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Abstract—The Self-Organizing Networks (SON) concept in-
cludes the functional area known as self-healing, which aims
to automate the detection and diagnosis of, and recovery from,
network degradations and outages. This paper focuses on the
problem of cell anomaly detection, addressing partial and com-
plete degradations in cell-service performance, and it proposes an
adaptive ensemble method framework for modeling cell behavior.
The framework uses Key Performance Indicators (KPIs) to deter-
mine cell-performance status and is able to cope with legitimate
system changes (i.e., concept drift). The results, generated using
real cellular network data, suggest that the proposed ensemble
method automatically and significantly improves the detection
quality over univariate and multivariate methods, while using
intrinsic system knowledge to enhance performance.

Index Terms—Self-Organizing Networks (SON), cell anomaly
detection, Self-Healing, performance management, Key Perfor-
mance Indicators

I. INTRODUCTION

The need for adaptive, self-organizing heterogeneous net-
works is particularly apparent given the explosion of mobile
data traffic (Chapter 10 in [1]) that stems from increased use of
smartphones, tablets, and netbooks for day-to-day tasks. The
expectations for mobile networks have grown along with their
popularity, and include ease of use, high-speed data transmis-
sion, and responsiveness. Heterogeneous Networks (HetNet)
combining different Radio Access Technologies (RATs) (3G,
LTE, WiFi) and different cell layers (macro, micro, pico)
within those RATs can offer these capabilities, providing
virtually unlimited capacity and ubiquitous coverage. How-
ever, a high degree of distribution introduces a high level
of complexity requiring additional mechanisms, such as Self-
Organizing Networks [1], to manage that complexity.

A. Self-Healing for SON

This paper focuses on self-healing capabilities, which re-
duce operator effort and outage time, thereby providing faster
maintenance. Specifically, the problem that we address is auto-
matic cell anomaly detection. Typically, research has focused
only on Cell-Outage Detection (COD) [2] and Cell-Outage
Compensation (COC) [3] concepts, but, more recently, detec-
tion of general anomalies has also been addressed [4]. This
paper addresses both the outage case and the case where the
cell can provide a certain level of service, but its performance
has degraded to a point below an expected tolerable level and
directly impacts users’ experience.

B. Contributions

The key challenge for addressing the more general problem
of cell degradation is creating a robust method for modeling
normal cell behavior. This approach uses Key Performance
Indicators (KPIs), which are highly dynamic measurements of
cell performance, to determine the state of a cell. KPIs require
modeling techniques that can cope with concept drift, defined
as the phenomenon where the normal behavior of the system
legitimately changes over time (e.g., by the increasing amount
of user-induced traffic demand).

This paper proposes a novel method for modeling cell
behavior to help address these problems. Our implementation
and experiments focus on the problem of creating adaptive
models, leveraging the intrinsic characteristics of the environ-
ment where the models are created. The work described here
provides several contributions by:

• proposing a new ensemble-method approach for cell
anomaly detection that computes a numerical measure
referred to as the KPI degradation level [5], to indicate
the severity of the degradation,

• using intrinsic knowledge of the system to enhance the
ensemble-method learning in order to cope with concept
drift and provide automation,

• building a system to implement the algorithms, applying
the system to a real KPI dataset, and analyzing the
performance of the proposed framework.

II. CELL ANOMALY DETECTION

The first goal of the proposed framework is determining
the relevant features needed for detecting anomalies in cell
behavior based on the KPI measurements. Because KPIs are
measurements that are collected as ordered sequences of values
of a variable at equally spaced time intervals, they constitute
a time series and can be analyzed with known methods for
time-series analysis. An anomaly in a time series can be either
a single observation or a subsequence of a time series with
respect to a normal time series. Testing is defined as the
comparison of a set of KPI data to a model of the normal state
established by an earlier observed set of KPI data referred to as
training data. Ground truth is defined as the labels associated
with the data points that indicate whether or not the data
represents a real problem.
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Our hypothesis is that no single traditional time-series
anomaly detection method (classifier) could provide the de-
sired detection performance. This is due to the wide range in
the types of KPIs that need to be monitored, and the wide
range of network incidents that need to be detected.

The proposed ensemble method combines different clas-
sifiers and classifies new data points by taking a weighted
vote of their prediction. It effectively creates a new compound
detection method that, with optimized weight parameter values
learned by modeling the monitored data, can perform signifi-
cantly better than any single method.

A. Univariate Time-Series Analysis

Individual KPIs collected for each cell are univariate time
series that can be analyzed with the following methods:

• Using a sliding window, an Empirical Cumulative Dis-
tribution Function (ECDF) [6] is computed for each
window. In the training phase, sliding windows that are
similar based on the Kolmogorov-Smirnov (KS) test are
captured in clusters represented by a centroid. In the
testing phase, each sliding window is tested against the
centroids of the clusters and KPI degradation level is
defined as the minimum distance from the centroids.

• A Support Vector Machine (SVM) [7] method is used to
build KPI models. The training windows are used to build
one-class SVMs [8] with a radial basis function (RBF)
kernel. In the testing phase, the anomaly score of a test
window is 0 or 1, depending on whether it is classified as
normal (score of 0) or anomalous (score of 1). The KPI
degradation level is computed as the normalized value of
abnormal sequences in a number of consecutive tests.

• Using a predictive approach, KPI behavior is captured
by autoregressive, integrated moving average (ARIMA)
models. Seasonal components are removed using STL,
a Seasonal-Trend decomposition procedure based on
Loess [9]. STL is robust to outliers, meaning that noise
will not affect the seasonal and the trend components, but
only the residual component. Two different implementa-
tions of the ARIMA modeling are used: static “o,” in
which only one model is created; and dynamic “m,” in
which multiple models are created over time.

B. Multivariate Time-Series Analysis

The set of all KPIs collected for each cell is considered a
multivariate time series that can be analyzed with the following
methods:

• Using a sliding window, multivariate one-class SVM
models are built across all time series. In the testing
phase, their output is just a label with the value normal
or abnormal. This approach provides a high-level view
of the KPIs’ behavior as a whole without providing a
severity indication for each KPI. This multivariate method
is relevant for the ensemble-method framework, in which
the multivariate prediction is considered when generating
individual KPI degradation levels.

• Using a predictive approach, Vector Auto-regressive
(VAR) models are applied for the multivariate case. VAR
is a statistical model that generalizes the univariate AR
model [10]. The VAR approach generates a model for
each KPI of a cell while capturing the linear interdepen-
dencies among all KPIs (i.e., each KPI is expressed in
relationship to all the other KPIs). The VAR models en-
able seasonal adjustment. Two different implementations
of the VAR modeling are used: static “o,” in which only
one model is created; and dynamic “m,” in which multiple
models are created over time.

The computation of KPI degradation levels for both mul-
tivariate SVM and VAR models is analogous to the case of
univariate ARIMA and SVM models.

C. Ensemble Method for Cell Anomaly Detection

The proposed ensemble-method framework applies individ-
ual univariate and multivariate methods to the training KPI
data and relies on context information (available for cellu-
lar networks) extracted from human-generated Configuration
Management (CM) or confirmed Fault Management (FM)
input data to make informed decisions. Confirmed FM data is
defined as the machine-generated alarms that were confirmed
by human operators.
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Fig. 1. Overall approach of the proposed ensemble method applied to a
single cell in a cellular network. Data is depicted in blue rectangles and
methods in pink rectangles with rounded corners. The remaining elements
indicate different context information. The dashed lines indicated that an event
is triggered in the presence of new evidence/data

Figure 1 presents the details of the proposed ensemble
method, which implements a modified version of the weighted
majority algorithm (WMA) [11]. The modified WMA returns
a KPI degradation level in the range [0,1] and uses context
information for updating the weights and creating new models.

• Initially, for a given time period, the KPI measurements
of a given cell are selected as the training dataset (D1)
for the pool of models of the ensemble method.
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• A diverse set of univariate and multivariate algorithms
(M1) is applied to the training dataset (D1).

• The result of (M1) is a set of models used as the pool
of models for the ensemble method (D2). Each model in
the pool of models has a weight, ωi, associated with it.
For the initial pool of models, all models have the same
weight value assigned (ωi = 1).

• Given the pool of models (D2), the stream of KPIs is
used in a continuous fashion as the testing dataset (D5).
Any CM change (C1) triggers the testing dataset to also
become the training KPI dataset, after which the method
for generating a new set of models (M1) is executed.
If the pool of models reaches the maximum number of
models, the CM change also triggers an exponential decay
aging mechanism (M4), which removes models from the
pool based on both their age and performance (according
to ωi ∗ αagei , where 0 < α < 1 and agei is the number
of hours since the model was created).

• The testing dataset (D5) is tested against the models in the
pool of models using the testing techniques corresponding
to the univariate and multivariate methods (M2).

• The result of (M2) is a set of KPI-degradation-level
predictions provided by each individual model in the pool
of models (D3).
Ground truth information updates (human-expert knowl-
edge (C2), confirmed FM data (C3), and CM change in-
formation (C1)) trigger the update weights method (M5),
which penalizes the models in the pool of predictors
based on their prediction with regards to the ground truth
(ωi ← β∗ωi, where β ∈ [0, 1]). The human-expert knowl-
edge assumes a manual process; while the confirmed FM
data usage and the CM change detection are automated
processes. The result of (M5) is an updated pool of
models (D2) with adjusted weights, which continue to
be used in the testing mode.

• All the predictions in (D3) along with the weights associ-
ated with the corresponding models are used in a modified
weighed majority approach (M3) to generate the KPI
degradation level, where τ ∈ [0, 1] is the threshold that
determines whether data is deemed normal or abnormal.

q0 =
∑

KPI<τ

ωi, q1 =
∑

KPI≥τ
ωi

• The result of (M3) is the KPI degradation level (D4)
associated with each KPI measurement of each cell.

KPI level =





∑
KPI≥τ

ωi∗KPI leveli

∑
KPI≥τ

ωi
, if q1 > q0

∑
KPI<τ

ωi∗KPI leveli

∑
KPI<τ

ωi
, if q1 ≤ q0

(1)

III. EVALUATION OF ENSEMBLE METHOD

This section quantifies the increase in detection accuracy
when the ensemble method is applied to the proposed uni-
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Fig. 2. The output KPI degradation levels generated by the ensemble method
for a given cell and call control KPI are marked with blue circles, while red
represents the manually generated labels. The remaining series represent the
KPI degradation levels generated by the univariate and multivariate methods
(τ = 0.5 and β = 0.8)

variate and multivariate methods. The experimental corpus
consisted of a KPI dataset containing data from 70 cells of
a live mobile network. For each cell, 12 KPIs were collected
every hour for four months, from 11/15/2011 to 03/19/2012.
The KPIs have different characteristics; some of them, such as
downlink or uplink data volume or throughput, are measure-
ments of user traffic utilization; while others, such as drop-call
rate and successful call-setup rate, are measurements of call
control parameters.

The experimental dataset had no associated ground truth.
To address this limitation, labels were manually generated to
indicate whether the data represented a real problem or not,
based on engineering knowledge applied to KPI-data visual
inspection.

The pool of models was trained on the first 912 hours
of data, and the ensemble method was trained on the next
500 hours). The remainder of the dataset was used to make
the ensemble prediction based on the learned weights. The
parameters were set to τ = 0.5 and β = 0.8.

Figure 2 presents the KPI degradation levels generated by
the ensemble methods (modified WMA depicted as mWMA)
as well as the univariate and multivariate methods.

The two metrics used for the performance evaluation were:

• False Positive Rate (FPR) defined as the percentage of
normal data deemed as abnormal by the detector

• Detection Rate (DR) defined as the percentage of abnor-
mal data deemed as abnormal by the detector.

Figure 3 presents the Receiver Operating Characteristic
(ROC) [12] curve for all the methods (the detection and false
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• Using a predictive approach, we apply Vector Auto-
regressive (VAR) models for the multivariate case. VAR
is a statistical model used to capture the linear interde-
pendencies among multiple time series, generalizing the
univariate AR model [7]. The VAR approach generates
a model for each KPI of a cell, while capturing the
linear interdependencies among all KPIs (i.e., each KPI
is expressed in relationship to all the other KPIs). The
VAR models allow for seasonal adjustment.

The computation of KPI degradation levels for both mul-
tivariate SVM and VAR models is analogous to the case of
univariate ARIMA and SVM models.

C. Ensemble Method for Cell Degradation Detection

Our proposed ensemble method framework applies individ-
ual univariate and multivariate methods to the training KPI
data leading to the construction of a pool of different pre-
dictors. Using the pool of predictors, the predictions obtained
on the KPI data under test (i.e., being subject to detection)
along with the weights allocated to each predictor lead to the
computation of the KPI degradation level (i.e., the deviation
of a KPI from its normal state). The proposed methods
rely on context information (available for cellular networks)
extracted from human-generated, Configuration Management
(CM) or confirmed Fault Management (FM) input data to
make informed decisions. We define confirmed FM data as
the machine-generated alarms that were confirmed by human
operators.

Figure 2 presents the details of the proposed ensemble
method, where we distinguish between data, methods, context
information and human expert knowledge. Each cell is char-
acterized by a set of KPI measurements generated as a stream
of data. The ensemble method is applied to each cell. The
proposed ensemble method implements a modified version of
the weighted majority algorithm (WMA) [8] that returns a
KPI degradation level in the range [0,1] and uses the context
information for updating the weights and creating new models.

• Initially, for a given period of time, the KPI measurements
of a given cell are selected as the training dataset (D1)
for the pool of models of the ensemble method.

• A diverse set of univariate and multivariate algorithms
(M1) is applied to the training dataset (D1). The univari-
ate methods operate at the individual KPI degradation
level, while the multivariate methods operate across all
KPIs.

• The result of (M1) is a set of models used as the pool
of models for the ensemble method (D2). Each model in
the pool of models has a weight, !i, associated with it.
For the initial pool of models, all models have the same
weight value assigned (!i = 1).

• Given the pool of models (D2), the stream of KPIs is
used in a continuous fashion as the testing dataset (D5).

– Any CM change (C1) triggers the testing dataset to
also become the training KPI dataset, after which
the method for generating a new set of models

(M1) is executed. The CM change is determined
automatically, based on the state of CM data.

– If the pool of models reaches the maximum num-
ber of models, the CM change also triggers an
exponential decay aging mechanism (M4), which
removes models from the pool based on both their
age and performance (according to !i ⇤↵agei , where
↵ 2 [0, 1] and agei is the number of hours since the
model was created).

• The testing dataset (D5) is tested against the models in the
pool of models using the testing techniques corresponding
to the univariate and multivariate methods (M2).

• The result of (M2) is a set of KPI degradation level
predictions provided by each individual model in the pool
of models (D3). Some of the predictions are binary (a KPI
degradation level of 0 represents normal and 1 represents
abnormal) and some have continuous values in the [0, 1]
range.

– Ground truth information updates (human expert
knowledge (C2), confirmed FM data (C3) and cell
classification based on CM information (D6)) trig-
gers the update weights method (M5), which pe-
nalizes the models in the pool of predictors based
on their prediction with regards to the ground truth
(!i  � ⇤ !i, where � 2 [0, 1]). The human expert
knowledge assumes a manual process, while the con-
firmed FM data usage and outlier detection applied
to CM homogenous cells are automated processes.

• Based on CM data (C1), an outlier detection algorithm
(M6) is applied to cells with identical configurations.
The assumption is that CM homogenous cells (i.e., cells
with identical/very similar configuration) should exhibit
the same behavior across all KPIs. This component takes
into consideration the behavior across multiple cells.

• The result of (M6) indicates whether the cell under test
is considered an outlier or not (D6) with respect to cells
with homogenous configurations.

– The result of (M5) is an updated pool of models (D2)
with adjusted weights, which continue to be used in
the testing mode.

• All the predictions in (D3) along with the weights associ-
ated with the corresponding models are used in a modified
weighed majority approach (M3) to generate the KPI
degradation level, where ⌧ 2 [0, 1] is the threshold that
determines whether data is deemed normal or abnormal.

q0 =
X

KPI<⌧

!i, q1 =
X

KPI�⌧

!i

The ⌧ value is not dependent on any KPI semantic and
can be tuned based on the oprational environment. Con-
sequently, for a small oprations team a higher threashold
would trigger less alerts, while for a larger operations
team a lower threashold would trigger more alerts.

• The result of (M3) is the KPI degradation level (D4)
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• Using a predictive approach, we apply Vector Auto-
regressive (VAR) models for the multivariate case. VAR
is a statistical model used to capture the linear interde-
pendencies among multiple time series, generalizing the
univariate AR model [7]. The VAR approach generates
a model for each KPI of a cell, while capturing the
linear interdependencies among all KPIs (i.e., each KPI
is expressed in relationship to all the other KPIs). The
VAR models allow for seasonal adjustment.

The computation of KPI degradation levels for both mul-
tivariate SVM and VAR models is analogous to the case of
univariate ARIMA and SVM models.

C. Ensemble Method for Cell Degradation Detection

Our proposed ensemble method framework applies individ-
ual univariate and multivariate methods to the training KPI
data leading to the construction of a pool of different pre-
dictors. Using the pool of predictors, the predictions obtained
on the KPI data under test (i.e., being subject to detection)
along with the weights allocated to each predictor lead to the
computation of the KPI degradation level (i.e., the deviation
of a KPI from its normal state). The proposed methods
rely on context information (available for cellular networks)
extracted from human-generated, Configuration Management
(CM) or confirmed Fault Management (FM) input data to
make informed decisions. We define confirmed FM data as
the machine-generated alarms that were confirmed by human
operators.

Figure 2 presents the details of the proposed ensemble
method, where we distinguish between data, methods, context
information and human expert knowledge. Each cell is char-
acterized by a set of KPI measurements generated as a stream
of data. The ensemble method is applied to each cell. The
proposed ensemble method implements a modified version of
the weighted majority algorithm (WMA) [8] that returns a
KPI degradation level in the range [0,1] and uses the context
information for updating the weights and creating new models.

• Initially, for a given period of time, the KPI measurements
of a given cell are selected as the training dataset (D1)
for the pool of models of the ensemble method.

• A diverse set of univariate and multivariate algorithms
(M1) is applied to the training dataset (D1). The univari-
ate methods operate at the individual KPI degradation
level, while the multivariate methods operate across all
KPIs.

• The result of (M1) is a set of models used as the pool
of models for the ensemble method (D2). Each model in
the pool of models has a weight, !i, associated with it.
For the initial pool of models, all models have the same
weight value assigned (!i = 1).

• Given the pool of models (D2), the stream of KPIs is
used in a continuous fashion as the testing dataset (D5).

– Any CM change (C1) triggers the testing dataset to
also become the training KPI dataset, after which
the method for generating a new set of models

(M1) is executed. The CM change is determined
automatically, based on the state of CM data.

– If the pool of models reaches the maximum num-
ber of models, the CM change also triggers an
exponential decay aging mechanism (M4), which
removes models from the pool based on both their
age and performance (according to !i ⇤↵agei , where
↵ 2 [0, 1] and agei is the number of hours since the
model was created).

• The testing dataset (D5) is tested against the models in the
pool of models using the testing techniques corresponding
to the univariate and multivariate methods (M2).

• The result of (M2) is a set of KPI degradation level
predictions provided by each individual model in the pool
of models (D3). Some of the predictions are binary (a KPI
degradation level of 0 represents normal and 1 represents
abnormal) and some have continuous values in the [0, 1]
range.

– Ground truth information updates (human expert
knowledge (C2), confirmed FM data (C3) and cell
classification based on CM information (D6)) trig-
gers the update weights method (M5), which pe-
nalizes the models in the pool of predictors based
on their prediction with regards to the ground truth
(!i  � ⇤ !i, where � 2 [0, 1]). The human expert
knowledge assumes a manual process, while the con-
firmed FM data usage and outlier detection applied
to CM homogenous cells are automated processes.

• Based on CM data (C1), an outlier detection algorithm
(M6) is applied to cells with identical configurations.
The assumption is that CM homogenous cells (i.e., cells
with identical/very similar configuration) should exhibit
the same behavior across all KPIs. This component takes
into consideration the behavior across multiple cells.

• The result of (M6) indicates whether the cell under test
is considered an outlier or not (D6) with respect to cells
with homogenous configurations.

– The result of (M5) is an updated pool of models (D2)
with adjusted weights, which continue to be used in
the testing mode.

• All the predictions in (D3) along with the weights associ-
ated with the corresponding models are used in a modified
weighed majority approach (M3) to generate the KPI
degradation level, where ⌧ 2 [0, 1] is the threshold that
determines whether data is deemed normal or abnormal.

q0 =
X

KPI<⌧

!i, q1 =
X

KPI�⌧

!i

The ⌧ value is not dependent on any KPI semantic and
can be tuned based on the oprational environment. Con-
sequently, for a small oprations team a higher threashold
would trigger less alerts, while for a larger operations
team a lower threashold would trigger more alerts.

• The result of (M3) is the KPI degradation level (D4)
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Fig. 3. ROC curves for all individual methods and the ensemble method

positive rates were computed as an average across all the
70 cells analyzed) and it illustrates well that the ensemble
method (mWMA) exhibits the best performance, confirming
our hypothesis.

IV. RELATED WORK

The proposed framework aims to detect partial and complete
degradations in cell-service performance. Previous research
addressed the cell-outage detection [2] and cell-outage com-
pensation [3] concepts. For the problem of cell-outage detec-
tion, Mueller et al. [2] proposed a detection mechanism that
uses Neighbor Cell List (NCL) reports. Compared to our work,
Muller’s approach was limited to only catatonic-cell detection,
while not every isolated node reflected an outage situation.

Another approach for estimating failures in cellular net-
works was proposed by Coluccia et al. [13] to analyze events
at different levels: transmission of IP packets, transport and
application layer communication establishment, user level
session activation, and control-plane procedures.

D’Alconzo et al. [14] proposed an anomaly detection algo-
rithm for 3G cellular networks that detects events that might
put the stability and performance of the network at risk.

More recently, detection of general anomalies has also been
addressed [4], [5], [6]. However, to the best of our knowledge,
our approach is the first to employ an adaptive ensemble
method that copes with concept drift.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel ensemble method for modeling
cell behavior that builds adaptive models and uses the intrinsic
characteristics of the environment where the models are cre-
ated to improve its performance. The design was implemented
and applied to a dataset consisting of KPI data collected from a
real operational cell network. The experimental results indicate

that our system provides significant detection performance
improvements over stand-alone univariate and multivariate
methods.

We are currently planning experimental evaluation of our
cell anomaly detection method in a network operator setting.
Additional work is needed to integrate our detection com-
ponent with a diagnosis engine that combines the detector
output with other information sources to assist operators in
determining the cause of a detected anomaly. These results also
serve as the foundation for research in other areas of network
operation, specifically to evaluate the impact of configuration
changes on critical measures of network performance.
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