For 
our experiments, we used a fixed threshold of 0.5 and a 
decision period of 30 seconds. Each data point in the 
experiment was averaged over 10 runs. We used ns-2 to 
simulate a 50-node 802.11 ad hoc network. Our experiments 
measured detection accuracy (in terms of true positive and 
false positive rates) for different traffic volumes and different 
mobility regimes. We report an accuracy of 1 if the malicious 
node was correctly detected by at least one neighbor, for at 
least two decision periods out of three (the scenario was 3 
decision periods.) The false positive rate was computed as the 
sum of the number of wrong decisions divided by the number 
of nodes. Figure 2 shows our results. The accuracy is lower 
when there is little traffic being sent, as the amount of traffic 
that can be dropped at a single node is low, thus reducing 
attack observability. Note that the black hole attack was 
detected with probability of 100% for several values of traffic 
load (see Figure 2). The probability of false alarm was <10% 
for all scenarios, except for one data point. Also, there was no 
network overhead as all statistics used were local.  

B. Experiment 2: Vary Number of Malicious Nodes 
We performed experiments to study how reliability 

estimate accuracy varies as the number of malicious nodes in 
the network is varied. This time, we injected the same black 
hole attack as before, at random, but gradually increased the 
number of malicious nodes in the network.  We used the same 
invariant-based detector as in the previous experiment; this 
time, we computed the local trust value for a neighbor based on 
(1) above as follows:                    
trust = h* # packets forwarded/# packets received for forwarding  (2) 
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Figure 3. Accuracy vs. # malicious nodes 

 Each node computes reliability estimates (t,c) (t=trust, 
c=confidence) based on the algorithm in Figure 1 and 
broadcasts its estimates for other nodes to its MAC neighbors 
every 30 seconds. Bad nodes always broadcast reliability 
estimates of (0,1) for all other nodes. We repeated the 
broadcast twice per decision period, for redundancy; the 
resulting network overhead was computed to be 0.1% of 
network capacity, which was estimated to be 28.8Mbps. We 
again used our 50-node network. Each point on the graph in 
Figure 3 represents the percentage of correctly identified bad 
nodes at each round, or decision period. This is measured as 
the ratio “hitCount/(NN*CN)”, where hitCount is the sum of 
the correctly identified compromised nodes at all the non-
compromised nodes across the entire network, NN is the 
number of non-compromised nodes, and CN is the number of 
compromised (attacker) nodes. A non-compromised node is 
said to have correctly identified an attacker node if the trust 
measure of the target at the observer is <0.5.  

Figure 3 shows 4 curves, corresponding to 2%, 10%, 20%, 
and 40% of the nodes being compromised and launching a 
black hole attack. Note that each curve flattens out when the 
number of rounds roughly corresponds to the diameter of the 
network (5 hops), by which time each node in the network is 
able to derive a non-default trust value for all nodes in the 
network.  

Note that the black hole attack was detected correctly by at 
least 7 nodes at the first decision round (in the worst case 
where 40% of the nodes were bad), and an increasing number 
at each subsequent round until convergence at 4-5 rounds. The 
network overhead was 0.1% of network capacity for this case. 

Experiments 1 and 2 together show that black hole attacks 
can be detected with very high accuracy and a low number of 
false positives when there is a small number of malicious nodes 
in the network; this accuracy degrades gradually as the number 
of malicious nodes increases, as shown in Figure 3. Also, our 
reliability estimation approach is shown to be resilient against 
lying nodes (Figure 3) and almost all “good” nodes eventually 
arrive at a correct assessment of the “bad” nodes. 

V. CONCLUSIONS AND FUTURE WORK 
     We have developed a robust reliability estimation system 
based on a cross-layer invariant-based detector that looks for 

behavior that violates rules about correct cross-layer behavior 
of control plane protocols, and a resilient reliability 
computation and propagation scheme that is robust to “bad 
mouthing” attacks, where nodes lie about their reliability 
estimates. Our reliability propagation scheme poses very low 
overheads, which is critical in a MANET where bandwidth is 
scarce. The next step for this research is to develop mitigation 
techniques that make use of our reliability estimates to 
determine how to maintain good network performance in spite 
of the presence of malicious nodes in the network. 
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