
Adapting applications to exploit
virtualization management knowledge

Vitalian A. Danciu
Munich Network Management Team

Ludwig-Maximilians-Universität München
http://mnm-team.org./˜danciu

Alexander Knapp
Institute for Software & Systems Engineering

Augsburg University
http://www.isse.uni-augsburg.de./staff/knapp

Abstract— Today’s applications do not react to the ad-hoc, dy-
namic changes in locality, performance and environment that are
characteristic of virtualized infrastructure. We illustrate exem-
plary effects experienced by distributed programs in reaction to
change in the infrastructure and explore call interception, library
replacement and aspect-oriented programming as alternatives for
remedy. We demonstrate the remedial effect of adaptive code
introduced without change to the original application code, or
its bindings. We sketch a software architecture to make available
management knowledge as a base for adaptation.

I. INTRODUCTION

Virtualized infrastructure is becoming pervasive, and it can
reasonably be expected to form the basis for computing in
general in the near future. While physical hardware is being
replaced with virtual hardware as an execution platform, the
application software is executed unmodified: neither does it
require adaptation in order to function, nor does it leverage
the properties inherent to virtual components. We endeavour
to make software aware of the properties of virtualized infra-
structure and to explore mechanisms that allow applications to
adapt dynamically to run-time changes in their environment.
The chief driver property of virtualization is strong encap-
sulation of computing, storage, network and I/O resources
that, at the same time, provides a resource abstraction. It also
confers novel properties to the environment for the execution
of applications. One of the novel properties of distributed ap-
plications executed on virtualized infrastructure is the mobility
of their components at run-time. Virtual Machines (VMs) can
be migrated manually (in response to management action) or
automatically (due to load balancing policy) during execution,
along with any software components being hosted on them.
Thus, while an application component retains some of its
environment (the state provided by the VM), its environment
changes with respect to any aspect outside the VM. Its
position in the network topology changes with respect to other
components, inducing changes with respect to locality network
quantities; the target machine may be different with respect to
CPU capacity, I/O throughput and load. Network virtualization
introduces changes in paths, forwarding policy, delays to other
application components, and so on.
Presently, software does not adapt to these quick changes in
environment at all, whether to exploit opportunities or to offset
a negative impact of the changes. What is more, the application

A B A BApp. component

Hypervisor

VM and guest OS

Physical network

co−located distributed

Fig. 1. Experimental setup: Different network connection between VMs,
invisible to application software

component lacks access to the management knowledge about
these changes, which is a pre-requisite for adaptation.

Proof-of-problem: Consider the two setups shown in Fig. 1:
two virtual machines in a VM cluster communicate either
over the virtual network within the hosting physical machine
(left hand side), or their communication traverses a physical
network (right hand side). Within a short time, a VM can
be migrated from one host to another and thus changes the
path used by the network connection. However, neither the
guest operating system of the VM, nor the application are
aware of the change in location, which may imply a change
in communication performance.
To demonstrate this point, we have implemented this scenario
by deploying a simple distributed application on two VMs
running on Xen hosts. We measured the throughput between
the application’s components for a large number of consecutive
write operations of different (chunk) sizes to a connectionless
(UDP) transport service. We employed no management (flow
control, rate limitation, . . .) of the sender.
We repeated the experiments with the VMs

1) co-located on the same host,
2) distributed onto two hosts connected by a standard 1G-

Ethernet switch and
3) distributed onto two hosts each connected via 1G-

Ethernet ports but via a link with lower (100 MBit/s)
transmission speed, i.e. a “choked” channel.

We noted the time necessary to transmit 10 MBytes of appli-
cation payload and the percentage of messages lost between
the VMs, for each of the three cases, as shown in Fig. 2.
Unsurprisingly, the results show differences in time for some
chunk sizes, though the differences are rather small. In con-

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 355

 0.1

 1

 10

 0 250 500 750 1000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
W

a
llc

lo
c
k
 t
im

e
 (

s
)

D
ro

p
p
e
d
 f
ra

m
e
s
 (

%
)

Chunk size (bytes)

time, co-located VMs
time, physically distributed VMs

time, physically distributed VMs, choked
drop, co-located VMs

drop, physically distributed VMs
drop, physically distributed VMs, choked

Fig. 2. Duration and drop rate of 107 bytes transmission using varying chunk
sizes for different setups

trast, the number of dropped chunks varies greatly between
the three setups: while the co-located VMs tend to lose only
few segments at most sizes, the loss over the standard physical
link is significant, and the loss over the choked connection is
unacceptable.
While the absolute values are of little concern (their meaning
depends heavily on hardware capabilities and on the method of
measurement), the relative values show significant differences
in behaviour, as a consequence of the change in environment.
Challenge: As changes to the environment occur dynamically,
we propose to equip operating systems and application soft-
ware to be able to react. Note that “change” may denote both
improvement and deterioration of environmental parameters
for an application, and it may be one the following:

• gain/loss of topological and geographical locality
• change in channel (I/O, network, . . .) capacity
• change of CPU capacity; hence, reaction time
• the security and administrative context of the target

physical machine, i.e. the trust potential of the host

This list cannot be comprehensive: it reflects potential changes
that have been recognised by the authors, and it might be
extended at any time. As each class of change may require its
own remedy, we cannot devise a specific method, but rather
require a generic method for rendering applications adaptive.
However, adaptivity itself is dependent on knowledge of the
environment. Hence, only when provided adequate informa-
tion from outside the application, can any benefits be expected.
Synopsis: We present different avenues of approach in the
following Sect. II before reviewing related approaches from
other domains in Sect. III. We proceed by describing a pro-
totype based on aspect-oriented programming in Sect. IV and
showing, that it achieves a change in application behaviour.
We discuss the requirements, obligations and limitations of
the approach in Sect. V. It becomes obvious, that software
needs information from outside the VM in order to take correct

decisions regarding whether and how to adapt its behaviour. To
this end, we sketch an architecture in Sect. VI, that addresses
this concern. We conclude by proposing interesting topics for
future extension of this work in Sect. VII.

II. APPROACH

To modify the behaviour of a (distributed) application is to
modify the code that it comprises itself or the code that it
requests to be executed (library and system calls). The code
stack involved in the execution of an application includes typ-
ically the application logic itself, application-specific libraries,
system libraries and the OS kernel. The desired modifications
can be inserted at any of these points, depending on the scope
and the degree of invasive modification and the required effort.

A. Alternatives to approach

The following techniques lend themselves to our goal to
modify application behaviour:

1) Adaptation of system and application libraries: we could
modify library code (e.g. in the C standard library or in
libraries linked to the application) to exhibit the desired
change in behaviour.

2) System/library call interception (e.g. symbol substitu-
tion): we could intercept selected library calls and,
without modifying the library, execute alternative code.

3) Programmatic modification: we could alter the appli-
cation code systematically to change its behaviour at
selected points.

4) Manual modification: we could re-write the application
code to change its behaviour.

To select the suitable method for modifying the application,
we take into account the properties sketched in Fig. 3:

scope: applications differ in natural behaviour (commu-
nication volume and patterns), thus they require specific
modifications. For example, solutions introduced to
optimise throughput in one application (such as the
buffering scheme exemplified in Sect. IV) may harm
the performance delay-sensitive ones, as well.

required authorisation: the effective options are con-
strained by the deployment platform for the software,
e.g. a Platform-as-a-Service cloud offering may lack
the option of replacing system libraries to avoid plat-
form/system malfunction.

required knowledge and effort: the alternatives differ in
the required knowledge about the inner workings of the
application and its requirements on the execution plat-
form. Obviously, the most knowledge-intensive option
is the manual modification of the application code; it
also requires the largest effort, and carries the highest
probability to introduce errors.

Taking into account that different applications will require
different modifications, we are forced to exclude the alter-
natives that are very broad in scope: modification to the
libraries affect all applications, and even application-specific

2
ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 356

authorisation
required

required
knowledge

effort

scope

all
applications

function
single

system
administrator

application
programmer

modification
manual

modification
programmatic

interception
call

system libraries
exchange of

of application

Fig. 3. Alternatives to modifying application behaviour

call interception applies the modification to all instances of a
call. Manual modification must also be excluded in the general
case, simply taking into account the enormous amount of
code potentially being executed on virtualized infrastructure,
and the application-specific expertise required compounded by
the effort of manually modifying and testing the application.
The remaining option, a programmatic modification of the
application code, does not require modifications to the system,
is application-specific and can ideally be applied automatically.

B. Aspect-based technique

Several generative programming techniques [3] lend them-
selves to programmatic modification of existing and emerging
applications. The simplest form of modification, still encoun-
tered in many programming projects, is to use pre-compiler
directives (e.g., #ifdef/#endif in C) to control insertion or
suppression of code fragments. Widely used, this technique
tends to render the source code difficult to maintain [5].
In contrast, top-down code generation, as in Model-Driven
Architecture (MDA) style [2] development enables changes
to the generic or platform-independent models to affect the
desired modification in the resulting, generated code. While
promising the best integration with the development process
of the software, this approach is limited to software developed
by means of MDA or similar model-driven frameworks.
To maintain the integrity of the pre-existing code and avoid
limiting our approach to one software development paradigm
or other, we use aspect-oriented programming (AoP) tech-
niques to achieve the necessary modifications. They allow re-
use of existing (“legacy”) code as-is while avoiding additional
internal complexity.

III. BACKGROUND AND RELATED WORK

A. Context-aware adaptation

Making applications in a virtualized environment aware of and
reactive to environment changes can be classified as turning
these applications into context-aware systems. Context-aware
systems, in general, reflect knowledge of their environmental
status and show the ability to adapt their behaviour according

to this environmental information without explicit user inter-
vention in order to increase their usability or efficiency [1].
The contextual information used can be of rather different
kinds, like physical location, user identity, or as in our case,
the state of the virtualization environment.
Context awareness is a cross-cutting, pervasive concern of
a system that affects many of its components. Thus it has
been suggested before to use aspects for the design and
implementation of context-aware systems [11] which has been
taken up in various application domains, like services [7].
The introduction of context-awareness into existing software
by using aspects has recently been considered in the field
of high-performance computing for the case of multi-core
applications [4], though also involving manual code changes.

B. Adaptivity in software

Some software is adaptive by design, or even self-adaptive,
meaning it adapts itself without the benefit of external influ-
ence. Autonomic computing concepts fall within this category,
as does self-management in the distributed system—though
they concern management, not application software.

a) Example: Network protocols as self-adaptive software:
Some reliable network protocols, such as the Transmission
Control Protocol (TCP) [9], are excellent examples of self-
adaptive software: they inspect or observe their environment
and change their behaviour according to the knowledge gath-
ered, in order to achieve their goals. The information they
consume originates both locally, accessible via the operating
system (e.g., the maximum transfer unit of a network interface,
that determines the TCP segment size) or externally. TCP, for
instance, acquires information unavailable locally by probing
the maximum transmission rate, that is possible on an end-to-
end path, as part of a congestion control strategy.
TCP is self-adaptive: it acquires the knowledge for effective
adaptation itself, reasons about a necessary adaptation of
behaviour and executes the adaptation.

b) Avoiding self-adaptivity: We do not endeavor to make
applications self-adaptive, for the following reasons:

overhead: each application makes an effort to create
and use knowledge; this might mitigate any benefits
achieved by the modification.

invasiveness and size of modification: the code neces-
sary to introduce self-adaptivity is located within the
application, as opposed to outside (in the OS, in the
management system, . . .), resulting in increased com-
plexity of the resulting code and sensitivity to errors.

manageability of the application eco-system: an
environment of self-adaptive software may be
more difficult to manage centrally, since its decision
processes are local.

Instead, we wish to render applications reactively adaptive, so
that they change behaviour in response to external stimuli.

3
ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 357

Executable

Application code (original)
C/C++

Executable

Aspect language
Aspect code

Aspect

Weaver

C
o

m
p

il
a
ti

o
n

 w
it

h
 a

s
p

e
c
t

w
e
a
v
in

g

C Compiler / Linker

N
o

rm
a
l
c
o

m
p

il
a
ti

o
n

Application code (woven)
C/C++

Fig. 4. Interposition of an aspect weaver

C. AoP primer

“Aspects” describe cross-cutting concerns of a program, i.e.,
properties, that are not localised to a specific part (class,
module, source file, . . .) of the code, but that concern the
application as a whole.
Examples include logging and security: all parts of the source
code might at some point contain output for information or
debug purposes, and they may be concerned with implement-
ing common security practises (e.g., checking buffer sizes or
pointers in C programs). Instead of cluttering the application
logic with these functions, they can be formulated as aspects:
“output a log message every time a file is opened” or “check
pointers after memory allocation”. The definition of an aspect
is separate from the application logic and is applied by an
aspect compiler, or weaver, in a process called code weaving.
For our experiments, we used the AspectC++ weaver [10].
Fig. 4 juxtaposes the common compilation process with one
where the weaver is interposed to allow the introduction of
aspect code into the original application. To formulate aspect
code, several concepts are typically supported:

pointcut – specification of locations in the original code:
the cross-cutting concern is inserted at certain points
in the original code, that are specified in a pointcut
expression, e.g. by string matching.

advice – effect of the aspect code: Having identified the
points in the original code, that are to be altered, we
specify the manner, in which it is to be modified in an
advice expression.

The environment of the original code: The code to be
added within an aspect often needs to refer to the
values of variables, formal parameters or functions in
the original code.

IV. PROOF-OF-CONCEPT

Listing 1 shows the salient lines of code of the application
mentioned in Sect. I, with comments and sanity checks re-

1 void write_file(long count) {
int sbuf = strlen(chunk);
int file = open("foo.txt",

O_CREAT | O_TRUNC | O_WRONLY,
5 S_IRUSR | S_IWUSR);

int c = 0;
while (c++ < count)
write(file, (void*)chunk, (size_t)sbuf);

}
10

int write_udp(const char* targetip,
unsigned int port,
long count) {

int transmit_socket = socket(AF_INET,
15 SOCK_DGRAM,

IPPROTO_UDP);
connect(transmit_socket,

(struct sockaddr*)&si_other,
sizeof(si_other));

20 int c = 0;
while (c++ < count)
write(transmit_socket,

(void*)chunk, (size_t)sbuf);
}

Listing 1. Abridged application code

moved. It is a simple C language program which writes to a file
or transmits UDP segments in reaction to a number of POSIX
write() calls. We shall call this program “the application”
in the following: it represents the original, unaltered, non-
virtualization-aware source code. To demonstrate the program-
matic modification of the code, we introduce buffering of the
write operations in order to improve the throughput of the
application when it transmits or writes long sequences of small
data chunks.
Please note, that we chose this modification as an example, to
prove a point. We are aware, that indiscriminate use of block-
ing and buffering may introduce latency issues; nevertheless,
we will ignore these for the time being, for the benefit of the
demonstration. The balancing of multiple aspects against each
other goes beyond the scope of this paper.

A. Analysis of the code

Standard POSIX functions are employed to open the file and
to create the socket, as well as for the file write and transmit
operations involved. The functions called, being part of the
same standard library, can be said to be homogeneous: both
open() (Lst. 1, l. 3) and connect() (l. 15) yield an integer
file handle, later used by the write() (l. 8, 22) function.
In addition, both write() calls are candidates for the intro-
duction of additional buffering: while writing to a file and
transmitting over the network may be different operations, they
both profit by blocking of sequences of small data chunks.

B. Introducing a buffering aspect

To supplement buffering we need to control the whole life-
cycle of a file stream or socket, from its creation, including the
I/O operations performed on it, to its destruction. In addition,
if every file and socket is to have its own buffer, we need

4
ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 358

1 int buffill[MAX_FILE_HANDLES] = {0,0,0,0,0};
char* writebuf[MAX_FILE_HANDLES];
int fhmap[MAX_FILE_HANDLES] = {-1,-1,-1,-1,-1};

5 aspect Buffering {
/*match POSIX open(2) and socket(2) calls*/
pointcut openpc() = "% ...:: open(...)";
pointcut socketpc() = "% ...:: socket(...)";
advice call(openpc()||socketpc()) : around() {

10 tjp->proceed();
int fh = *((int*)tjp->result());
int myfh = _getnextfh();
if (myfh == -1)

return; //filehandles exhausted
15 writebuf[myfh] = (char*)malloc(bufsize);

fhmap[myfh] = fh;
}

pointcut writepc() = "% ...:: write(...)";
20 advice call(writepc()) : around() {

int fd = *((int*)tjp->arg(0));
const void* buf =

*((const void**)tjp->arg(1));
unsigned int count =

25 *((unsigned int*)tjp->arg(2));
int myfh = _getmyfh(fd);
if (myfh != -1) { //managed by us?

if ((buffill[myfh] + count) < bufsize) {
memcpy(writebuf[myfh] + buffill[myfh],

30 buf, count);
buffill[myfh] += count;

}
else {

write(fd, writebuf[myfh], buffill[myfh]);
35 buffill[myfh] = 0;

tjp->proceed();
}
((int)tjp->result()) = count;

}
40 else

tjp->proceed();
}

}

Listing 2. Aspect code for introducing buffering

to allocate buffer memory and associate it with the file or
socket. We hold a (limited) array of file handles (l. 3), that
are associated with buffers (l. 2) and the amount of valid data
(the buffer’s fill level) present in each of the buffers (l. 1)
by index. In addition, we specify helper functions (unlisted,
for brevity) getnextfh() to retrieve a common array index
that is unused, and getmyfh(file handle) to match a given
file handle to its array index.
Relying on these data structures, we proceed to identify the
positions in the original source code, where the opening
occurs, in order to modify them to incorporate buffering.
c) Identifying the targets of modification: We formulate point-
cut expressions, shown in Lst. 2, that match the relevant
function calls open(. . .) and socket(. . .) (l. 7 and 8, re-
spectively) and write(. . .) calls (l. 19). We also specified
pointcuts for close(. . .) and flush(. . .) calls (not shown in
Lst. 2), to guard the border cases when a file/socket is closed
while data remains in the buffer we introduced.
Having selected the candidates for modification, we now

formulate advice blocks to specify the modification to be
applied to each of them.
d) Specifying the manner of modification: Whenever a
open(. . .) or socket(. . .) call is encountered, the advice
code (beginning at l. 9) changes the behaviour of the resulting
code, if the original call returns a valid file handle. This is
effected by the following operations:

1) retrieve an available index for the set of arrays (l. 12)
2) allocate buffer memory for the socket or file (l. 15), and
3) register the file handle at that array index (l. 16).

Whenever a write(. . .) call is encountered, the associated
advice code (beginning at l. 20) first analyses the parameters
of the call:

1) retrieve the file handle used, to check whether we have
introduced buffering for it (l. 21, 26, 27)

2) retrieve the payload and payload size given in the call
(l. 22–25)

Then, it weaves our buffering policy into the original code:

3) if room (l. 28), copy the payload to our buffer associated
with the file handle (l. 29, 30), but do not execute a
write() call

4) if the buffer is full, write out and reset the buffer (l. 34,
35), then allow the current write() call to proceed
(l. 36)

5) change the return value conveyed to the application to
reflect the size of the payload in the current call (l. 8)

e) Resulting change in behaviour: The changes applied to
opening and writing to a socket can be summarised as follows:

1) When a socket is created in the original code, a buffer
is allocated and associated with the socket.

2) Each time a socket is written to in the original code, the
payload is stored in the buffer, instead.

3) When the buffer is full, it is written to the socket stream.
4) When the socket is closed in the original code, any

remaining data in the buffer is written to the socket
before closing it.

C. Observing the change in behaviour

We applied the aspect code to the original application and
we produced executables from both the woven code and the
original code, precisely as shown in Fig. 4. We proceeded to
compare the throughput achieved by the two variants of the
application and varied both the size of the chunks passed to
write() calls and, for the modified application, the size of
the buffer employed. We transmitted 10 MBytes between two
VMs distributed by a (non-choked) physical network, and used
the application variants as the sending end-point.
The results are shown in Fig. 5, where the upper surface shows
the measurements made with the unmodified application, and
the lower surface those with the woven application variant.
We observe a significant dependency of the throughput on the
size of the chunks sent by the unmodified application (note

5
ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 359

without aspects
with aspects

 50 100 150 200 250

Chunk size (bytes)

 500
 1000

 1500
 2000

Buffer size (bytes)

 0.1

 1

 10

W
a
llc

lo
c
k
 t
im

e
 (

s
)

Fig. 5. Duration of 107 byte throughput using varying chunk sizes between VMs on different physical hosts

the logarithmic time scale). We observe the same effect with
the woven application, for small buffer sizes, i.e., when the
buffering is less aggressive, in particular for small chunk sizes.
This effect is indicated by the slope of the lower surface, that
is higher at the lower values juncture between the chunk size
and buffer size scales.
As chunk sizes increase, the benefits of buffering become
less significant, indicated by the surfaces converging. In one
instance (for high chunk and low buffer size), the throughput
of the original application becomes higher than that of the
woven variant.

V. DISCUSSION

When adapting an application with aspects to make it virtual-
ization aware, the following questions arise:

1) What to adapt, i.e., what behaviour to modify, under
which circumstances?

2) In what manner should the behaviour be modified?
3) What information is required to determine the target

circumstances?
4) How to locate the source of the behaviour in the appli-

cation’s code for defining the pointcuts?
5) What to substitute to achieve the desired effect, i.e., what

to put in the advice blocks?

A. Determining target behaviour

Changes in the application’s environment will affect rather
different functional and non-functional performance indicators
of the application. In order to enable an application to react ap-
propriately to such changes in the virtualization environment,
different types of information need to be available.
As demonstrated before, a channel’s throughput, latency, or
drop rate will be influenced by the effective distance between
two VMs. Such effects can be countered by introducing
buffering, the usage of compression, or, conversely, by limiting
the transmission rate. The decision, how to react, depends on
the physical location of the involved VMs as well as their

physical connection. In the same vein, certain computational
tasks may suffer from a lack of computational resources, like
the effectively available CPU or memory; here, decreasing the
precision of the computation or the limitation of thread pools
can mitigate the environmental changes. On the other hand,
when several VMs are co-located on a single host it may
become advisable to scrub sensitive information before freeing
memory in order to avoid page snooping.

B. Adaptation strategy

A particular behaviour of the application may thus be detri-
mental, or at least influential, to the application’s functionality
or performance in a particular situation of the virtualization
environment. Let us assume that the effective detection of such
a situation is indeed possible using the available information
sources (see Sect. VI). In order to react to the occurrence of
the environmental situation of discourse, it is still necessary to
locate the causes of the particular behaviour in the source code
of the application and to cast these causes into pointcuts for
the aspects—which, in general, will be a complex and difficult
task. On the other hand, it has to be decided how to react to the
change in the virtualization environment and how to integrate
the reaction into advice code.
Ideally, the overall software architecture of the application
with its components and their relations can provide the neces-
sary guiding clues where to look. For example, when suspect-
ing that the throughput on a channel in a distributed application
may suffer from re-locations of VMs, the communication
structure expressed in the software’s architecture is an obvious
source of information. On the source code level, however,
the manifestation of the (mis-)behaviour’s causes consists in
various idioms, i.e., groups of program statements, which have
to be identified and altered in order to introduce the intended
reaction. For the throughput example, the encoding of writing
to the possibly affected channel will be relevant and thus be
used for a pointcut. But not all occurrences of these idioms in
the source code will pertain to the particular behaviour, and

6
ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 360

idioms
location

purpose

1

u
g

ly

b
a

d

in design

g
o

o
d

Fig. 6. AoP affinity depending on the variety of idioms, purposes and location
in an application’s design.

the non-relevant ones have to be excluded using contextual
information. To wit, for a particular channel the idioms for
establishing and closing the channel have to be included in the
context of the writing idiom leading to additional contextual
pointcuts, as the managing of the file handles in Sect. IV.
Finally, the complementing code to implement the reaction
to the occurrence of a particular virtualization environment
depends quite heavily on which effect should be achieved
and what the application itself offers for the adaptation. In
simple cases merely some internal parameters need to be
tuned, e.g. the buffer size exemplified in Sect. IV. More
complex adaptations could range from the de-/activation of
some of the application’s internal functions, e.g., employing
compression of data to be transmitted, to influencing user-
facing functions, e.g., when access to a cryptographic key is
requested by the user. In any case, the contextual information
influencing whether the modification shall be applied has to
be managed. Besides the aspects for handling the behavioural
modification proper, additional contextual aspects are needed
that apply for the contextual pointcuts and record in their
advice code all information that is needed to decide whether
the behaviour has to be adapted. Furthermore, when several
modifying behaviours are available (typically including the
application’s default behaviour), some cheap selection strategy
depending on the virtualization environment and the contextual
information should be provided in the modifying aspect.

C. Limitations

The availability of information on the state of the infrastructure
is a hard prerequisite of our approach.
Due to the properties of our chosen technique, aspect-oriented
programming, our approach is additionally sensitive to the
quality of the application’s design and implementation.
In particular, pointcuts are specified with respect to syntax.
To achieve pointcuts that are sufficiently selective and precise
requires certain minimum standards on code quality. Consider
for example a program, that uses multiple idioms to open files
for writing: it might use the functions specified by the POSIX
standard (e.g., open or creat) or the standard C functions
(e.g., fopen). Pointcut declarations that target file opening
need not only take into account the different function names,
but also their different parameter types: if open files need
to be tracked (shown in our example, Lst. 2), the tracking
would require management of both file handles (integers) and
struct FILE records. This would require several pointcuts,

with their own advice blocks to achieve the same goal, but
for different idioms. Hence, consistent use of a single idiom
for the statements targeted by the aspect is advantageous, but
cannot be assumed in every body of code.
Another metric for code quality is determined by the “low
coupling, high cohesion” principle [8] that dictates to minimize
dependencies stretching over large areas of the code. In code,
that violates this principle, the scope for the application of
pointcut expressions becomes of necessity very large; thus,
unmanageable or, at least, error prone.
Figure 6 illustrates the variety of idioms employed in the
code for a given purpose and the distribution of idioms and
purpose within the component parts of an application. Code
with a high localisation of purpose, using only a single idiom
for expressing that purpose is an ideal candidate for AoP
techniques, to achieve adaptation.
Thus, an effective use of AoP in any application domain is
dependent on the quality of the application’s code and design.
Applications, that are problematic in this respect may instead
profit from the other techniques mentioned in Sect. II, e.g.,
replacement of libraries or re-factoring the application’s code.

VI. ARCHITECTURAL SKETCH

In Sect. IV we described non-adaptive modifications, validated
by measurements of effects observed on VMs in a fixed envi-
ronment. When the environment changes while the application
is running, the fixed configuration values (e.g. buffer size) may
no longer be suitable. For example, if the VMs hosting the
sending application and the receiver are migrated to the same
physical host, the use of additional buffering may introduce
only additional latency, but no benefit in throughput.
Therefore, the aspects woven into existing application code
need to acquire and leverage knowledge about the changes
in the virtualized infrastructure. Such knowledge is typically
available to the management systems governing the setup
of the infrastructure. What is more, the deliberate changes
introduced are not only known, but planned and executed—
i.e., known before they occur—by the management system.

A. Making use of virtualization management knowledge

Given a source of management knowledge available to appli-
cation code, we could devise aspect code that not only changes
the behaviour of the application, but that adapts it to a current
(or soon-to-be) state of the virtualized infrastructure. While
commonly, such information is not available to applications,
it could be made available in the same manner in which they
can access certain knowledge about their environment held
and made available by the (guest) operating system they are
run on (the time and date, the amount of memory available to
the machine, the availability of network access, etc).

B. Requirements of the application

Environment information is made available by an oper-
ating system by means of standard system calls, e.g.,

7
ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 361

gethostbyname(DNS name) to resolve a host name into an
IP address, or time() to access the system clock. In the
same manner, we could ask: is co located(communication
partner). Depending on the result of the call, the aspect code
woven into the application could decide which measures to
take, if any, and which parameters to choose. We propose to
employ the same kind of interface in order to allow application
code to gain knowledge about the virtualized environment.
The relevance of a given change to the infrastructure is highly
dependent on the purpose and behaviour of an application. To
convey only relevant knowledge, a publish/subscribe pattern
seems suitable: each application subscribes only to manage-
ment events, that are relevant for itself.

C. Obligations of the application

Given such an approach, aspect code should detect the ex-
istence of the system event interface and become inert if
detection fails. In case detection is successful, it subscribes to
particular types of notification, that are of interest for the appli-
cation instance. This may entail subscriptions to notifications
pertaining to certain managed objects currently relevant to the
application, e.g. “notify me, if interface with IP address a.b.c.d
changes position”. On receiving a notification, the aspect code
adapts the behaviour of the application to the new situation,
e.g., changes the buffer sizes for a communication channel.
To illustrate a possible way of achieving this, we sketch
an architecture capable of supplying selected management
knowledge to applications in the following.

D. Architectural components

The requirements and obligations of the woven application
describe only a need for information and a protocol between
the application and the operating system code. In Fig. 7, that il-
lustrates the envisioned architecture, these elements are drawn
in black. They include an event service, that implements a
publish/subscribe pattern offered by means of an OS interface.
The aspect code subscribes to certain events types offered by
the event service and is notified, when their instances occur.
The origin of the required information may well lie outside
the guest operating system. The remainder of the architec-
tural sketch, drawn in grey, illustrates a possible source of
notifications, envisioned for an open, managed infrastructure.
In the presence of a management system, information can be
drawn from its knowledge base, perhaps filtered according to
some management policy. The management system acquires
the knowledge by recording its own decisions and manage-
ment actions and by observing the virtualized infrastructure
(hypervisor software and physical machines, as shown in
the diagram, are only a subset of the infrastructure). The
figure depicts the interaction between management system and
event service as adhering to a publish/subscribe pattern, as an
example. A polling pattern might be substituted at this point.
Alternative sources: Other sources of knowledge might en-
tail gathering information from the underlying hypervisor(s),

infrastructure
knowledge about

filter

System
Management

Service

Event

code

adapt

Aspect

subscribe

notify

Application

Guest OS

Physical machine

Hypervisor

observe

manage

Fig. 7. A simple software architecture, to provide VMs with knowledge
about their environment

techniques for collaborative discovery among the guest oper-
ating system instances supporting an application’s distributed
components, or even configuration files created and updated
by the guest OS administrator. In any case, the event service
within the guest OS acts as a proxy to information offered by
such sources, while at the same time providing OS specific
but unified subscription services to all applications.

VII. CONCLUSIONS AND FUTURE WORK

We observed significant behavioural differences in the same
VM-based application when varying its communication chan-
nel within the virtualized infrastructure. In response, we intro-
duced buffering as an adaptation of behaviour, using AoP. To
address the need for information to guide behavioural change,
we postulated an architecture that assumes a permissive man-
agement system. From the discussion of limitations and re-
quirements of this method we conclude, that such an approach
seems plausible for larger, complex applications. However,
a substantial amount of further research work is necessary.
Apart from obvious next steps, such as experimentation with
event-driven adaptation, we offer in conclusion the following
endeavours as being worthy of attention:

• Detect and resolve conflicts between aspects (e.g., be-
tween throughput and latency optimisations)

• Identify techniques to be incorporated in the adaptive
code (buffering, change in communication patterns, exe-
cution of security functions in response to location, etc.)

• Explore the pro-active support for pre-existing design
patterns in applications, e.g. supporting a chain-of-
responsibility pattern [6] by optimising communication
paths between the participating software components.

• Classify applications with respect to their specific adap-
tation needs, to derive adaptation patterns

• Complement the event service with a query API to allow
on-demand acquisition of information

• Realise distributed discovery techniques, as knowledge
source alternatives

8
ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 362

ACKNOWLEDGMENT

The authors wish to thank the members of the Munich
Network Management Team (MNM Team) for helpful dis-
cussions and valuable comments on previous versions of
this paper. The MNM Team directed by Prof. Dr. Dieter
Kranzlmüller and Prof. Dr. Heinz-Gerd Hegering is a group
of researchers at Ludwig-Maximilians-Universität München,
Technische Universität München, the University of the Federal
Armed Forces and the Leibniz Supercomputing Centre of the
Bavarian Academy of Science.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg. A Survey on Context-aware
Systems. Int. J. Ad Hoc and Ubiquitous Computing, 2(4):263–277, 2007.

[2] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software
Engineering in Practice. Morgan & Laypool Publ., 2012.

[3] K. Czarnecki and U. Eisenecker. Generative Programming. Addison-
Wesley, 2000.

[4] A. Danylenko and W. Löwe. Adaptation of Legacy Codes to
Context-Aware Composition Using Aspect-Oriented Programming. In
T. Gschwind, F. D. Paoli, V. Gruhn, and M. Book, editors, Proc. 11th

Int. Conf. Software Composition (SC’12), volume 7306 of Lect. Notes
Comp. Sci., pages 68–85. Springer, 2012.

[5] J.-M. Favre. Preprocessors from an Abstract Point of View. In Proc.
1996 Int. Conf. Software Maintenance (ICSM’96), pages 329–339. IEEE,
2006.

[6] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1994.

[7] H. Hafiddi, H. Baidouri, M. Nassar, and A. Kriouile. An Aspect Based
Pattern for Context-Awareness of Services. Int. J. Computer Science
and Network Security, 12(1):71–78, 2012.

[8] G. J. Myers. Reliable Software through Composite Design. Mason and
Lipscomb Publ., 1974.

[9] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET
STANDARD), Sept. 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[10] O. Spinczyk, D. Lohmann, and M. Urban. AspectC++: An AOP
Extension for C++. Software Developer’s J., 5:68–76, 2005.

[11] É. Tanter, K. Gybels, M. Denker, and A. Bergel. Context-Aware Aspects.
In W. Löwe and M. Südholt, editors, Proc 5th Int. Conf. Software
Composition (SC’06), volume 4089 of Lect. Notes Comp. Sci., pages
227–242. Springer, 2006.

9
ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013 363

